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Abstract

Omnipresence of sensor-equipped devices spurred rapid development of e-health and m-
health applications in the past decades. Despite their wide-spread adoption in the form of
wearables, such devices are ultimately not a universal or ideal solution for regular health
monitoring due to their reliance on battery, requiring skin contact and general obtrusive
nature. Ideally, the need for direct user-device interaction should be completely removed in
the paradigm of ubiquitous and pervasive computing, which can be achieved using contact-
free sensors such as radars and cameras that monitor different parts of electromagnetic
(EM) spectrum. These devices can be used to monitor different physiological parameters
in an unobtrusive manner, making them feasible for subjects who cannot use wearables
(e.g., neonates, burn victims, elderly with dementia).

We initially explored the potential of radio-frequency part of the EM spectrum, mea-
sured by radars, for detection of complex hemodynamic states. These are expressed via
several physiological parameters, including respiration. Radars allow for measurement of
periodic thoracic expansion and contraction even in challenging conditions, such as night
time and occlusion, making them ideal for sleep monitoring. We proposed a novel branched
neural network architecture that can take a different number and type of input signals. We
showed that we can detect five different hemodynamic states available in a public dataset
(including apnea) with up to 0.83 accuracy and F1 score when using only radar signals
as input. These results were only 4-5% behind traditional contact sensors, confirming
feasibility of radar-based physiological monitoring.

In the second part, we investigated the feasibility of using the visible part of the
EM spectrum, specifically the feasibility of a modified consumer RGB camera for multi-
wavelength (MW) pulse transit time (PTT) measurement between different skin layers.
Different wavelengths penetrate to different depths and allow for depth-specific photo-
plethysmogram (PPG) reconstruction. These can be used for MW PTT computation and
subsequent blood pressure (BP) estimation. We found that algorithmic channel separation
of mentioned PPGs is mandatory due to the imperfect nature of image sensor design, which
causes spectral overlap between PPGs from different depths. We thus developed several
algorithms that allow for data-driven camera-independent channel separation, which in
turn allows for precise measurement of MW PTTs. Finally we confirmed on an in-house
dataset that such MW PTTs are well-correlated with BP and that a personalized regression
model can be trained to predict both systolic and diastolic BP with errors within clinical
standards.

Overall we showed in this dissertation that contact-free sensors leveraging the infor-
mation from the EM spectrum are an affordable unobtrusive alternative to wearables, and
can achieve similar performance in monitoring of important physiological parameters and
states. While some limitations and challenges remain, such as difficult uncontrolled condi-
tions and privacy concerns, there is potential for implementing the proposed methods in a
single device, which could immensely improve the speed, cost and comfort of physiological
monitoring both at home and in hospitals.
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Povzetek

Vseprisotnost naprav s senzorji je v preteklih desetletjih spodbudila pospešen razvoj apli-
kacij za elektronsko in mobilno zdravje. Navkljub razširjeni uporabi nosljivih naprav s
senzorji le-te niso splošna in idealna rešitev za redno spremljanje zdravstvenega stanja, saj
so odvisne od baterije, terjajo stik s kožo in so lahko moteče. V idealnem primeru bi v
kontekstu vseprisotnega računalništva povsem odpravili potrebo po neposredni interakciji
med uporabnikom in senzorjem, kar je dosegljivo z uporabo brezstičnih senzorjev, kot so
radarji in kamere, ki spremljajo različne dele elektromagnetnega (EM) spektra. Te naprave
omogočajo spremljanje različnih fizioloških signalov na nemoteč način, kar jih naredi pri-
merne tudi za uporabnike, ki ne morejo nositi nosljivih naprav (npr. nedonošenčki, žrtve
opeklin, starejši z demenco).

Sprva smo raziskali potencial radiofrekvenčnega dela EM spektra, ki ga merijo radarji,
za zaznavo kompleksnih hemodinamičnih stanj. Ta se odražajo v več fizioloških signalih,
vključno z dihanjem. Radar omogoča merjenje periodičnega širjenja in krčenja prsnega
koša tudi v zahtevnih pogojih, kot so tema in zakritost opazovanca, kar ga naredi zelo
primernega za spremljanje spanja. Predlagali smo novo razvejano arhitekturo nevronske
mreže, ki lahko sprejme različno število in tip vhodnih signalov. Pokazali smo, da lahko
zaznamo pet različnih hemodinamičnih stanj, ki so bila na voljo v javni bazi podatkov,
s točnostjo in mero F1 0.83, če kot vhode uporabimo le radarske signale. Ti rezultati
zaostajajo le 4-5% za tistimi z uporabo tradicionalnih motečih nosljivih senzorjev, kar
potrjuje izvedljivost radarskega spremljanja fizioloških signalov.

V drugem delu smo raziskali izvedljivost izrabe vidnega dela EM spektra, konkretno
izvedljivost uporabe modificirane splošnonamenske RGB kamere za merjenje večvalovnega
(ang. multi-wavelength) časa prenosa pulza (ang. pulse transit time, PTT) med različnimi
plastmi kože. Različne valovne dolžine prodrejo različno globoko, kar omogoča rekonstruk-
cijo fotopletizmogramov (ang. photoplethysmogram, PPG) iz vsake globine. Iz teh se lahko
izračunajo PTT-ji, ki se nato uporabijo za ocenjevanje krvnega tlaka. Ugotovili smo, da
je obvezen korak algoritmično ločevanje omenjenih PPG-jev zaradi nepopolne implemen-
tacije slikovnega senzorja, saj slednja povzroči spektralni presek med PPG-ji. Posledično
smo razvili več algoritmov, ki omogočajo ločevanje kanalov in natančno merjenje večva-
lovnih PTT-jev samo na osnovi podatkov, neodvisno od specifične kamere. Nazadnje smo
potrdili, da so takšni večvalovni PTT-ji dobro korelirani s krvnim tlakom in da je mo-
žno naučiti personaliziran regresijski model za napovedovanje sistoličnega in diastoličnega
krvnega tlaka, ki dosega napake znotraj mej kliničnih standardov.

Celokupno smo v tej disertaciji pokazali, da so brezstični senzorji, ki izrabljajo infor-
macijo iz EM spektra, cenovno dostopna in nemoteča alternativa nosljivim napravam ter
da lahko dosežejo podobne rezultate pri spremljanju pomembnih fizioloških parametrov in
stanj. Čeprav omejitve in izzivi ostajajo, kot so naprimer zahtevni nenadzorovani pogoji in
ohranjanje zasebnosti, obstaja potencial za implementacijo predlaganih metod v eni sami
napravi, ki bi lahko znatno izboljšala hitrost, ceno in udobje fizioloških meritev tako doma
kot v bolnišnicah.
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Chapter 1

Introduction

Sensor-equipped devices have become omnipresent over the last decade [1], [2] and are
commonly equipped with a variety of sensors, which can be used for different purposes,
such as obtaining physiological data about the user. This spurred rapid development of
e-health and m-health applications [3], which manifested in great improvements of contin-
uous patient monitoring and wide-spread adoption of telemedicine [4]. Importance of such
systems was further reinforced post 2019 with the emergence and rise of the SARS-CoV-19
(COVID-19) pandemic, which made traditional medical treatment difficult, both in terms
of availability, as well as safety, especially for high-risk groups like chronic patients and
elderly people [5]–[7].

Despite the increasing prevalence and wide-spread use of sensors, mostly in the form of
wearables that require contact with the user (e.g., smart watches, smartphones, etc.), the
ultimate goal of pervasive and ubiquitous computing is to completely remove the need for
the user–device interaction [8], [9]. In practice, this can be naturally achieved using contact-
free sensors, such as cameras. These can be present in an environment without limiting
or bothering the user in any way, while allowing for continuous non-invasive monitoring of
important physiological parameters and related medical conditions of almost any subject.

1.1 Motivation

The potential of contact-free sensing becomes apparent in the context of current gold-
standard devices used for monitoring different important aspects of user health.

Electrical cardiac activity is recorded via electrocardiogram (ECG), which is obtained
using electrodes placed at correct position on the limbs and thorax [10]. These electrodes
must be surrounded by a conductive gel and adhesive substance to keep them in the correct
place. They are equipped with an analog-to-digital converter connected to a central unit,
most commonly with cables. Such a traditional setup can be often found in a doctor’s
office and laboratories for continuous patient monitoring.

Respiratory monitoring is another important aspect of healthcare, which is of interest
both for relatively common populations, such as long-term smokers and elderly people,
as well as more specific high-risk populations, such as sleep apnea patients [11]. Such
monitoring is exceptionally obtrusive, where the golden standard remains a complex device
including a mask or semi-invasive nasal cannulas placed on the subjects face, covering the
mouth and / or nasal area. These are commonly accompanied by a respiration belt around
the thorax. The mask or cannulas are again connected with a tube to a central device
where the airflow and respiratory rate (RR) is recorded.

Another parameter that is extremely commonly measured and monitored, both in office
and at home, is blood pressure (BP). Digital sphygmomanometer is the de-facto standard
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for general measurement, although the perfect ground truth of continuous arterial blood
pressure (ABP) can only be obtained using invasive intravenous catheters. Sphygmo-
manometer once again includes a tube connecting the cuff and the central device, which is
used to inflate the cuff and allow for a measurement to be made in a specific body position.

More physiological details contributing to the requirement for such devices will be dis-
cussed in later sections, however, one can already discern the common denominator of
these methods – relatively complex devices and protocols for monitoring important cardio-
vascular and respiratory activity, which are quite obtrusive and can be frustrating for the
subjects. This results in many undesired effects, such as problems in adherence to regular
measurement and potentially even incorrect measurements due to the procedure itself in-
fluencing the parameters. A good example of this is the white-coat syndrome, a common
problem with in-office BP measurement, where the person following the protocol becomes
anxious and worried about the result, subsequently causing changes in hemodynamics that
are reflected in the measured values. The latter thus lose some of the important information
about the default state of the subject and cannot be completely trusted [12].

Examples of the discussed devices and the required sensor positions and / or measure-
ment protocols are shown in Figure 1.1.

Figure 1.1: Examples of golden standard devices and measurement protocols for monitoring
important physiological parameters, including blood pressure with a sphygmomanometer,
cardiac activity with electrodes, and respiratory activity with nasal cannulas.

The nature of the described wearable sensor systems is not only obtrusive and cumber-
some, but fundamentally infeasible for use with specific high-risk subject groups. A prime
example of this are (preborn) neonates [13], which have highly sensitive skin and fragile
body, and are kept and monitored inside incubators. Another example are burn victims or
people with severe allergies, where wearable sensors requiring skin contact cannot be used.
Finally, limitations of high-risk groups are not only physical, but also cognitive. People
with profound intellectual and multiple disabilities (PIMD) [14], [15] and elderly people
with cognitive impairment (e.g., dementia) can neither understand nor remember how and
when to use devices like a digital sphygmomanometer. Even after precise instructions, it
cannot be expected for such subjects to adhere to a rigorous measurement routine [16].

There is a clear need to resolve the described issues, as physiological parameters often
serve as key indicators of many high-risk diseases. For instance, cardiovascular diseases
(CVDs) – including coronary heart disease, hypertensive heart disease, atrial fibrillation,
etc. – are the leading cause of death globally [17], [18]. Similarly, respiratory disorders –
including sleep apnea, asthma, bronchitis, etc. – also have major negative effects on large
parts of population [19]. These facts serve as a motivation for our research into contact-
free monitoring of important respiratory and cardiovascular physiological parameters and
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detection of related conditions.

1.2 Problem Definition

Our problem directly follows the motivation and reasoning from the previous section. We
have to propose, develop and validate contact-free methods with suitable sensors that en-
able contact-free monitoring of important physiological parameters and conditions, as such
parameters are important indicators of highly impactful and dangerous diseases mentioned
previously.

More precisely, we first have to consider possible alternatives to existing sensors that are
suitable for capturing the information related to cardiovascular and respiratory activity.
These physiological modalities are chosen due to their medical importance and feasible
contact-free alternatives to traditional sensors. We then have to analyze their pros and
cons, gather data, propose methods for physiological parameter extraction, investigate
their feasibility and finally validate the setup using robust experiments.

The idea of contact-free sensing itself is not novel [20], however, we are interested in
more than only basic parameters such as heart rate (HR) and RR, which are the most
commonly measured vitals using such approaches. The aim of this dissertation is to inves-
tigate the feasibility of measuring and detecting more complex conditions and parameters
that are important indicators of the subject’s health and well-being. In the respiration
modality, a good example of this is sleep apnea, which is a widely-investigated and deadly
condition [11]. In cardiovascular hemodynamics, an important parameter that influences a
severe portion of elderly population is BP, and, directly following from it, potential hypo-
and hyper-tension [21]. Respiration patterns and BP are universally important, as they
were shown to be connected to general well-being, stress and other complex states [22].
Explicitly, the following problems are of interest:

• Wearable sensors are predominantly used for home monitoring of physiological pa-
rameters, which then drives telemedicine. However, such sensors have several down-
sides, such as battery or cable dependence, discomfort, specific placements and ulti-
mately even the requirement to be worn, which is not trivial, especially for popula-
tions like elderly with dementia. Subsequently, contact-free unobtrusive alternatives
should be considered for monitoring as many parameters as possible.

• The current standard for sleep monitoring and apnea detection are sleep laboratories,
where subjects are equipped with masks and chest straps to measure respiration.
Such sleep monitoring setups substantially decrease sleep quality and subject comfort.

• A large amount of the elderly population is suffering from hypertension and related
diseases, which will become increasingly prevalent with aging populations globally.
BP is the de-facto indicator of such diseases, but current standard cuff-based moni-
toring is cumbersome, requires knowledge of the measurement protocol and can cause
incorrect measurements.

In the following section, we will focus on the mechanisms influencing physiological
parameters and governing the complex hemodynamics in the human body. Our aim is
to first thoroughly present and understand the foundation on which computer-assisted
contact-free health monitoring methods can be feasibly built, with good understanding of
the fundamentals governing the monitored phenomena and causing the measurable effects.
This, alongside the analysis of existing state-of-the-art (SOTA) related work, will allow us
to propose hypotheses for our research, which originate from the problems listed here and
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the solutions already existing in related work. We will then propose and investigate both
hardware and algorithmic solutions. The interpretation of obtained results will allow us to
ultimately accept or reject the hypotheses proposed in Section 3.3.
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Chapter 2

Physiological Background

A detailed understanding of the physiological phenomena, governing the physiological pa-
rameters of interest, is of utmost importance, especially when designing novel methods of
measurement. In this section, we give a detailed overview of the human circulatory sys-
tem and hemodynamics, starting from a high-level overview and then narrowing on more
detailed principles of blood flow at organ level, focusing on skin, as it is the organ that is
directly observable and most easily measurable.

2.1 Circulatory System

Human cardiovascular and respiratory system are closely connected. The former consists
of the heart and the vascular network (including arteries, veins and capillaries) and the
latter includes lungs and the airways (nose, mouth, windpipe) that deliver air rich with
oxygen [23]. They work in tandem to provide continuous oxygen supply to the blood cells
and in turn maintain cell-level metabolism [24]. The hemoglobin-rich oxygenated blood
carries oxygen and nutrients to the organs, tissues and muscles away from the heart via
arteries. Deoxygenated blood returns towards the heart and lungs via veins. Two notable
naming exceptions are the pulmonary artery and vein – the former is the only artery
carrying deoxygenated blood (away from the heart, towards the lungs), while the latter
is the only vein carrying oxygenated blood (from the lungs towards the heart). Together,
this is known as the circulatory system and is schematically shown in Figure 2.1. Note
that the separation between the respiratory and cardiovascular system is not clear-cut, as
both are closely intertwined.

Following the structure of the circulatory system, we can determine that the respira-
tory and cardiovascular activity are crucial for normal functioning of the body. Should
they deviate from expected functioning, such conditions can have serious consequences.
While cardiovascular and respiratory activity in themselves are well-known and subject of
extensive research [23], there is another important aspect connecting them and ensuring
correct functioning – hemodynamics. These are the dynamics of the blood flow through
the circulatory system. More precisely, they describe the physical laws that govern the
flow of blood in the circulatory system or more specifically in the vascular network [26].

2.1.1 Respiratory System Structure and Functions

Normal respiratory activity is an obvious requirement for the circulatory system to success-
fully deliver oxygen to the body. This means that continuous delivery of fresh air (rich with
oxygen) from the outside environment to the lungs, and subsequently to the cells within
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Figure 2.1: Human circulatory system [25], comprising the lungs, the heart, and the vessel
network connecting to other organs. This system ensures oxygen and nutrient delivery to
cells throughout the body.

tissues, must be ensured. Following this, removal of the carbon dioxide is also mandatory,
as it becomes toxic in higher concentrations [27].

The gas exchange described above occurs between the lung and the external environ-
ment by the process of ventilation. This involves inhalations and exhalations within a
respiratory cycle. Inhalation is the active movement of bringing the air into the lungs with
the help of the diaphragm muscle, which causes the lungs and chest to expand substan-
tially. The gas exchange then takes place with the cardiovascular system via the blood-air
barrier within structures called pulmonary alveoli, shown in Figure 2.2 [28]. In contrast,
exhalation is usually a passive process, which is the consequence of the elastic recoil of the
lungs and the chest wall, and causes the lungs and chest area to contract [29].

The changes in the pulmonary volume cause the frontal wall of the thorax to displace
periodically. This displacement is minor, measured in millimeters (mm) to centimeters
(cm) at most [31], but very highly correlated with respiratory rate [32], making it a useful
indicator for respiration monitoring and detection of dangerous conditions, such as sleep
apnea. Respiratory rate must be in an expected range and uninterrupted for periods longer
than a minute, as failure to provide oxygen can swiftly have severe life-threatening effects
on the brain [33].

2.1.2 Cardiovascular System Structure and Functions

The cardiovascular system includes the heart and vascular network, as shown in Figure 2.3.
The heart is a muscular organ that pumps blood through the vessels and is located

between the lung wings in the middle of the thorax area. It is divided into four chambers,
two atria and two ventricles. Similarly to respiration, cardiac activity is continuous and
periodic, but with higher frequency compared to respiration. A single cardiac cycle com-
prises atrial and ventricular systole, followed by atrial and ventricular diastole. The atrial
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Figure 2.2: Human respiratory system [30] that allows for oxygen transfer between the
outside environment and the blood.

systole is the period in which the atria contract, filling the ventricles with blood. Ventric-
ular systole is the period of contraction of the ventricles, forcing blood into the aorta and
pulmonary artery. Atrial diastole is the period during which atria relax and fill with blood
coming from the lungs. Similarly during ventricular diastole the ventricles relax and refill
with oxygenated blood from the atria. This procedure is coordinated between the atria
and ventricles, meaning that atria relax when ventricles contract and vice-versa [35]. This
procedure is reflected in the ECG in the form of the well-known QRS complex, with the
additional P and T waves before and after QRS, respectively. In brief, the cycle starts
with ventricular filling in the late parts of the ventricular diastole, immediately followed
by atrial contraction in the atrial systole. These are reflected in the ECG as the P wave
and the Q deflection. This is followed by the isovolumetric ventricular contraction and
blood ejection during the ventricular systole, which is seen in the ECG as the sharp R
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Figure 2.3: Human cardiovascular system [34]. Red denotes arteries carrying oxygenated
blood, blue denotes veins carrying deoxygenated blood. Purple denotes vasculature includ-
ing both arteries and veins.
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wave. Finally, the isovolumetric relaxation of the ventricles and another refilling follow,
which are reflected in the ECG as the S and T wave, respectively [36]. The procedure is
illustrated in Figure 2.4.

Figure 2.4: Illustration of the cardiac cycle and its reflection in the QRS complex [37].

Note that despite Figure 2.4 showing a very sequential procedure, it is in reality per-
formed in parallel, as mentioned previously and highlighted in Figure 2.5.

Despite precise separation into two pairs of systoles and diastoles, phrasing in literature
commonly refers to a single cardiac systole and diastole, not separating between atrial and
ventricular. The diastole generally refers to the period during which the heart muscle
relaxes and refills with blood, while the systole refers to the period of contraction and
pumping of blood. In practice, this naming is more closely associated with ventricular
systole and diastole, since it is the precise period during which blood is actually ejected
from the heart.

2.1.3 Hemodynamics

Once the blood is ejected from the heart in the ventricular systole, it immediately enters
the main arteries, which in turn split into smaller arteries, arterioles and finally capillaries
throughout the body. Based on the structure (elasticity and related vascular resistance)
of the cardiac and vascular walls, the amount of blood being ejected – known as the
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Figure 2.5: Systoles and diastoles of cardiac cycle happening in parallel between atria and
ventricles.

cardiac output (CO) – and the relative chemical structure alongside corresponding physical
properties of the blood, there is different pressure exerted on the vascular wall [38]. Optimal
performance of the previously described circulatory system depends on maintaining precise
value of such ABP. It is of vital importance that it remains within some bounds, which
allows for normal blood flow (pressure must not be too low), while not exerting too much
pressure on the vascular wall (pressure must not be too high). Stable ABP in expected
range ensures optimal perfusion of critical organs (e.g., brain) and other parts of the
body [39].

The flow of blood is orchestrated by the previously described cardiac cycle and the
arterial pressure is continuously controlled by several mechanisms that ensure biological
homeostasis:

• Baroreflex. Responsible for continuous short-term regulation of BP. It relies on
specialized neurons (baroreceptors) that relay changes in BP detected via the tension
/ stretching of the arterial wall. The detected stretch changes are mediated by the
autonomic nervous system (ANS) and the HR is adjusted according to the change.
In case of lowered BP, the HR is increased, and vice-versa [40].

• Chemical regulation via hormones. Responsible for long-term maintenance of
normal functioning BP, the heart releases atrial natriuretic peptide when BP is too
high, and the kidneys detect and correct low BP with the renin-angiotensin sys-
tem [41]. Details of these mechanisms are the subject of active research and out of
the scope of this dissertation.

As briefly mentioned before, the ABP measured value is determined mainly by three
subject-specific characteristics. First is the CO, or the amount of blood ejected by the heart
into the aorta, second is the systemic vascular resistance (SVR), or the fluidic resistance of
the vessels opposing the blood flow, and third is the chemical structure of the blood that
gives it specific physical properties [40]. While the structure of blood can change (e.g.,
medication like blood thinners), we assume it to be constant within an average individual
that is not treated for some disease. Thus we can define ABP as:

ABP = CO · SV R (2.1)

where ABP is the arterial blood pressure in millimeters of mercury (mmHg), CO is
the cardiac output volume in L/min and SV R is the systemic vascular resistance in



2.2. Pulse Wave Propagation and Skin 11

mmHg/(L/min). The specific CO further depends on the HR and the stroke volume
(SV), which is the amount of blood ejected by the heart at each contraction [40]:

CO = HR · SV (2.2)

where CO is the cardiac output in L/min, HR is the heart rate in beats-per-minute (bpm)
or min−1, and SV is the stroke volume in L. Physiologically, HR is determined by the
sinoatrial node made up of pacemaker cells, which serves as a natural pacemaker of the
heart. A certain SV is achieved by the signalled contraction of the ventricular nodes. Both
are governed by the autonomic nervous system (ANS), which can achieve quick changes in
ABP via the previously described baroreflex regulation mechanism.

2.1.4 Systolic and Diastolic Blood Pressure

Due to continuous periodic nature of the cardiac activity, ABP is not a single value but a
continuous time series changing with the blood flow and pulse wave propagation. When a
pulse is ejected and propagated during the cardiac systole, the pressure is increasing, while
the refilling of the heart during the diastole causes it to decrease. In standard clinical
practice however – meaning outside of invasive procedures such as surgery – there are two
main indicators commonly provided and monitored [40]:

• Systolic blood pressure (SBP). Defined as the maximum value of the ABP trace
in a single cardiac cycle or defined period.

• Diastolic blood pressure (DBP). Defined as the minimum value of the ABP trace
in a single cardiac cycle or defined period.

The clinical significance and diagnostic value of SBP and DBP are immense, and they
are an essential part of any medical examination [42]. As a direct indicator of hypo- and
hyper-tension, two of the most wide-spread and dangerous CVDs, their importance cannot
be overstated [17], [18].

They are commonly measured in mmHg due to historic reasons, as the first devices
for measurement used a mercury column. The measurement protocol should be followed
precisely due to notable influence of any deviation on the measured BP values. As shown
in Figure 1.1, the subject must sit upright, with supported back and legs uncrossed, as
such position ensures that the vascular system is not influenced by factors not relating
to hemodynamic state (such as compression of the arteries when legs are crossed) [42].
Furthermore, arms should never be raised, but should be positioned naturally with the
upper arm resting at heart level. Should the arm be raised, this requires the pulse wave to
additionally propagate against gravity, increasing the required pressure at the aorta and
influencing the measured values [42].

2.2 Pulse Wave Propagation and Skin

The ejected blood at each cardiac cycle traverses the vascular system in waves, as the blood
volume increases during each systole. Physical characteristics of these waves are reflecting
the cardiovascular state via several metrics, and they change based on hemodynamic state
as well as tissue specifics.
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2.2.1 Pulse Wave Velocity and Pulse Transit Time

We have shown in Section 2.1.3 that systemic vascular resistance plays a crucial role with
BP [43]. Moreover, SVR is related to the speed of the blood flow – the pulse wave velocity
(PWV) – via the Moens-Korteweg equation from biomechanics [44]:

PWV =
L

PTT
=

√
Einc · h
2rρ

(2.3)

where PWV is the pulse wave velocity at which a pulse wave propagates a certain distance
L in time PTT , Einc is the Young’s elastic modulus of the vessel wall, h is the vascular
wall thickness, r is the vessel radius, and ρ is the blood density. SVR is related to and
reflected in the elastic modulus on the right-hand side of the equation [40].

When the elasticity of the arterial wall is high (Einc is low), the resistance to blood
flow is also high, causing the blood flow to slow down, and the time it takes for a pulse
wave to propagate a certain distance to increase. This time is known in literature as the
pulse transit time (PTT) [44], and denoted as such in Equation 2.3. The opposite holds
true when the SVR is low (the pulse wave propagates faster and the PTT decreases). In
terms of pressure, when the SVR is lower, the vascular walls are less prone to deformation
and generally stiffer, which causes the pressure to be larger compared to a more elastic
tube [43].

The speeds and times of pulse propagation change based on the type of vessels the
blood traverses, and on the distance from the heart. We report typical ranges of these
parameters, alongside other relevant parameter ranges, in Section 2.4.

2.2.2 Skin Structure and Properties

The same principles described so far at a macro body level apply on the micro organ
level as well. In light of our aim to develop contact-free sensing methods for parameters
of the circulatory system, we focused on skin, as skin is the organ that is most easily
observed directly, while being highly perfused, thus reflecting cardiovascular activity and
hemodynamics [45]. The layered structure of skin tissue is shown in Figure 2.6.

The skin comprises three main layers, the top-most epidermis, the middle dermis and
the bottom-most hypodermis [47]:

• Epidermis is the outermost layer of the skin that forms the protective layer of the
body surface. It contains no blood vessels and is nourished by diffusion from the
underlying dermis.

• Dermis is the layer beneath the epidermis and it consists of connective tissue that
absorbs stress. Importantly, among other structures, it also contains plentiful small
blood vessels that provide nourishment and waste removal.

• Hypodermis is sometimes not considered as part of the skin, however it is commonly
included in research dealing with skin [47]. It attaches the skin to underlying muscles
and hosts slightly larger vessels that branch into dermis.

An important property of the skin is its melanin content, which gives it its pigment.
Naturally it is brown in color and the amount varies between different sites of an individ-
ual, as well as between individuals. Its purpose is to protect the cells in the lower layers
against ultra-violet (UV) light, which can cause genetic damage to the deoxyribonucleic
acid (DNA) [48]. A well-known numerical classification schema for human skin color based
on melanin content is the Fitzpatrick scale, which classifies skin into 6 types, based on
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Figure 2.6: Layered structure of human skin [46], showing vascular presence and important
structures. Pulse waves propagate through the vessels between different sites (horizontal
arrow) and between different layers (vertical arrow).

response to UV and related melanin content [49]. Based on melanin content, the optical
properties differ, which makes some skin types behave differently in regards to electromag-
netic radiation and potential measurement applications thus become skin-tone-specific [50],
[51]. Despite this, there is a consistently lower amount of melanin present in certain parts
of the body, such as palms and soles of the feet. This is due to evolutionary reasons, as
these parts were less exposed to radiation (e.g., the sun) while being frequently used. This
means that less melanin was required and instead another translucent protective layer of
dead skin cells called stratum lucidum developed [52].

2.2.3 Skin Perfusion

As described in the previous section, the skin, especially its dermis layer, is dense with
vessels, specifically capillary loops. These are the thin final microvessels in the vascular
network originating from the heart. It starts with the aorta, which then splits in the aortic
arch into smaller arteries leading towards the brain and towards limbs. Arteries split
further along the network into yet smaller arterioles, and finally capillaries. The latter
form capillary loops, where the input is the arterial pathway described previously, which
delivers oxygenated blood and nutrients, and the output are called venules, which then
widen and become veins, returning blood towards the heart [53].

A network of many capillary loops is called the capillary bed. Presence and density of
the capillary bed differs throughout the body, thus causing different perfusion of different
tissues. The hand is an example of a relatively well-perfused part of the body, with two
large arteries – the ulnar and radial artery – delivering blood in the palmar arch, as seen
in Figure 2.7. From here, many arterioles split towards the fingers and general presence of
capillary loops is quite high [55].

While the perfusion in the hand is often depicted in two dimensions, as shown in
Figure 2.7, it actually takes place in the third dimension as well, as highlighted in Figure 2.6.
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Figure 2.7: Arteries delivering blood, which allows for good perfusion of the human
hand [54].
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This means that pulse waves propagate from the deeper layers with larger arterioles towards
the upper layers with the capillary bed, before returning through the venous network.
Subsequently, the traversal of a pulse wave takes place between two locations on the arterial
path, as well as between skin layers [56].

2.3 Observable and Measurable Effects

Having a good understanding of the underlying phenomena causing physiological changes in
the body, we can identify the effects that are observable and measurable in a non-invasive
contact-free manner. In this section, we will briefly highlight the relevant measurable
effects, while a detailed and extensive overview of existing work describing the methods
and results of such measurement will be given in the following chapter.

2.3.1 Respiratory Chest Displacement

The previously described pulmonary volume changes are reflected in the movement of the
chest wall [57]. This movement manifests in all directions, but is most prominent in the
direction perpendicular to the spine, meaning directly forward. Lateral displacement is
also present, but is a lot less obvious [58].

This displacement can be measured with devices allowing for distance measurement
with precision on the order of millimeters. However, as the displacement is relatively
small, it can be sensitive to other larger movement artefacts that are omnipresent during
the daily routine of individuals.

2.3.2 Light Absorption Changes

The previously described perfusion is periodic in sync with cardiac contractions. As each
pulse wave traverses the network, it fills the vessels and tissue with increased volume of
oxygenated hemoglobin-rich blood. Subsequently, after the gas and nutrient exchange,
deoxygenated blood with low hemoglobin returns towards the heart and lungs, lowering
the volume of blood in the tissue. This phenomenon of changes in blood volume is reflected
in color changes of the skin obtained by measuring the light reflected from or transmitted
through the tissue. It can be measured relatively easily with a consistent light source
and a photodiode. The obtained periodic signal is called photoplethysmogram (PPG)
and is commonly used to measure blood oxygen saturation (SpO2), although its range of
applications and its usefulness are extensive, as we will show in the next chapter [59].

Such changes in color can also be captured remotely with devices such as RGB cam-
eras [45], however, both temporal resolution and color sensitivity must be sufficient to
capture them. We discuss the details of different options for such measurement in the
following chapter.

2.3.3 Ballistocardiographic Effects

Another subtle effect of cardiac activity is the movement that can be observed as the down-
ward movement of blood through the descending aorta produces an upward recoil, moving
the body upward with each heartbeat [60]. This is known as the ballistocardiographic
(BCG) effect.

While this causes movement, which can be visually observed in the wrist or neck area,
and the tactile effects felt with the fingertips, the movement is very subtle and sensitive. So
instead, it is usually measured in terms of changes of force exerted by the body, meaning
contact-free sensors are not as feasible [61].
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2.4 Typical Ranges of Measured Parameters

In the previous sections we discussed several parameters relating to the performance of the
circulatory system and hemodynamics, such as the CO, SVR and the related ABP. Further,
we described the pulse wave propagation and discussed PWV and PTT. Finally, we also
briefly reviewed the non-invasively measurable effects of the physiological phenomena. In
Table 2.1, we give an overview of typical values for some of these parameters, as reported
in related work [40].

Table 2.1: Typical ranges of relevant pulmonary, cardiovascular, hemodynamic and tissue
parameters by groups [40].

Group Parameter Typical value and unit

Cardiac timing
Heart rate 50–100 bpm
Isovolumetric contraction time 50 ms
Ventricular ejection time 300 ms

Blood volume

Total blood volume 5 L
Arterial / Venous volume 2 L / 3 L
Stroke volume (at rest) 70–80 cm3

Stroke volume (maximum) 110–120 cm3

Blood flow Cardiac output (at rest) 4–7 L/min
Cardiac output (maximum) 20–35 L/min

Blood pressure Systemic BP (SBP / DBP) 120 / 80 mmHg
Pulmonary BP (SBP / DBP) 25 / 10 mmHg

Vascular resistance Systemic vascular resistance 20 mmHg/(L/min)
Pulmonary vascular resistance 3 mmHg/(L/min)

Pulse wave velocities
Aortic PWV (young < 30 y) 4–5 m/s
Aortic PWV (elderly > 60 y) 10–15 m/s
Capillary PWV 6–17 mm/s

Skin thickness (palm)
Epidermis 1 mm
Dermis 1–2 mm
Hypodermis 2–4 mm

Pulmonary volume Total lung capacity 5 – 7 L
Tidal volume (air moving through
lungs in a single breath)

400–500 mL

Displacements Chest wall displacement 3–5 mm
Ballistocardiographic displacement < 1 mm

It is important to mention that the reported values in Table 2.1 are subject to some
disagreement in literature, as the reported ranges of PWV span several orders of magni-
tude [40], [62]. These differences are the result of different vessels at which the PWV was
measured, as the blood propagates notably faster in the thick large vessels close to the
heart, while slowing down in the peripheral capillaries.
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Chapter 3

Related Work

In the previous chapter, we briefly touched on the basic common ideas for contact-free
measurement of the effects produced by the physiological mechanisms of the circulatory
system. Such monitoring is not novel, but a well-developed and highly-researched field [20].
In this chapter, we will investigate existing methods and applications of such measurement
in depth, with the aim of both understanding the state of the art work, as well as identifying
the remaining challenges and gaps in knowledge that offer room for improvement beyond
the state of the art.

3.1 Remote Monitoring of Fundamental Cardiorespiratory
Parameters

A wide range of research on remote cardiorespiratory monitoring systems has been proposed
using different methods, including methods based on Doppler effect, video camera imaging
and thermal imaging. In this section, we review some of the state of the art methods for
physiological parameter estimation [20], which allow for potential monitoring of specific
fundamental parameters (e.g., HR and RR). Related work suggests these can be relatively
robustly estimated from radar signals and the previously described (r)PPG signal, both of
which can be obtained remotely with different sensors [63].

3.1.1 Radio-frequency Methods

It is not uncommon in practical applications (e.g., sleep monitoring) for some type of
occlusion to be present (e.g., blanket, clothes, hair, makeup etc.) between the subject and
the sensor. In such cases it makes sense to primarily use the part of the EM spectrum
with deeper penetration and longer wavelengths. Some research deals with the IR part of
the spectrum [64], going beyond visible light towards longer wavelengths. However, a large
body of work goes even further, and instead investigates the microwave and radio-frequency
signals for contact-free monitoring [20].

3.1.1.1 Hardware

• Radar. Such work commonly relies on the Doppler effect, which is an active mea-
surement technique capable of detecting previously described pulmonary expansion
and contraction, which results in changes of distance between the sensor and the
observed chest wall [65]. It works by emitting a continuous wave towards the object
from the transmission (Tx) antenna and then recording the reflected wave via the
receiver (Tr) antenna. The reflected wave is either frequency or phase modulated
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due to movement of the object. Comparing the emitted and received signal allows
for computation of change in frequency and phase [66]. Subsequently, radar systems,
specifically frequency modulated continuous wave (FMCW) radars, are most often
employed to measure the movement of the chest wall. Although the used frequency
ranges vary substantially, it was shown that the use of high-frequency radars (> 10
GHz) increases the SNR of the obtained signal [67].

• LIDAR. An alternative to the above is to instead use laser beams to measure changes
in distance, for which light detection and ranging (LIDAR) systems can be used.
The latter have a shorter range compared to radars, but can provide more precise
measurements at close range [68]. LIDARs are a lot less mature compared to radars
and can be considered an emerging trend.

3.1.1.2 Measurable Parameters

• Heart rate. There are several reported studies that estimate HR from the cardiac
vibrations of the chest wall [65]. Ling et al. [69] used mmWave FMCW radar to
record chest movement by first removing the body motion and respiration artefacts.
Following this, they proposed a heart beat extraction algorithm based on filtering
and wavelet transform. It was evaluated on 20 subjects and HR was estimated
with a MAE of around 4 bpm. Jung et al. [70] also used a FMCW 60 GHz radar
to extract HR in short windows and compared with an ECG ground truth. They
obtained similar errors of around 4 bpm. Most other work used similar hardware and
idea, simply using different signal processing and separation algorithms, all achieving
comparable results in terms of MAE.

• Heart rate variability. HRV was also thoroughly investigated. Nosrati et al. [71]
used a 2.4 GHz radar placed 1.5 m from the subjects to reconstruct the cardiac signal.
They trained what they call a Gaussian pulse model and a custom autocorrelation
and frequency-phase regression technique to obtain a clean signal. Interbeat intervals
(IBIs) were compared with a reference PPG and they reported a relative error (RE) of
1.97%. Shi et al. [72] recently proposed an end-to-end approach using bi-directional
LSTM network to estimate IBIs. On 25 test subjects they achieved RE of around
5%. Again, other work used the same idea, albeit with different signal processing
methods, with the aim of obtaining a clean cardiac signal that can be used to compute
HRV features [73].

• Respiratory rate. In terms of radars, respiration monitoring is an especially mature
research field, as it is arguably easier to measure compared to cardiac activity due to
larger consistent displacement of the chest. An early method was proposed by Xiao et
al. [74], who used a 5 GHz radar at a distance between 0.5 and 2.8 m, and achieved
accuracy of 81% for HR and RR detection at maximum distance. Accuracy was
calculated as the percentage of time the calculated rate (HR and RR) was within 2%
of the reference rate. However, this metric is less intuitive compared to commonly
reported errors in terms of bpm. More recently Yang et al. [75] proposed a more
elaborate method which uses image representations of the obtained data (similar to
spectrograms) and then first detects the number of present people (periodic patterns)
and finally estimates RRs based on edge detection in the image. They reported
MAEs of around 0.5 breaths per minute, even for scenarios where multiple people
are present.

A novel approach that enables LIDAR monitoring of respiration was proposed by
Zhang et al. [68]. They initially proposed a photonic radar, which is an alternative
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technique to traditional radars, using lasers to create and analyze signals in the RF
frequencies. In this sense, it is similar to a LIDAR, which they also demonstrated.
They analyzed the obtained respiratory signals of a cane toad (which has a high rela-
tive pulmonary expansion in relation to their body size) in terms of cross-correlation
between the photonic radar / LIDAR and reference camera-extracted data, achieving
a correlation coefficient of 0.72.

• Blood pressure. In recent years, researchers also estimated BP using radars, most
commonly in combination with other sensors via PTT or pulse arrival time (PAT).
The former is the delay between two pulses measured at two locations (could be using
two PPG sensors or other alternatives) and the latter is the time it takes for a pulse
to travel from the heart (ECG) to some location (commonly PPG). Buxi et al. [76]
used a radar to acquire arterial pulsation at the aortic arch and then measured the
delays between the corresponding cycles and their counterparts in the ECG. They
measured data from 6 subjects and got Pearson’s correlation coefficients of −0.66
and −0.48 for SBP, depending on the specifics of the measured PTT or PAT. Zhao
et al. [77] proposed another BP estimation approach, again based on PTT obtained
between the aortic and radial pulse waves measured with a radar. They evaluated
on 3 subjects in stable conditions (stationary, holding breath, at rest) using a linear
regression, and they reported errors within 3 mmHg, although details are not clear –
the precise definition of the error metric is not specified and the reported values are
only integers.

3.1.2 Optical Methods

The most common idea behind contact-free physiological measurement is to use a camera
to capture the changes in skin color as a consequence of blood volume changes [78]. The
principal idea behind camera-based physiological monitoring is to use the information
from the non-ionizing part of the electromagnetic (EM) spectrum, namely visible and
(near) infrared light [63]. This part of the spectrum has different penetration depths in
accordance with wavelength, which makes it suitable to probe different depths of tissue –
usually skin – as shown in Figure 3.1.

Alternatively, cameras can also be used to detect subtle movement relating to the
BCG [79], however, this is extremely sensitive to other movement noise and has to be sep-
arated precisely. This means that practical application of camera-based BCG monitoring
is more difficult and less feasible compared to the color-based PPG approach.

3.1.2.1 Hardware

• RGB Cameras. RGB cameras by default are sensitive to three distinct bands of
visible light around 475 nm (blue), 550 nm (green) and 650 nm (red). This type of
camera is by far the most wide-spread, as it is available in laptops, phones and other
smart devices like mirrors, TVs, virtual reality (VR) headsets, etc. [63]. Moreover,
this type of camera captures the information from the spectral band at which the
signal-to-noise ratio (SNR) for PPG is the greatest, which is around 570 nm [80].
In terms of skin layer reached by light with such wavelength, it mostly corresponds
to the capillary bed in the skin dermis (depends in part on measuring site and skin
thickness). Hence, research dealing with physiological parameters obtained from
RGB cameras is most mature [81]–[83]. The illumination source for such cameras
can be ambient lighting, which is convenient, however, if a dedicated light source is
needed, it interferes with the human eyes and can be unpleasant.
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Figure 3.1: Different skin depth penetration of light with different wavelengths.

• (N)IR and Thermal Cameras. The second example of a relatively common
hardware are those capable of capturing information beyond 700 nm, in the infrared
(IR) part of the EM spectrum. This information corresponds to happenings in the
deeper layers of the skin tissue and can probe beyond the capillary bed, reaching
smaller arterioles [56]. Light in this part of the spectrum does not interfere with
human vision, and, perhaps more importantly, such cameras can be used in low light
conditions [84]. However, absorption of such near infrared (NIR) light by hemoglobin
is also weaker compared to the green spectral band, so the obtained signal is expected
to have a lower SNR [63]. Additionally, thermal cameras sensitive to a broader part
of the IR spectrum are more expensive by orders of magnitude compared to RGB
cameras.

• Multi- and Hyper-Spectral Cameras. Given the known advantages of certain
spectral bands, resulting in better SNR of the obtained PPG signal or more motion
and illumination robustness [85], one can deduce that measuring specific narrow-
band parts of the spectrum would be optimal. This is made possible by multi- and
hyper-spectral cameras, which are special cameras that collect information as a set
of quasi images, each representing a narrow-wavelength spectral band. These quasi
images are combined to form a three-dimensional (x, y, λ) hyperspectral data cube
for processing and analysis, where x and y represent two spatial dimensions of the
image, and λ represents the spectral dimension (comprising a range of wavelengths).
However, the availability and practicality of such cameras are very limited, as this
type of hardware is extremely expensive, specialized for specific tasks (e.g., physics
spectroscopy) and generally difficult to use. An alternative is thus to instead use
several cameras sensitive to specific parts of the spectrum and then fuse their infor-
mation [86].
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3.1.2.2 Measurable Parameters

Using the previously described optical PPG approach, most commonly obtained with an
RGB camera, several physiological parameters were measured successfully.

• Heart rate. This is the simplest parameter to obtain from PPG, as it corresponds
to the dominant frequency in the pulse signal. Its fundamentals lie in remotely
obtaining high-quality PPG with high SNR from the camera RGB traces.

An early approach was proposed by Verkruysse et al. [81] who used ambient light-
ing and a consumer RGB camera to obtain HR from the human face using mainly
the green channel trace. Common updates to this method include blind source sep-
aration (BSS) methods like principal component analysis (PCA) and independent
component analysis (ICA) which separate the temporal RGB traces into uncorre-
lated or independent signal sources to separate the pulse and the noise [87], [88].
This lets them obtain cleaner and more robust pulse waveform that allows for stable
HR measurement.

Another important algorithmic update that improved HR estimation under challeng-
ing conditions is the chrominance (CHROM) method [89], which linearly combines
the three RGB color channels to build two orthogonal chrominance signals and also
standardizes the skin-tone influence, making the method robust to various skin tones
and illumination colors. Their method showed improvement over BSS methods – for
a population of 117 stationary subjects the root mean squared error (RMSE) was
lowered by a factor of 2 compared to BSS methods.

Furthermore, Wang et al. [45] proposed a mathematical color model explaining dif-
ferent algorithmic choices made in previous approaches like CHROM, alongside a
novel algorithm called plane orthogonal to skin (POS). It resembles CHROM, but
alters the order in which the main expected color distortions are reduced, as their
projection planes have different chromaticity distributions. For a detailed overview
of differences we refer the reader to the original work [45]. Importantly, compari-
son with existing methods showed that POS outperforms other approaches in terms
of SNR in a variety of situations, including different subject skin tones, luminance
conditions, and subject state (stationary, during exercise, recovery after exercise).

The above methods focused on fundamental understanding of remote PPG recon-
struction and were developed early. Despite their consistent performance, as the
field matured and more datasets became available, focus shifted towards deep learn-
ing approaches, with neural network (NN) architectures like 3D convolutional neural
networks (CNNs) and long-short-term-memory (LSTM) networks with attention [90],
[91]. Such end-to-end networks further decreased the errors in HR estimation, reach-
ing mean absolute errors (MAEs) of under 2 bpm [92].

The above methods mostly focused on either waveform quality in terms of SNR
(early methods) or instantaneous HR estimation, meaning a single value at a single
temporal window. However, HR changes in time and these changes carry important
additional information [93] in the form of heart rate variability (HRV).

• Heart rate variability. HRV captures the changes of HR over time and is related
to ANS, which dynamically adjusts HR to maintain homeostasis, as described previ-
ously. To compute it, one generally requires detecting the interbeat intervals (IBIs),
which requires precise systolic peak localization [94], [95]. Recent work [96] identi-
fied weakness of systolic peak detection for IBI computation in low SNR cases and
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proposed a frequency-based approach that uses an adaptive band-pass filter and dis-
crete energy separation algorithm to determine instantaneous frequencies, which are
then converted to IBIs based on changes. They validated the approach on a custom
dataset of 16 subjects with different skin tones in terms of standard HRV metrics
like root mean square of successive differences (RMSSD) and standard deviation of
N-N intervals (SDNN), achieving 0.98 and 0.99 Pearson’s correlation coefficient with
contact-based ground truth.

• Respiratory rate. RR information was extracted from PPG alongside HR in one
of the earliest works [81], showing multi-modal cardio-respiratory potential of the
PPG. Early work proposed combining color channels of RGB camera to suppress
noise, similarly to CHROM and POS, but with the aim of extracting respiratory
signal rather than cardiac [97]. They reported MAEs of 1–2 breaths-per-minute,
which surpassed the SOTA. More recently it was shown that analyzing the amplitude
variations in reconstructed PPG can lead to RR [98], [99], achieving even lower
reported errors of 1 breath-per-minute.

Respiration can also be clearly observed using thermal cameras, as the exhaled air
in the perinasal area has a higher temperature compared to the surrounding air,
meaning a clear periodic signal can be reconstructed and RR estimated with RMSE
of around 2 breaths-per-minute [100].

• Blood oxygen saturation. The ratio between oxygenated and deoxygenated
hemoglobin was broadly investigated. One of the pioneering works in remote sens-
ing by Wieringa et al. [101] proposed obtaining two optical PPGs from different
wavelengths with a custom camera, which were correlated to respiration. The latter
influences the amount of oxygen in the blood. While they proposed the fundamen-
tal idea, specific results on SpO2 were not reported. A decade later, Tarassenko et
al. [102] showed in a clinical study involving over 500 patients that computing ratio of
ratios feature from the AC (the pulsatile signal amplitude reflecting cardiac activity)
and DC (non-pulsatile baseline variations or wandering of the signal) component of
red and blue camera traces allows for SpO2 estimation. They reported the coefficient
of determination of 0.64 between estimated and ground-truth SpO2 values on a large
sample size.

• Pulse transit time. The clinical significance of PTT as a descriptor of hemody-
namic state and its relation to ABP was described in detail in the previous chapter.
While PTT was traditionally measured using two contact sensors at distant body
locations [103], recent advances proposed contact-free camera-based solutions that
record different exposed skin locations, such as palm and forehead or two regions of
forehead, and reconstruct two PPG waveforms. The delay between reference points
or phase shift is then computed and averaged in some window to obtain the PTT [85],
[104].

• Blood pressure. Remote BP estimation is a highly valuable and desired mea-
surement, however, there is some disagreement in the community regarding its mea-
surement. Many works report successful estimation using multi-site PTT approach,
where palm and forehead are used to reconstruct two distinct delayed waveforms
and measure the PTT between them [105], [106]. While researchers reported the
possibility of using morphological features of only a single waveform as an alterna-
tive, this was always done with contact sensors only [107], or with contact sensors as
a basis for transfer learning (learned on contact waveforms, fine-tuned on contact-
free waveforms) [108]. A very recent review claims that there exists little evidence
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of possible BP measurement via remote PPG [63] – outside of the aforementioned
multi-site PTT (as a proxy correlated with BP) and contact-sensor-based transfer
learning approaches – as existing research is scarce and too limited, both in number
and type of subjects. A reported outlier is a large recent study on contact-free BP
estimation using a smartphone, which included 1328 normotensive subjects and re-
ported mean errors (ME) of 0.39±7.30 mmHg for SBP and −0.20±6.00 mmHg for
DBP, respectively [109]. While the MEs themselves are extremely low and fall well
within major standards for clinical BP estimation devices, it is important to consider
that they were obtained by averaging the MEs of individual instances, which meant
that large positive and negative errors cancel each other out. It is thus important
to consider standard deviation when MEs are reported. Generally such evaluation
using MEs is not uncommon in related work, often even without standard deviations
reported. It is however being increasingly supplemented with absolute errors [110],
which give a more realistic overview of performance if standard deviations are not
reported.

• Perfusion index. Perfusion index (PI) is derived from PPG signal and represents
the ratio of pulsatile on non-pulsatile light absorbance or reflectance of the PPG
signal [111]. It was proposed that when computed traditionally from contact PPG
sensors, it can be used to monitor the interaction between peripheral and central
haemodynamic characteristics, such as vascular tone and stroke volume. Several
studies have proposed it as a valuable metric to assess regional or neuraxial block
success, as well as haemodynamic monitoring in anaesthesia, perioperative and in-
tensive care [111]. While its value with traditional sensors is well-established, it
was also recently proposed to be estimated remotely from several smaller regions of
tissue. Kossack et al. [112] showed that using a remote PPG (rPPG) reconstruc-
tion algorithm to obtain the rPPG waveforms and then compute PI at several scales
(depending on region sizes) can be valuable in assessing sufficient tissue perfusion
during intraoperative organ transplantation. Additionally, its value can be extended
to liveliness assessment for the detection of presentation attacks to authentication
systems (artificially generated videos of people).

The parameters listed above represent the set for which research is reasonably mature
and the obtained results achieve performance that makes them feasible and informative
for non-clinical monitoring [63]. Many are still measured only in controlled environments,
although there is increased focus towards real-world applications [84]. We intentionally
omitted parameters that are in early development phases and not yet thoroughly researched
in terms of contact-free sensing, such as blood glucose [113].

3.2 Remote Monitoring of Complex States

We have seen that contact-free measurement of physiological parameters is a relatively
mature topic in terms of related work quantity. Many physiological parameters are also
known to be correlated with more complex (psychological or mental) states [114]–[119], thus
computation of such parameters is often necessary and valuable beyond the parameters
themselves. Naturally, researchers thus also attempted to detect more complex states
in a contact-free manner. In this section, we will overview such contact-free approaches
uniformly, not focusing on specific sensors or states as previously. This is because many
works use several input modalities (e.g., facial expressions, physiological parameters, audio,
etc. all obtainable from a single camera recording the face) and estimate several things at
once (e.g., HRV and stress). We will focus on mental states that are well-established in
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literature to be detectable via physiological parameters described in the previous section.
Review of work dealing with complex states serves to underscore the additional value of
contact-free monitoring of fundamental physiological parameters.

3.2.1 State-of-the-art Multi-modal Methods

Modern approaches commonly use a hybrid approach using several input signals and de-
rived physiological parameters to estimate a variety of complex states. We will broadly
divide them into those related to psychological (e.g., stress, cognitive load, etc.) and those
related to physiological (e.g., diseases or other specific physiological conditions) phenom-
ena.

3.2.1.1 Psychological Phenomena

Historically, the psychology community has estimated mental state objectively by monitor-
ing the involuntary dilations and constrictions of the pupil using medical grade equipment
known as pupillometers or by following eye gaze and focus using eye trackers [120]–[122].
Since then, this idea was explored further in the context of eye trackers and cameras [123],
[124]. Such methods require specialized devices for eye gaze and pupil dilation measure-
ment, which strictly restrict movement and position of the user and are almost akin to
traditional medical devices, which require you to be positioned near a measuring device
(e.g., ECG electrodes). Thus, recent research shifted towards using more widely available
cameras, which do not focus merely on the eyes, but on the wider regions of the face and
the additional information it provides.

McDuff et al. [125] investigated cognitive stress measurement by using a five band
digital camera to first reconstruct PPG and estimate HRV and then use it to classify
cognitive stress of 10 subjects at a distance of 3 m. Cognitive stress was described as
a form of mental exertion or information processing, and is more commonly known as
cognitive load. They reported 85% classification accuracy in a binary experiment (stress
vs. rest). Importantly, they reported HRs to be similar between the two states, while HRV
and respiration differed.

Kaur et al. [126] similarly used remote PPG to obtain HRV during rest and mental
stress conditions. They used PCA and ICA to separate the cardiac signal and then com-
puted HRV-based features such as RR-intervals. They further applied a set of classification
algorithms, namely logistic regression and linear discriminant analysis, to distinguish be-
tween those two states.

Wu et al. [127] used remote PPG and facial expressions to estimate fatigue of athletes
by computing a derived Rating of Perceived Exertion (RPE), which is a standard measure
describing how hard your body works during physical activity, typically on a scale from
1 to 10. They trained a deep neural network from online videos showing fatigued facial
expressions and reconstructed the PPG using a frequency-based method to discard move-
ment and lighting variation artefacts. They also collected a dataset of 14 subjects and
reported the Pearson’s correlation coefficient of 0.82 between estimated and ground-truth
RPE, using HR obtained from rPPG and features obtained from facial expressions.

Tan et al. [128] proposed a system which could describe the mental state of a driver,
as traffic accidents and mental stress are strongly correlated (drivers under pressure more
easily cause accidents). Their proposed driver monitoring system could not only estimate
HR of the driver, but also indicated whether he is under pressure or not, as it delivered two
outputs: HR and mental stress level (stress index), which is estimated from HRV features.
PPG would be reconstructed remotely using an 18-bit camera to grab frontal facial frames.
Importantly, this was a method proposal and did not report results of any validation yet.
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Abdelrahman et al. [129] used a commercial thermal camera to monitor a person’s
forehead and nose temperature changes to estimate their cognitive load. To assess the
effect of different levels of cognitive load on facial temperature they conducted a user
study with 12 participants, showing that different levels of the Stroop test (a widely-used
test where there is an intentional mismatch or conflict between information, for instance
between the name of a color and the color it is printed in – the word “RED” printed
using blue ink) and the complexity of reading texts affect facial temperature patterns,
thereby giving a measure highly correlated with cognitive load. They focused on real-time
performance, as their system detected temperature change with an average latency of 0.7
s, which is faster compared to other thermal imaging work.

Cho et al. [130] proposed a deep learning model which automatically recognises people’s
psychological stress level (mental overload) from their breathing patterns. Using a low cost
thermal camera, they tracked a person’s breathing patterns as temperature changes around
his/her nostril. They transformed 1D respiratory signals into 2D respiration variability
spectrograms on which a CNN was trained. They validated the approach on people exposed
to two types of cognitive tasks – Stroop test and mental computation test – and achieved
85% accuracy based on self-reports of people on a two-level stress scale.

Radar was also reported as a useful sensor for mental state classification, again heavily
based on respiration, HRV and its derived features. Han et al. [73] conducted a feasibility
study of mental state estimation from HRV features obtained with a radar in a rest and
sleep scenario. They proposed several methods for radar signal processing and then vali-
dated it on data from 10 subjects by training several classifiers using time and frequency
domain features. In a robust leave-one-subject-out (LOSO) experiment they achieved 53%
accuracy with the best-performing nearest neighbour model estimating four mental states
(normal, fatigue, stress, sleep).

3.2.1.2 Physiological Phenomena

Our interest is mostly in contact-free monitoring of health-related or health-threatening
physiological conditions, including a number of complex cardiovascular and respiratory
diseases.

Common cardiovascular diseases are cardiac arrhythmias. These are irregularities in
the heart rhythm, which can be split into several groups, each characterized by subtle
differences in either the number of beats (too many vs. too few) or in which part of the
heart it is beating incorrectly (atrial vs. ventricular). Researchers typically do not separate
them in great detail, although atrial fibrillation (AF) was studied in great detail. The latter
is a condition characterized by rapid and irregular beating of the atrial heart chambers.

Iyer et al. [131] proposed an RF-based approach using a mm-wave radar. They ex-
tracted heartbeat phases from the radar and fed it to a three-layer ANN to predict the
presence of arrhythmia. The model was trained using the MIT-BIH database alongside
several other contact signals, such as ECG. It achieved internal train accuracy of 93.9%.
It was then evaluated on a test set of 15 subjects and achieved a test accuracy of 75% for
binary arrhythmia classification.

Yan et al. [132] alternatively proposed an optical approach using a smartphone camera
to detect and analyze rPPG signals from the face in order to detect AF. They collected
such data alongside ground-truth ECG and auxiliary contact PPG data from 217 hospital
patients, mostly elderly (mean age 70.3 years). Each patient recorded three successive
20-second recordings and ground-truth pulse irregularity was marked by experts. They
confirmed the feasibility of discriminating AF from sinus rhythm remotely, with high sen-
sitivity (95%) and specificity (96%), while the model was trained on contact ECG and
PPG.
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They expanded on their previous work in 2020 [133] by proposing an end-to-end deep
learning approach which detects AF from facial video with 95% sensitivity and 98% speci-
ficity. Several other authors also recently reported similar success in remote AF detection
using deep learning approaches [134], [135].

While most work focused on cardiac arrhythmias, the latter can also be respiratory,
describing irregular respiratory patterns. An early RF-based approach for respiratory sinus
arrhythmia detection via Doppler radar was proposed by Massagram et al. [136]. They
extracted respiration signals of 12 human subjects directly from a radar system. The
subjects were recorded in two positions, seated and supine. They showed high correlations
with ground-truth respiratory piezoresistor chest belts in both positions, using Bland-
Altman plots, but did not report correlations specifically.

An extreme form of respiratory irregularity is sleep apnea. Du et al. [137] proposed
ApneaRadar, an early contactless sleep monitoring system to detect sleep apnea using a
commercial off-the-shelf radar. They proposed signal processing techniques that allow for
RR detection via FFT and validated the approach on a single apnea-diagnosed subject
measured for 7 nights. They achieved 90% accuracy in apnea detection compared to
ground-truth polysomnograph.

Other authors also proposed alternative RF-based systems for detection of apnea. Koda
et al. [138] used support vector machines (SVMs), which were fed vectors representing
spectrograms of the preprocessed radar signals. They validated the model on two apnea-
diagnosed subjects achieving accuracy of 79.5%, and precision and recall of 71.2%, again
compared to a ground-truth polysomnograph.

A large-scale study was conducted by Zhou et al. [139]. They again used a radar system
for measurement of apnea-hypopnea index (AHI), which is the combined average number of
apneas and hypopneas that occur per hour of sleep. Data of 176 participants were labelled
by physicians for ground-truth AHI. They did not disclose the algorithmic details of AHI
computation from the radar, but reported high correlation coefficient of 0.98 between radar
and ground-truth AHI.

Some authors also investigated parameters relating to tachycardia. Xia et al. [140]
proposed a radar system for precise beat-to-beat interval and cardiac timing monitoring.
Specifically, they developed a decoding peak detection method to address precise heartbeat
peak extraction problem by decoding the most likely sequence of states from the single-
band frequency envelogram of the radar signal. They compared their method with the
ECG as the gold standard. Experimental results of 6 subjects showed a high F1 score of
0.93 when classifying cardiac peaks, and also low mean relative errors between 0.37% and
1.15% for beat-to-beat interval estimation. They argue usefulness of such an approach
for both tachycardia and arrhythmia detection, although their test set included very few
subjects.

3.3 Synthesis and Hypotheses

Contact-free sensing is evidently a mature research field with plentiful work dealing both
with fundamental cardio-respiratory parameter monitoring, as well as more complex state
analysis, such as mental states and varying diseases. Contact-free monitoring of some
parameters, such as HR, is becoming increasingly robust and is reaching near-clinical levels
of performance with very low errors, even in challenging conditions [20]. However, for
assessment of more complex parameters and states, the technology is not yet widely used
in real-world scenarios, as limitations and challenges remain [63].

In light of the above, we identified two important areas that have a profound impact
on the health and well-being of individuals, but so far lack robust solutions or often rely
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on contact sensors for feasible monitoring, making them especially important for subjects
unable to use such traditional approaches.

1. RF-based sleep monitoring. RF-based methods are arguably superior to optical
methods for sleep monitoring due to several reasons. First, regular RGB cameras
rely on visible light, which is obviously not available in sleep settings, so one must
instead use infrared or thermal cameras, which are rarer and more expensive. Even
so, direct body exposure in a bed is relatively poor due to blankets, and the body
position can change frequently as the person turns during their sleep. Subsequently,
a recent review [141] gave an overview of the more feasible RF-based sleep monitoring
methods, focusing especially on sleep apnea, which is an important, potentially life-
threatening condition. Some of the main deficits and required improvements that
they identified were the lack of data, relatively simple and common methods used
for classification, and narrow focus on signal processing of the respiratory signal
in isolation. Such systems, while valuable, are only research prototypes and not
commercially available, although large companies like Amazon were recently reported
to focus precisely on development of radar-based apnea detection for their Alexa
device [142].

First of the deficits above was addressed by a dataset released in 2020 by Schellen-
berger et al. [143]. Their main purpose was to record and make available a robust
dataset with many participants and varied accompanying signals, including a myriad
of traditional contact sensors, as well as radar data. The subjects underwent several
cardio-respiratory scenarios on a tilting table, which induced complex hemodynamic
changes. We will describe the dataset in more detail in the following chapter. Impor-
tantly, this dataset offered a means to address the other issues mentioned previously
– it allows for experimentation with more complex ML methods, including end-to-
end neural networks, and it enables multi-modal learning and comparison between
different modalities, especially contact and contact-free sensors. Such end-to-end
methods have the potential for robust real-world implementation, as seen in many
other domains [144].

2. Blood pressure estimation. BP estimation is especially interesting due to its
previously described importance, however, despite notable efforts [40], cuffless BP
estimation remains elusive due to both physiological factors – higher complexity of
hemodynamics depending on many factors (vascular stiffness, blood composition,
fat deposits, etc.) – as well as technical limitations – BP estimation from (r)PPG
commonly relies on precise morphology, requiring diastolic peaks and notches to be
precisely reconstructed [107].

Several conceptual approaches have been proposed and mentioned in previous sec-
tions, some relying on precise waveform morphology possible to obtain from a single
sensor, and others instead using the known PTT or PAT approach with two sensors
(most often ECG and PPG). Each approach also has its own set of challenges and
drawbacks.

PPG morphology approaches [107] are used both with contact and contact-free sen-
sors and rely on precise morphological analysis of the (r)PPG waveform on per-cycle
basis. This means that there is reliance on consistently high-quality waveforms and
not only a single prominent reference point (e.g., systolic peak), as many features
require consistent detection of the diastolic peak and even dicrotic notch, which are
often very difficult or impossible to obtain outside of highly-controlled lab environ-
ment with high-quality contact sensors [145]. This makes many widely-investigated
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features such as augmentation index, stiffness index, systolic and diastolic times,
amplitude ratios etc. [146] less useful when the waveform is not ideal. Further-
more, there is some debate in the community on which morphological features are
universally performing well, as the underlying connection with BP is not as clear
as with PTT [63]. To circumvent the required explicit definition and computation
of features, many people rely on black-box models (neural networks) to internally
compute features in end-to-end approaches, however, there is an even larger lack of
well-understood connection between such neural-network-derived features and BP.
Due to aforementioned factors, the performance and feasibility diminishes quickly
when moving from high-quality contact sensors to (consumer) RGB cameras, as the
waveform details become less apparent.

Traditional contact PTT approaches [147] using wearable sensors require two pre-
cisely synchronized sensors with good skin contact to obtain high-quality waveforms
for reference point detection and subsequent PTT computation. This requires two
devices at two skin locations and cannot be implemented on a single compact device.
Furthermore, wearable sensors are battery dependant and cannot be used by people
with specific skin conditions. Alternatively, contact-free PTT approaches [99] using
cameras can be implemented with a single sensor (camera), but require a good consis-
tent exposure of two pre-determined monitored regions of interest (ROIs, commonly
forehead and palm), which imposes requirements and restrictions to a subject’s posi-
tioning, making it impractical. Furthermore, when these ROIs are not precisely fixed
in a camera frame, tracking and segmentation is required which introduces additional
algorithmic and computational requirements.

In the domain of contact PTT measurement, some approaches were suggested to use
signals from different wavelengths and tissue depths. Such MW PTT approaches [56]
require specialized hardware, including image sensor sensitive to the required wave-
lengths and a light source capable of producing said wavelengths (typically narrow-
band light emitting diodes – LEDs). While this is an improvement over the tradi-
tional approach of using two contact sensors, as it omits the requirement for precise
synchronization and additional power, it is not readily available in existing devices
and still suffers from the skin contact requirement. Importantly, wearable sensors
also inherently compress the skin slightly in an effort to maintain good skin-sensor
contact. Such compression can substantially distort the PPG waveform [148], mak-
ing it less reliable [104] especially in the upper skin layers corresponding to shorter
wavelengths.

It would be sensible to investigate the feasibility of such a MW PTT approach in the
contact-free domain, as it would resolve some of the issues mentioned above (e.g.,
skin compression), while offering a means for non-invasive BP estimation without
wearables, based on the well-understood PWV and PTT principles.

3.3.1 Hypotheses

The two areas and challenges highlighted in the previous section are vital for cardio-
respiratory monitoring and should be investigated further with the aim of developing fea-
sible contact-free methods that would allow for continuous monitoring for subjects unable
to use existing approaches. Accordingly, we set the following goals of our research and this
dissertation:

1. Based on our detailed literature review alongside analysis and identified challenges of
existing methods, we have found that RF-based sleep monitoring and apnea detection
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relies almost exclusively on the reconstructed respiratory signal (chest displacement)
or rather explicit features derived from such a signal. An end-to-end deep-learning-
based approach using both raw data as well as derived signals could help train a
more robust and accurate model, without the need for elaborate signal processing
and explicit feature computation. We aim to design and robustly validate such a
model.

2. In terms of BP estimation, many existing challenges could be resolved by merg-
ing contact-free and multi-wavelength approaches to derive a hybrid remote PTT
measurement system that would allow for more robust and physiology-based feature
computation, which could in turn be used for accurate BP estimation.

In line with this reasoning, we came to the following three hypotheses:

1. Hypothesis 1: Contact-free sensing can offer comparable performance to traditional
contact approaches in monitoring of complex hemodynamic conditions and vitals
(apnea detection via respiration and blood pressure estimation).

2. Hypothesis 2: Fusion of different sensor and input modalities (contact + contact-
free, temporal + frequency) can achieve superior performance and better robustness
compared to using individual modalities.

3. Hypothesis 3: PTT can be measured between different skin layers leveraging differ-
ent penetration of light using a customized off-the-shelf RGB camera and used as an
informative feature for single-site contact-free BP estimation, achieving established
medical standards for BP estimation in terms of error.

The first hypothesis is general and is based on literature. The second and third follow
directly from our goals, describing our expectations for the proposed approaches and the
corresponding results obtained via robust validation.

All the hypotheses will be discussed alongside the results obtained in our experiments
in Chapter 6. The obtained results will be the grounds on which the hypotheses will be
accepted or rejected, and will be reported in detail together with their interpretation.
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Chapter 4

RF-based Classification of
Hemodynamic Scenarios

This chapter deals with RF-based radar monitoring of physiological states, where we specif-
ically focused on sleep apnea (and other hemodynamic scenarios) detection using a novel
multi-modal deep-learning-based approach [149]. Our goal here was to successfully and
robustly detect complex scenarios present in the analyzed dataset, especially sleep apnea,
which is an important condition with severe real-world implications [150].

4.1 Data and Materials

Importance of high-quality data for development and validation of ML models is known,
and it further solidified with the rise of large deep learning models powered by plentiful
data [151]. Generally there are many available datasets in popular ML domains, such as
image analysis and natural language processing (NLP) [152]. However, quantity and avail-
ability diminish in more specialized domains, where the required hardware for the data
collection becomes rarer and often more expensive. This becomes quite apparent in the
RF sensing domain, as, despite the myriad of related work discussed previously, most data
is proprietary, recorded with custom hardware, and not made publicly available. Further-
more, as such recording setups are usually specialized and unique within the research group
conducting the experiments (prototypes, not designed for deployment at scale), data can
reflect some sensor or environment specifics, and the subject count can also be relatively
small, which is again undesired when evaluating feasibility or robustness of a method.

While data would ideally be consistent, plentiful, varied and of course readily available,
the reality is that when novel methods are considered and proposed in the inception stage
of research, this in turn sets the requirements for the data needed for evaluation, which
then drives the researchers to collect such data. As the purpose of most research is to
evaluate a method, the data are often not the ultimate goal, but the means to an end,
which is again why many datasets used in related work are unique and not shared, as they
are not the focus of the research.

Finally, whenever human subjects are involved, special attention and care must be
given to anonymization and privacy. Even when those are considered, many people are
still reluctant to have their health-reflecting data available online, which further limits
availability.

This same reasoning applies to the work described in this dissertation as well. In order
to develop and validate multi-modal end-to-end models for radar-based apnea detection and
sleep monitoring, data from a relatively specific and complex setup is required. It should
importantly include different continuous modalities, meaning both radar and traditional
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contact sensors, as well as reflect different ground-truth hemodynamic and apnea-related
scenarios of many subjects.

We already briefly touched on the radar dataset recorded and made available by Schel-
lenberger et al. [143] in 2020. This dataset was pioneering in the sense of its availability,
scope, quality and consistency, and served as the enabler of other RF-based physiological
monitoring research afterwards [72], including the work described in this dissertation. We
describe it in detail in the following sections.

4.1.1 Hardware and Radar Physics

For their [143] recording setup, a 24 GHz continuous wave radar system based on Six-Port
technology was extended into a portable radar system and a bistatic antenna design was
used to improve signal quality. The inclination angle of the antenna beams was ±10° for
transmitter (Tx) and receiver (Rx) antenna, respectively, with a focal point at 40 cm.
The system was placed in front of the subject chest. For further technical implementation
details of the recording setup we refer the reader to the original papers [143], [153].

Movement in front of the antennas causes a measurable phase change ∆ϕ between the
Tx and Rx signal, which can be converted into a displacement change ∆x with the known
wavelength λ of the Tx signal using the following equation:

∆x =
∆ϕ

2π
· λ
2

(4.1)

The radar however does not produce the displacement changes of interest (distance)
directly, but rather two raw signal components I (In-phase) and Q (Quadrature) are ini-
tially digitized simultaneously using a 24 bit analog-to-digital converter with a sampling
frequency of 2000 Hz. The I and Q signal are used to calculate ∆ϕ by arctangent demodu-
lation, after an initial compensation for nonidealities, called ellipse reconstruction, is made.
Precise details are again described in the original work by Schellenberger et al. [143], [154].

In addition to the radar system, a reference system was used in parallel to record
precise contact signals with electrodes placed on the upper body of each subject and cuffs
placed on upper hands and fingers. The Task Force Monitor (TFM) 3040i from CNSystems
Medizintechnik GmbH was used to record the following contact signals [143]:

• Impedance of thorax (Z0): Electrical resistive impedance changes in relation to
pulmonary air volume. These were used to measure respiration.

• Electrocardiogram (ECG): A three-channel ECG was initially used to record
electrical activity of the heart. Lead 3 and the augmented limb leads were calculated
from two raw channels, but not exported to be used in the final dataset [143], so only
two channels were ultimately available as seen in Figure 4.2.

• Impedance cardiogram (ICG): ICG provides insight into the impedance change
of the thorax by applying alternating small current between two electrodes on the
body [143]. The measured voltage is proportional to impedance based on Ohm’s law.

• Blood pressure (BP): The TFM enables continuous non-invasive BP measure-
ment called Continuous Noninvasive Arterial Pressure (CNAP), which is measured
by combining the measurement of an oscillometric BP cuff and a cuff at the fingers
measuring vascular unloading [155].

A block diagram showing the architecture of the measuring system is shown in Fig-
ure 4.1 and is adapted with permission from [143].
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Figure 4.1: Block diagram showing the architecture of the data collection system. ETH
is an ethernet connection and 1394 stands for IEEE 1394 (more commonly known as
Firewire), which is mostly used to connect to peripherals. Credit to Schellenberger et al.,
used with their permission [143].

Figure 4.2: An example segment showing the initial raw signals in the dataset captured
during a resting scenario. (a) shows the raw radar I and Q components, (b) shows the
impedance Z0, (c) shows the cardiograms, and (d) shows the continuous BP.

An example 20-s period of these raw signals is shown in Figure 4.2 and the recording
setup is shown in Figure 4.3, both adapted from the original paper with authors’ permission.

Even though only 5 distinct signals were recorded in raw format, the authors of the
dataset provided MATLAB scripts that allow for computation of several additional derived
signals. For instance, the distance signal showing the chest displacement is computed from
the raw I and Q components of the radar. This distance can in turn be used to estimate
respiratory waveforms. Similarly, the raw radar components can be used to compute a
rough approximation signal of cardiac activity captured by the radar. The derived signals
that we computed with the accompanying MATLAB P-code (purposely obfuscated code



34 Chapter 4. RF-based Classification of Hemodynamic Scenarios

Figure 4.3: The recording setup which was used to collect the data. (a) Full system
including reference TFM, radar setup and tilting table. (b) Details of the radar module.
(c) Reference signals collected with contact sensors. (d) Subject in one of the tilting table
scenarios. Credit to Schellenberger et al., used with their permission [143].

format for proprietary functions) provided by the authors [143] are the following:

• Distance: Change in distance corresponding to displacement of the chest wall, com-
puted from the raw I and Q radar components.

• Radar respiration: Respiration based on the changes in distance computed previ-
ously.

• Heart sound: Rough approximation of the cardiac signal based on the raw radar
components. Heart sounds are expected to be detected at measured sites in the form
of vibrations along thorax and large vessel walls.

• Pulse: More refined cardiac signal based on the heart sound signal computed pre-
viously.
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• Contact respiration: Respiratory signal based on the impedance recorded with
the contact sensors.

This computation of additional derived signals gives additional data sources or modal-
ities to be potentially used when training an ML model. Example segments of the derived
signals are shown in Figure 4.4.

Figure 4.4: An example segment showing the derived signals in the dataset computed from
the raw signals via scripts provided by the original paper authors [143]. (a) shows the raw
distance or displacement of chest as computed from the I and Q radar components, (b) is
the smoothed version of (a), (c) shows the heart sound estimation from the radar data,
(d) shows an approximation of heart pulse computed from (c), and (e) shows the contact
reference respiration. Note that some transitions or computations of these derived signals
are part of proprietary code and the source code is not disclosed by the dataset paper
authors [143].

Despite the fact that details on the computation of these derived signals are not known,
as the source code was not available, we can still deduce a feasible interpretation on some
signals from a visual inspection. For instance, looking at the signals shown in Figure 4.4,
we can reasonably assume that the radar respiration and contact respiration are simply a
filtered version of the distance and impedance signals, and are thus highly correlated and
offer similar information.

4.1.2 Recording Setup and Data Collection Protocol

The data were collected in a controlled setting by physicians at the Department of Palliative
Medicine at the University Hospital Erlangen [143]. They recorded 30 healthy subjects,
14 male and 16 female, with an average age of 30.7 ± 9.9 years and an average body
mass index (BMI) of 23.2 ± 3.3 kg/m2. These were generally healthy people without any
known current or previous impactful medical conditions. In total, they recorded roughly
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24 h worth of data, but not all scenarios were recorded for all people, as a few were either
unavailable or incapable of performing certain scenarios.

The volunteers were strapped to a tilt table and were first subjected to an initial 10
min relaxation phase (lying down, calm breathing, minimal movement), which served to
calibrate subjects to a default rest state. After the initial calibration phase, the subjects
underwent the following 5 scenarios:

1. Resting: After the relaxation phase, the subject continued to lie relaxed with calm
breathing, without any major movement.

2. Valsalva maneuver: In this scenario, the Valsalva maneuver is performed 3 times
with pauses in between. The maneuver is defined as a forced expiratory effort against
a closed airway [156], and was instructed to be performed for 20 s. After completion,
the subject exhales and continues breathing normally. There is a 5 min recovery
period in between each of the three Valsalva performances.

This maneuver causes a complex cardiovascular response, reflecting in the BP, HR
and RR, allowing for detection of potentially abnormal responses in subjects with
possible medical conditions [156].

3. Apnea: In this scenario, the subjects held their breath twice, for as long as possible.
In the first simulation, the subject inhaled completely before holding the breath (large
pulmonary volume and extended lung), while in the second simulation, the subject
exhaled completely (small pulmonary volume and contracted lung) before holding
breath. This ensured apnea simulation in both scenarios, either with expanded or
contracted lung.

This simulation obviously causes important changes in RR, but also influences other
hemodynamic parameters.

4. Tilt up: Here the tilt table was raised from a horizontal to a vertical position, which
leads to changes in BP and HR. The measurement starts in a horizontal position,
then the table is slowly raised to 70° and the measurement is continued for 10 min.

Full-body tilt at slow speed also elicits a cardiovascular response, however the severity
of it depends on the subject and their condition.

5. Tilt down: This is the opposite of the previous scenario. The upright table is
lowered down to the starting horizontal position (simulating a slow backwards falling
motion) and the measurement is again continued for 10 min.

Some summary metadata about the dataset is given in Table 4.1. It is important to
note that this distribution is according to the original data, where a whole scenario session
was marked with the same label, even if only parts of it were the actual simulations. For
instance, people only performed the Valsalva maneuver three times, each repetition lasting
for about 20 s, with 5 min recovery periods in between. However, the whole recording
in such a session was marked as “Valsalva”, even though the recovery period is likely
something between “Valsalva” and “Resting” in terms of physiological state. We addressed
this problem and discuss it more in the following chapter on data processing, also revisiting
the distribution of data after this was taken into account.

In summary, this dataset has its pros and cons. On the positive side, it has a relatively
high number of subjects recorded in a robust controlled sleep-like environment (imitation
of lying in a bed) with many accompanying signals that offer a multi-modal cardiorespira-
tory overview. The subjects also underwent several complex hemodynamic scenarios that
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Table 4.1: Metadata describing the quantity and distribution of data per-scenario. Subject
count denotes how many subjects (out of 30) participated in a scenario.

Scenario Subject Count Duration Fraction of All Data
Resting 30 5.3 h 22%
Valsalva 27 7.8 h 33%
Apnea 24 1.3 h 5%
TiltUp 27 4.8 h 20%
TiltDown 27 4.8 h 20%

elicited changes in HR, RR and BP, including sleep apnea simulation, which is an espe-
cially dangerous condition of interest. Finally the recorded data is also of exceptionally
high quality in terms of captured waveform detail due to high-grade clinical devices and
sensors used.

On the downside, such controlled environment does not simulate the real world very
precisely, where there is usually more movement noise. Furthermore, all the subjects
were healthy, so potential disease-induced anomalies in cardiovascular responses were not
expected or accounted for. However, for early studies and evaluation of novel methods, it
is arguably better to start with data from a controlled environment where things can be
more clearly defined and observed.

4.2 Methodology

This section serves to describe the designed experiments in detail, together with reasoning
for choices made and pitfalls to be wary of. While this section focuses on the methods,
algorithms and experimental design, all of the results originating from these experiments
are subsequently reported, interpreted and discussed in the following section.

4.2.1 Pipeline Overview

In order to use the radar dataset described in the previous chapter, we developed a robust
pipeline that enabled reproducible evaluation of our proposed models. The input to the
pipeline were the raw signals available in the dataset, alongside the corresponding labels
of a specific scenario. Derived signals were first computed from the raw data using the
authors’ scripts, as described in the last chapter. All the signals were then preprocessed
with various signal processing techniques, with the aim of standardizing the data in terms
of sampling frequencies and removing unwanted and uninformative noise. The data were
then segmented alongside the labels into discrete windows using several different windowing
options. Distribution of the data in terms of labels was then investigated and modified
with the aim of obtaining as uniform distribution as possible for training. Subsequently, a
variety of neural network architectures were investigated in terms of different types, input
modalities and topologies. Finally, the models were evaluated in a robust manner in order
to avoid overfitting as much as possible and different classification performance metrics
were monitored. This high-level pipeline is illustrated in Figure 4.5, and we will describe
each part in detail in the following sections.

4.2.2 Data Preprocessing

We wanted our data to have the same unified sampling frequency, and to not contain
any undesired and uninformative noise, while maintaining all the relevant physiological
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Figure 4.5: High-level pipeline of our proposed system for classification of hemodynamic
scenarios using radar data. The green box denotes our main contribution in the form of a
custom branched multi-modal ANN.

information in each waveform.

4.2.2.1 Downsampling and Filtering

The original data are sampled with relatively high and varied sampling frequencies from
100 Hz (impedance) to 2000 Hz (radar). While this is good in the sense of obtaining
precise changes in the signals, it is not actually needed when considering the physiological
phenomena of interest. Cardiorespiratory activity revolves around breathing and heart
beats, both of which occur periodically with a much lower frequency. As the data are
plentiful and this physiological information is not contained in high frequencies, we initially
downsampled the signals to a unified lower sampling frequency of 100 Hz. While this value
allowed us to keep the important frequency components related to RR (< 1 Hz) and HR (1
– 3 Hz), it still caused us to lose some very fine-grained information from the ECG [157].
This was a tradeoff we made in order to lower the size of inputs while keeping the intuitively
important frequency components. However, the discarded high-frequency information in
the ECG might also be valuable and should be considered in future work discussed in
Section 7.2. We downsampled using the standard built-in MATLAB resample() function,
which applies a final impulse response (FIR) Antialiasing Lowpass Filter to the input and
compensates for the phase delay introduced by the filter [158].

Additionally, the data were filtered using a 4th order Butterworth band-pass filter with
signal-specific cutoff frequencies. The lower cutoff was usually set at 0.1 Hz to remove the
baseline drift while the upper cutoff ranged from 1 Hz for respiration-related signals to 25
Hz for the ECG, as the latter may contain information in the higher frequencies comprising
the QRS complex [159].

4.2.2.2 Segmentation and Labelling

Recording session data were continuous and lasted from a few minutes to tens of min-
utes, depending on the session and scenario. We used a rather wide-spread and standard
approach of first windowing the signal into shorter overlapping windows, which represent
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instances in our machine learning (ML) pipeline. The window length (duration) and over-
lap amount are commonly discussed parameters and should be set correctly to capture
the relevant information in each window. We investigated several different window lengths
between 5 s and 20 s – the range was defined in accordance with the fact that we wanted
the windows to capture at least one (but preferably a few) respiratory cycle and the corre-
sponding frequency information. The upper limit was set to 20 s and not longer, as some
simulation scenarios only lasted for that long. Additionally, we used 50% overlap between
windows, which increases the number of instances but still keeps them varied. Finally, we
also normalized all the input data to the same [0, 1] range, since this is common practice
that helps with the training process, as the model weights are on the same scale every
time, rather than being orders of magnitude apart.

After the signal data were windowed, a corresponding class label had to be assigned
to each instance. This was not completely trivial due to the fact that a whole recording
session was always marked with a single label (e.g., “Apnea” or “Valsalva”), but not all the
signal data actually corresponded to this class. Instead, in some cases only a minority of
the signal data in the whole recording corresponded to the actual marked scenario, like in
the Valsalva scenario, where the maneuver was done on the scale of tens of seconds, while
the recovery period was on the scale of minutes. A continuous electrical signal is provided
with the dataset, in which button presses can be identified by sharp drops in the signal
amplitude. A button was typically pressed at the start and end of the Valsalva maneuver
and at the start and end of the tilting motion. For apnea, however, the button was pressed
and held throughout the simulation. Illustration of presses and their meanings for each
scenario is shown in Figure 4.6. On top of these differences between scenarios in button
press durations, an additional concern was the fact that in a specific scenario, the number
of button presses is not always the same and subsequently the meaning of button presses
changes as well. This is a consequence of the authors’ choice to change the number and
meaning of button presses in later recording sessions compared to the early ones.

Figure 4.6: An example showing the button presses in the electrical signal and their mean-
ing for each scenario (in majority of cases). Adapted from the original paper with authors’
explicit permission [143].

Using the semantics of button presses described above, we assigned a class label to each
segment or window. The periods in which scenarios were actually performed were clearly
labelled as the actual scenarios while the periods in which the physiology was ambiguous
were initially labelled with as “Other”.

Going into more detail, we first created a discrete mapping between each scenario and
an integer label (e.g., “Resting”: 1, “Valsalva”: 2, etc.). We then created a new ground
truth array for each label signal originating from the button presses (unlike before, where
the whole recording had a single uniform label). In each of these label arrays, we only
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set the class value in periods where the scenario was actually being executed or simulated
(e.g., where the Valsalva maneuver was performed, where the breath was held in Apnea
simulation, etc.). All other periods (e.g., recovery periods, tilting table movement, etc.)
are not clear in terms of physiology, as they might be influenced by the scenario but are
also close to resting in nature. Due to this ambiguity we marked such periods with class
“Other” to separate them from the clear classes. Due to this, there are some windows which
overlap a period of “Other” and the actual scenario – in such cases we took the majority
class for that instance.

After all the preprocessing, segmentation and labelling steps were complete, the new
distribution of instances in terms of class is more heavily skewed than the one initially
reported in Table 4.1, as seen in Table 4.2. Most importantly, the number of instances
for “Valsalva” is actually much lower (closer to “Apnea”) due to the long recovery periods
being put into the “Other” class.

Table 4.2: Metadata describing the quantity and distribution of windowed instances per-
scenario. It is quite different both in duration and distribution from the original labels due
to the introduction of the label “Other” and overlapping windows.

Scenario Nr. Instances (20 s window) Duration Fraction of All Data
Other (0) 3021 16.8 h 36%
Resting (1) 1865 10.3 h 22%
Valsalva (2) 173 1 h 2%
Apnea (3) 184 1 h 2%
TiltUp (4) 1575 8.7 h 19%
TiltDown (5) 1630 9.0 h 19%

4.2.2.3 Class Balancing

The emergent heavy imbalance in the data after segmentation is troublesome, since ML
algorithms have difficulties learning from just a few instances of some compared to other
classes. Naturally we wanted to keep as much data as possible, especially since we fo-
cused on DL approaches where more data are especially valuable, so we did not wish to
undersample the data to fix the imbalance. Instead we decided to oversample the mi-
nority classes using the Synthetic Minority Oversampling TEchnique (SMOTE) [160]. It
belongs to the group of magnitude-based pattern mixing with interpolation [161], meaning
the generated synthetic instances will contain changes in magnitude, while preserving the
temporal properties. Temporal warping, slicing or permutation of periodic time series data
can be dangerous, since synthetic instances might contain anomalies that are impossible
in real world, such as infeasible frequencies or sudden cut-offs in the waveform.

SMOTE synthesizes new unique instances of the undersampled class by selecting an
instance and then finding k of its nearest neighbours. A randomly selected neighbour is
then chosen and a synthetic instance is created between the two examples. This creates
plausible new instances which differ from the original ones, especially if k is sufficiently
large to avoid always picking nearly identical instances. The distance metric to select
the nearest neighbours was the Euclidean distance, which is suitable for finding similar
instances that are aligned (cycles at same locations), while punishing instances that have
a phase shift (misaligned cycles).

This method was not originally developed to be used with time series, as generation
of new instances was supposed to take place in the feature space, as is common with
traditional ML algorithms. However, since then, many extensions and modifications have
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been proposed that enable it to be used with a variety of data. Even though it is reported
in literature to be extensively used with time series data in its default form [161], some
considerations should be kept in mind when doing so. Creating new synthetic instances
between two examples can yield nonsensical data, if for example the two instances are
two inverted time series. This is usually avoided by the part of SMOTE that selects
the nearest neighbour instances, which are the most similar. However, if the minority
data is generally very different from one another, even the nearest neighbour might be
problematic. In our case, this is not a problem, since the data is consistent and stable
in time. For instance, during apnea simulation, the respiratory signal becomes an almost
straight line, and traversing this with a sliding window yields similar nearest neighbour
instances. The same holds for any other scenario, where the signal is consistently periodic,
so again the nearest neighbours are quite similar. The downside of this is little variation
between the instances used for synthetic data generation, meaning new ones will be similar
to the existing ones [162].

Despite this, we wanted to avoid overwhelming similarity as much as possible, at-
tempting to ensure that the created synthetic instances are not always almost copies of
the originals. We thus increased the default value of parameter k to 6, meaning that six
windows are considered for finding the nearest neighbour of the selected instance, and then
a random one is chosen. Temporally speaking this covers quite a large range (depending
on the window length), especially in scenarios which are short-lasting (e.g., Valsalva and
Apnea simulation). However, we still wanted to limit the number of considered neighbours,
as taking too many might cause problems mentioned earlier, where we cover too much of
the waveform, making the worst nearest neighbours substantially different from the origi-
nal. When such neighbours would inevitably be randomly chosen sometimes, the resulting
instances would be nonsensical.

Typically oversampling is done on the training data only. This is to ensure robustness
and generalization capabilities of the model, as one must be careful to not have similar
synthetic instances in both train and test data, which would cause overfitting and inflated
results. However, in experimental setups where training is expensive (e.g., k−fold cross
validation (CV) with large k or leave one subject out), this requires oversampling to be
done many times for different training sets. An alternative is to simply do oversampling
once on the whole dataset, but this has to be taken into account when data is separated
for training and testing.

In our case we used SMOTE to equalize the distribution of all classes in the whole
dataset, with the main aim of oversampling the “Valsalva” and “Apnea” class. We wanted
enough instances of these classes in the training data each time to allow the model to
learn some characteristics of these classes, and not just ignore them due to their low
representation and influence on the accuracy. Due to reasons mentioned prior, we were very
careful with both oversampling and subsequent data splitting for training and evaluation.
First, we performed per-subject SMOTE – this means that for each instance corresponding
to subject S, we only considered instances of this same subject S when searching for nearest
neighbours. We did this incrementally, instance by instance, uniformly growing the number
of underrepresented class instances across all subjects. Vitally, our data was temporally
stacked, meaning data of each subject was always together, starting from windows of their
first recording and finishing with their last. When generating synthetic instances, these
were inserted in temporal positions immediately after their originating instance. This way
the underrepresented class instances remain close to their originating instance and always
within each subject group of data. This prevents similar synthetic instances to be mixed
between subjects, which is of vital importance for data splits, which we will describe in
the following sections.
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4.2.3 Model Description

Given the relatively plentiful available data and recent successes of deep learning (DL), we
decided to primarily investigate neural networks as our classification models. The main
advantage of such an approach compared to traditional ML is that with an end-to-end
design, the signals can be input directly into the model, without the need for explicit
feature engineering and extraction, as this is done implicitly by the network itself. The
downside of this is that given the lack of manual expert feature design, the internal features
of an ANN are not easily interpretable, as the model is black-box by nature.

The architectures of ANNs vary significantly, even for similar problems of the same
type, such as time series analysis [163]. Many architectures were described for time series
classification, such as fully-connected ANNs [164], CNNs [165], recurrent ANNs [166],
encoder-decoder ANNs [167], and transformers [168].

Since related work [163] reports similar performance across different architectures for
time series classification, we decided to focus on simpler ones that make sense with our
input data, while also achieving consistently good performance in literature, such as fully-
connected ANNs and 1D CNNs. Additionally, while architectures modelling temporal
information (recurrent ANNs, transformers) can (with some modifications) be used for
classification [166]–[168], they are vastly more popular in time series prediction (or extrap-
olation), rather than classification.

As described before, our data comes from several sources or sensors, which can broadly
be categorized into those originating from the radar and those originating from the tradi-
tional contact TFM monitor. Thus we decided to use an independent-branch approach,
where a branch is built for each of the input signals, the branches are then concatenated,
and additional learning layers are put on top of it. Fully-connected and 1D convolutional
networks were investigated in three major variants based on the input modality:

1. Contact network: A variant where a branch is built only for each of the contact
sensors.

2. Contact-free network: A variant where a branch is built only for each of the radar
sensors.

3. Fusion network: A variant where branches are built for all of the available input
sensors, regardless of sensor modality.

The inputs into the ANN can be in either temporal (actual segments of the signals, most
intuitive) or some other domain representation, such as frequency domain (via fast Fourier
transform – FFT) or spectrograms. Initially our instances were temporal, however, we
also wanted to investigate the mentioned alternative representations, such as the frequency
domain. Thus, we also computed the squared absolute value of the FFT of each instance,
which gave us the information about the dominant frequencies present in each instance.
Such frequency spectrum representation does not include the phase information, which is
still present in the temporal representation.

When we initially used temporal inputs, the size of the input was (win_len × FS)),
where win_len was the window length in seconds and FS was the sampling frequency. In
the frequency domain, we set the number of FFT coefficients such that we could represent
frequencies up to Nyquist frequency (FS/2), which is the highest frequency that can be
accurately represented in each window. The input size in such cases was thus ((win_len×
FS)/2), as only the first half of the coefficients are informative, while the second half is
mirrored, duplicating the information.

This already shows that there was notable variation in the possible inputs (input modal-
ities in terms of sensors, input types in terms of representation domain) and network ar-
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chitectures. A general schematic of the proposed and investigated branched architecture
alongside some relevant hyperparameters is shown in Figure 4.7. All investigated models
follow this paradigm, but differ slightly in the architecture, hyperparameters and inputs,
so we show a single generalized scheme for brevity.

Since we have many branches, the number of weights of the network is inherently large,
however, this can cause overfitting to the dataset, limit the generalization capability, and
increase the computational cost of training. We thus decided to limit the depth of the
network and use suitable dropout mechanisms in an attempt to alleviate such problems.

This brings us to the investigation of the hyperparameters of the proposed models. It is
known that the hyperparameter space of neural networks is large and it often comes down
to researcher’s experience and expert knowledge to narrow down the initial space and then
converge to a good set. We employed a systematic approach – a list of hyperparameters
and the values to investigate were initially defined as given in Table 4.3 and then a random
search – which included running a 5-fold CV experiment on a randomly selected set of
hyperparameters to evaluate them – was conducted each time. The search was done sep-
arately for contact, contact-free and fusion networks, for temporal and frequency inputs.
Importantly, hyperparameter tuning was always done so that it did not include actual test
data in a specific experiment. Naturally, the computational cost of such an experiment
is substantial, so we limited the initial hyperparameter space and then further narrowed
it down based on performance. The search and training were conducted on a worksta-
tion with 32 GB of random access memory (RAM) and nVidia Quadro P6000 graphics
processing unit (GPU) with 24 GB of graphics double data rate 5 (GDDR5) video RAM
(vRAM).

Table 4.3: The set of hyperparameters we investigated for our ANN models. Those with
only a single value were fixed due to universal and common use in literature dealing with
such problems.

Hyperparameter Investigated Values
N_HIDDEN_LAYERS [1, 2, 3]
N_UNITS [32, 64, 128]
N_FILTERS [16, 32, 64]
KERNEL_SIZE [8, 16, 32]
ACTIVATION [relu, tanh]
DROPOUT [0.2, 0.3, 0.4]
LEARNING_RATE [0.005, 0.01, 0.05]
OPTIMIZER [Adam, SGD, AdaDelta, RMSprop]
REGULARIZER [l1, l2 ]
REGULARIZATION [0.001, 0.005, 0.01]
BATCH_SIZE [32, 64, 128]
N_EPOCHS 100
LOSS categorical_crossentropy
LAST_ACTIVATION softmax
INITIALIZER GlorotNormal

4.2.3.1 Architecture Comparison

As mentioned, out of many ANN architectures used for time series classification in other
work, one stands slightly apart for being exceptionally common and consistently performing
well – 1D CNN [169].
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Figure 4.7: Conceptual schematic of the branched ANN architectural paradigm investi-
gated in our work. There are different possible input modalities (contact, radar or fusion)
and data types (temporal, frequency/FFT or fusion) and different possible hyperparame-
ters.
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The idea of 1D CNN is to have a convolutional filter or kernel W of size or width k
slide along a single dimension – time – and calculate the output y based on the input x
using the convolution operation. The kernel size represents the number of samples in a
time series that are being used for convolution to produce the output. This is illustrated
in Figure 4.8.

Figure 4.8: Graphical representation of 1D convolution.

This type of network allows for computation of temporally localized features of the time
series, which are then commonly fed to a fully connected layer, which serves for learning
the relationship between these features and class labels.

An alternative to this is to use only fully connected or dense layers. This approach is
more common when features are already pre-computed and used as input to the network,
which in our case corresponds to the frequency representation of the input signals. Dense
layers can also be used directly on the input signals, although this is a less common
approach.

4.2.4 Experimental Design and Evaluation

In standard ML notation, the input instances X to our model were the segments or windows
of the input signals, some originating from the radar sensor (denoted only as “radar” from
here on) and others originating from the contact TFM device (denoted only as “contact”
from here on). We thus had two modalities, radar and contact, the former consisting of six
total signals (I, Q, distance, radar respiration, heart sound and pulse) and the latter also
consisting of six total signals (BP, two ECG leads, ICG, impedance, contact respiration).
As we had two possible input data types, this multiplies the number of inputs by two,
having a temporal and frequency representation of each instance for each signal.

For our target variable Y, we initially had six classes as defined in the preprocessing
section, but we decided to remove the “Other” class from the evaluation, since it is seman-
tically not clear what happens in those periods, as influences of several other classes can
be present. Thus, we conducted our experiments with five classes defined in the original
dataset, which were one-hot encoded.

In order to evaluate the classification performance of our models, a robust evaluation ex-
periment was designed. First, classification metrics and a loss function were chosen, which
in our case were the categorical accuracy, multi-class or macro F1 score, and categorical
cross-entropy. Categorical accuracy (metric) simply checks the fraction of all one-hot en-
coded predictions that match the ground truth. Multi-class F1 score (metric) is calculated
as the F1 score per-class in a one-vs-rest manner (simulating a binary scenario) and then
averaged, as described in Equation 4.3.
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Figure 4.9: An example showing frequency domain input, as computed by the squared
absolute value of the FFT.

Precision(Ci) =
TP (Ci)

TP (Ci) + FP (Ci)

Recall(Ci) =
TP (Ci)

TP (Ci) + FN(Ci)
(4.2)

F1(Ci) =
2 · Precision(Ci) ·Recall(Ci)

Precision(Ci) +Recall(Ci)

F1macro =
1

n

n∑
i=1

F1i, (4.3)

where Precision(Ci), Recall(Ci), F1(Ci), TP (Ci), FP (Ci), FN(Ci) are the precision, re-
call, F1 score, true positives, false positives and false negatives for i-th class in a one-vs-rest
manner. F1macro is the average F1 score across all n classes.

Categorical cross-entropy (loss) is based on checking how the probability distributions
of predictions and ground truths match, and is defined in Equation 4.4.

CE(p, q) = −
n∑

i=1

p(i) · log(q(i)), (4.4)

where CE is the cross-entropy, p and q are the true and predicted probability distributions
and i goes over all class values in C. Categorical variant uses a softmax() activation in
the final output layer, which ensures that the sum of probabilities in the one-hot encoded
output vector is equal to 1.

This set of metrics and loss are commonly used in multi-class classification problems.
Accuracy gives a very intuitive but potentially naive understanding of classification per-
formance. To get a better understanding of actual per-class classifier performance, F1
score is commonly used to complement it, as it contains the merged precision and recall
information. The best overview can be obtained directly from confusion matrices, which
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show precise classification performance for each class and serve as the groundwork from
which other metrics are derived.

We mentioned before that SMOTE was used to oversample the minority classes with
the aim of equal class distribution. As discussed in detail previously, it is vital that the
data of all subjects was stacked, ensuring the temporal order was kept and (synthetic)
data of each subject also remained together. It is of utmost importance to also avoid
shuffling the instances, as this would cause the internal results to be overly optimistic due
to overfitting, since similar (synthetic) instances (of a single subject) would be present in
both training and validation data.

A 5-fold CV experiment was done, in which 80% of the data were always taken for
training and 20% was withheld for testing, with relatively balanced class distribution in
both training and testing data. This was repeated five times, ensuring that each part
of the data is independently tested on once, and the results are then averaged across
all folds. We chose 5-fold instead of standard 10-fold as a reasonable balance between
computational demands and robustness. As we focused on DL approaches, we additionally
split the training data into internal training and validation, again in 80–20% ratio. The
models were trained on the internal training data, and the purpose of validation data
was to guide the model convergence and control overfitting to the training data, with the
aim of achieving generalization capability of the model, which was then evaluated on the
completely left out testing data.

This sort of k−fold CV is relatively robust with the exception of the border instances
where the split is made. The split makes it so that some neighbouring instances of a single
subject are put into train and test set, likely causing an overoptimistic performance for
those few instances. In 5-fold CV this happens five times. In the first and the last fold,
data of a single subject is split, while in the intermediate folds data of two subjects are
split. However, each pair of subsequent intermediate folds shares one such subject. In
total, this brings the number of subjects whose data gets split to 1–2 on average in each
evaluation fold. However, all 30 subjects are eventually evaluated on and in aggregate only
distinct 4 subjects data gets split. Furthermore, as data gets split again internally into
training and validation, this further dilutes the number of problematic instances in the
actual model training. When several tens of subjects and several thousands of instances
are being considered, this influence is minimal and does not notably affect the results.

A way to circumvent this is to instead use the LOSO evaluation setup, where all but
one subjects are used for training and the left out subject is used for testing, without any
neighbouring instances appearing in both sets. The downside of the LOSO setup is that a
model has to be trained and evaluated many more times compared to a k−fold CV in cases
where the number of subjects is notably greater than k. This is especially impactful in DL,
where the amount of data is typically large and the model training can take quite some
time and require a lot of computational power. On top of this, considering investigation
of different architectures and other hyperparameters, such evaluation becomes practically
very challenging and limited by the available computing power and time.

We ran the described evaluation pipeline for different models, namely fully-connected
ANNs vs. CNNs, radar vs. contact inputs, and temporal vs. frequency inputs. Detailed
results, findings and comparisons are reported in the following chapter.

4.3 Results

We proposed and discussed a number of evaluation experiments and metrics RF-based
physiological monitoring, highlighting the trade-off between robustness and computational
requirements. This section details the results obtained in those experiments and offers
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comparisons between different experiments and metrics of interest together with corre-
sponding statistical significance. The reported results also answer our research questions
and serve as the grounds for acceptance of rejection of hypotheses outlined in Chapter 3.
While this section will present all the results and interesting observations, the final detailed
interpretation and discussion will be given in Chapter 6.

4.3.1 Architecture and Hyperparameters

One of the early questions in the RF-based classification of hemodynamic scenarios were
the specifics of the neural network architecture to be used. As discussed previously, related
work reports a myriad of different architectures for time series classification, with 1D CNNs
being at the forefront. As discussed in the previous Chapter, we decided to compare 1D
CNNs with Dense ANNs in every experiment, as we had both temporal (raw) data and
frequency representations available.

The downside of CNNs is that there is both theoretical and empirical evidence showing
that CNNs generally require notably more time to train compared to Dense networks, even
when the latter have substantially more parameters. In terms of Big O notation, the time
complexity of all convolutional layers is reported [170] as given in Equation 4.5

O

(
d∑

l=1

nl−1 · s2l · nl ·m2
l

)
, (4.5)

where l is the index of the convolutional layer, d is the number of convolutional layers
(depth), sl is the filter size, nl is the number of filters in the l-th layer, and ml is the size
of the output feature map. Finally, nl−1 is the number of channels, which in our case is 1,
as we are dealing with a single channel (time series) or signal per branch.

In contrast to relatively high computational demands of CNNs, He et al. [170] report
Dense networks to take only about 10% as much time as CNN networks with comparable
depth. The difference comes mainly from the substantially larger number of multiplications
required in the convolution. This can be a concern when investigating many architectures
and hyperparameters and evaluating them using expensive experiments like k-fold CV and
LOSO.

Despite the difference in time needed for evaluation, the reported state-of-the-art per-
formance of CNNs cannot be ignored. We thus conducted our evaluations using both types
of networks to estimate the baseline performance and compare the two across different in-
put signal modalities and data types.

The architecture is defined in more detail by hyperparameters, such as the depth and
width of the network and the connections between neurons, which directly define the
network topology. However, in addition to hyperparameters defining the topology, there
are other hyperparameters importantly influencing the network training and performance,
such as the activation function, learning rate and regularization [171].

We described the search for their optimal values in the previous section. In summary, it
included running a random search over a predefined search space, and conducting a 5-fold
CV with a given set of hyperparameters each time, to evaluate it. Based on the number
and density of given hyperparameter values, the search space can quickly become very
large and checking all combinations is not feasible, so a random search was chosen over
grid search. The best combinations found for each network type (Dense and 1D CNN) are
given in Tables 4.4 and 4.5 for fully-connected and CNN networks, respectively.
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Table 4.4: The best performing Dense ANNs with corresponding optimized hyperparame-
ters.

Best-Performing Dense ANN [4.7] Optimized Hyperparameters

Contact

N_HIDDEN_LAYERS: 1
Signal inputs: 6 N_UNITS: 32

Temporal branches: 0 ACTIVATION: tanh
FFT branches: 6 DROPOUT: 0.3

Concatenation: 1 LEARNING_RATE: 0.005
Output branches: 1 OPTIMIZER: Adam
Window length: 20 REGULARIZER: l2

REGULARIZATION: 0.001
BATCH_SIZE: 64

Radar

N_HIDDEN_LAYERS: 1
Signal inputs: 6 N_UNITS: 64

Temporal branches: 0 ACTIVATION: tanh
FFT branches: 6 DROPOUT: 0.3

Concatenation: 1 LEARNING_RATE: 0.05
Output branches: 1 OPTIMIZER: Adam
Window length: 20 REGULARIZER: l2

REGULARIZATION: 0.001
BATCH_SIZE: 128

Fusion

N_HIDDEN_LAYERS: 1
Signal inputs: 12 N_UNITS: 32

Temporal branches: 12 ACTIVATION: tanh
FFT branches: 12 DROPOUT: 0.4

Concatenation: 1 LEARNING_RATE: 0.001
Output branches: 1 OPTIMIZER: Adam
Window length: 20 REGULARIZER: l2

REGULARIZATION: 0.001
BATCH_SIZE: 32

4.3.1.1 Dense (fully-connected) Network

From Table 4.4 we can see that the best-performing hyperparameter configuration for
Dense ANN networks uses frequency domain inputs computed via FFT instead of raw
signals directly. This can be attributed to the fact that abs(FFT ) is a form of feature
space representation of the inputs describing the frequencies present in a window, so it
is more suitable for a Dense network input. Similarly, it was universally observed across
different signal input modalities (contact, radar and fusion) that having a single hidden
layer in each branch performed the best, although the width of the network differed –
with radar inputs, a wider network starting with 64 neurons outperformed a narrower one
starting with 32 neurons, which performed the best with contact and fusion inputs.

In terms of activation function, tanh outperformed relu, although the latter is simpler
and faster to compute. Interestingly, the learning rate varied substantially between input
modalities, although generally a relatively low value performed well. As for regularization,
l2 outperformed l1, which is not uncommon in literature [172].

Penultimately, each input modality performed best with a different batch size, although
the observed influence of batch size was overall minor in terms of accuracy, at least when not
changed substantially or dynamically, as is common in recent works [173]. Finally, Adam
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was dominantly the best performing optimizer across different sets of hyperparameters.

Table 4.5: The best performing 1D CNNs with corresponding optimized hyperparameters.

Best-Performing 1D CNN [4.7] Optimized Hyperparameters

Contact

N_HIDDEN_LAYERS: 2
N_FILTERS: 64

Signal inputs: 6 KERNEL_SIZE: 32
Temporal branches: 6 ACTIVATION: relu
FFT branches: 0 DROPOUT: 0.3

Concatenation: 1 LEARNING_RATE: 0.001
Output branches: 1 OPTIMIZER: Adam
Window length: 20 REGULARIZER: l2

REGULARIZATION: 0.001
BATCH_SIZE: 64

Radar

N_HIDDEN_LAYERS: 2
N_FILTERS: 64

Signal inputs: 6 KERNEL_SIZE: 32
Temporal branches: 6 ACTIVATION: relu
FFT branches: 0 DROPOUT: 0.3

Concatenation: 1 LEARNING_RATE: 0.005
Output branches: 1 OPTIMIZER: Adam
Window length: 20 REGULARIZER: l2

REGULARIZATION: 0.001
BATCH_SIZE: 32

Fusion

N_HIDDEN_LAYERS: 2
N_FILTERS: 32

Signal inputs: 12 KERNEL_SIZE: 16
Temporal branches: 12 ACTIVATION: tanh
FFT branches: 0 DROPOUT: 0.4

Concatenation: 1 LEARNING_RATE: 0.001
Output branches: 1 OPTIMIZER: Adam
Window length: 20 REGULARIZER: l2

REGULARIZATION: 0.001
BATCH_SIZE: 32

4.3.1.2 1D Convolutional Neural Network

We can observe from Table 4.5 that in the case of CNNs, the temporal inputs – meaning
signals directly in the time domain – consistently appear in the best-performing configu-
rations. This is again not uncommon, as CNNs are uniformly reported to work best with
direct inputs (be it 1D signals or 2D images), as the kernels compute features from the
raw data internally.

In the CNN case we observed differences compared to best fully-connected configura-
tions when looking at depths of individual branches, as now deeper branches with two
hidden layers performed better. In terms of filter properties, higher number of filters and
larger kernel size generally showed better performance.

Interestingly, relu activation function outperformed tanh in this case, however lower
learning rates still performed best, indicating smaller changes to the model to be preferred.
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Same as before, l2 regularization again proved superior to l1, while smaller batch sizes gave
the best results. As before, Adam optimizer consistently performed the best.

4.3.1.3 Relation to Data Inputs

The topology-defining hyperparameters (e.g., the number and type of input branches) are
closely related to our input data options. Despite the fact that some best-case configu-
rations include only a single input data type (e.g., only temporal or FFT branches), we
cannot be sure that this is not a random occurrence, even though random search is known
to have a 95% probability of finding a configuration within 5% of optima with only 50
samplings [174], making it the preferred choice for hyperparameter space search due to
lower computational demands than grid search. In order to get a complete exhaustive
overview, we fixed the obtained best hyperparameters relating solely to the ANN and
systematically investigated hyperparameters relating to data inputs, specifically window
length, input modality and input data type. The complete overview is reported in Table 4.6
and accompanied with analysis of statistical significance between different values.

4.3.2 Classification Performance

Once the hyperparameters strictly relating to the model were chosen and fixed, we again
evaluated the networks using the previously described 5-fold CV, which was carefully de-
signed to minimize overfitting, by paying special attention to instance order and subsequent
splits. Again, the two main monitored metrics were accuracy and F1 score. The former is
highly intuitive but less robust with imbalanced data, and the latter offers a better view of
performance when class distribution is taken into account. Averages across folds for differ-
ent experiments with different values of input-data-related hyperparameters are reported
in Table 4.6. We bolded and highlighted the results of the best performing configurations,
while exhaustively reporting results for all possible configurations. Note that Table 4.6 is
more extensive compared to Tables 4.4 and 4.5, as those two only showed input combi-
nations of best-performing cases for brevity, while all possible combinations are reported
here.

To initially verify the statistical significance of differences in accuracies and F1 scores
between all possible configurations of independent variables (window length, network,
modality, input data type), we tested a general linear model estimated with ordinary least
squares, where we modelled accuracy and F1 score as a linear function of aforementioned
independent variables. Such a test is equal to analysis of variance (ANOVA) and considers
all independent variables at once within a single test. It provides the F statistic, which is
a ratio of two variances – variance between sample means / variance within the samples –
and corresponding p values relating to the level of significance [175]. The chosen method
is parametric, meaning that it has higher statistical power, but requires some assumptions
to be met. These are linear relationship between dependent and independent variables, in-
dependence of residuals, normal distribution of residuals, equal variance of residuals across
different values of independent variables, and no perfect correlation between independent
variables. These were checked and confirmed in the first stage. We always used all per-fold
accuracies and F1 scores that were used to compute averages reported in Table 4.6, for all
configurations of independent variables, as we wanted to maximize robustness and power
of the tests. We always tested using the standard 5% level of significance.

Differences in accuracy and F1 score between different configurations were overall sta-
tistically significant with F = 106.4 (p < 0.001) and F = 87.24 (p < 0.001), respectively.
With different configurations of independent variables, we can explain 93% variability in
accuracy and 92% variability in F1 score.
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Table 4.6: Accuracy and F1 score (Acc. / F1) for the investigated Dense and 1D CNN
networks at different window lengths, input modalities, and input data types, always using
the best-performing set of hyperparameters. Best results for each network architecture are
bolded, and the overall best results are highlighted in green.

Window Network Modality Temp. Data Freq. Data Temp. + Freq.

5 s

Dense ANN
Contact 0.69 / 0.68 0.68 / 0.66 0.69 / 0.66
Radar 0.64 / 0.61 0.72 / 0.71 0.72 / 0.72
Fusion 0.68 / 0.68 0.66 / 0.65 0.70 / 0.70

1D CNN
Contact 0.65 / 0.65 0.67 / 0.65 0.70 / 0.69
Radar 0.62 / 0.60 0.61 / 0.60 0.62 / 0.62
Fusion 0.63 / 0.63 0.63 / 0.62 0.64 / 0.63

10 s

Dense ANN
Contact 0.78 / 0.77 0.80 / 0.80 0.80 / 0.79
Radar 0.75 / 0.75 0.76 / 0.76 0.75 / 0.74
Fusion 0.79 / 0.79 0.80 / 0.78 0.79 / 0.78

1D CNN
Contact 0.76 / 0.76 0.73 / 0.71 0.75 / 0.74
Radar 0.74 / 0.74 0.72 / 0.71 0.74 / 0.73
Fusion 0.79 / 0.78 0.75 / 0.75 0.78 / 0.78

20 s

Dense ANN
Contact 0.84 / 0.84 0.88 / 0.87 0.87 / 0.86
Radar 0.81 / 0.81 0.83 / 0.83 0.82 / 0.81
Fusion 0.86 / 0.84 0.87 / 0.87 0.88 / 0.87

1D CNN
Contact 0.85 / 0.85 0.82 / 0.80 0.84 / 0.83
Radar 0.82 / 0.82 0.80 / 0.78 0.81 / 0.80
Fusion 0.86 / 0.84 0.82 / 0.82 0.85 / 0.85

4.3.2.1 Window Length

When talking about signal preprocessing in Section 4.2.2, we already mentioned inves-
tigation of different window lengths between 5 s and 20 s when segmenting the signals.
Specifically we checked the performance of 5 s, 10 s and 20 s windows, due to our assump-
tion of them being long enough to contain at least 1 respiratory cycle, while being short
enough to not overextend the short scenarios like Valsalva and apnea.

We assumed longer window lengths to be better suited for our problem. This assump-
tion stems from the fact that a longer window captures several cycles, which means that
frequency representation makes more sense compared to a short window length captur-
ing only a single cycle. This is because periodicity (preferably with several periods) is a
mandatory requirement when computing FFT to get meaningful representation. More-
over, we later found that while in most cases 5 s was enough to capture a single period
or respiratory cycle, for some individuals even this was too short in the rest scenario, as
their RR decreased to the point where a single cycle was longer than 5 s (e.g., a sort of
meditative rest state). An additional benefit comes in the form of fewer instances, which
lessened the high computational requirements.

Looking at Table 4.6, we can consistently observe the best performance of the longest
20 s window across both network architectures for different input signal modalities and
data types, in line with expectations and reasoning given above.

Looking only at window length, we found it to statistically significantly influence the
results with F = 342.4 (p < 0.001). More specifically, looking only at 20 s (long) window
length (compared against other cases) within the general linear model, we observed that
using a shorter window length on average decreases the accuracy of the model by 8% (t =
-11.1, p < 0.001) or 18% (t = -26.1, p < 0.001) for 10 s (medium) and 5 s (short) window,
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respectively. Similarly for F1 score, shorter window length on average decreases the F1
score of the model by 7% (t = -9.7, p < 0.001) or 18% (t = -23.6, p < 0.001). This confirms
that using the longest window length achieves statistically significant highest accuracy and
F1 score.

4.3.2.2 Network Type

Considering performance of different network types, the average difference between Dense
ANN and 1D CNN was 3.2% and 3.1% for accuracy and F1 score, respectively. These
changes were overall statistically significant with F = 33.1 (p < 0.001) and F = 25.8 (p <
0.001). Again looking more closely at specific network types in the general linear model,
we observed an average increase of 3.2% in accuracy and F1 score when using the Dense
network, with t = 5.8 (p < 0.001), concluding that using a Dense network statistically
significantly improves performance.

4.3.2.3 Input Modality

Further looking at different modalities (contact, radar and fusion), we can see that the
contact and fusion modalities achieved the best results, on average surpassing the radar
modality by 5% and 4% for accuracy and F1 score, respectively. Overall we found dif-
ferences in accuracy and F1 score due to changes of input modality to be statistically
significant with F = 11.7 (p < 0.001) and F = 8.8 (p < 0.001). When again looking at
specific values of input modality in the general linear model, we confirmed that using radar
modality decreased the average accuracy and F1 by 4% compared to contact or fusion, with
t = -4.3 (p < 0.001). However, there were no statistically significant differences between
using contact or fusion modality.

4.3.2.4 Data Input Type

Finally, we can also observe that Dense network generally performs better with frequency
inputs, although the performance was only marginally better compared to temporal inputs.
The average improvement of Dense network when using frequency over temporal data
input type was 1.8% for both accuracy and F1 score. Average improvement compared
to fusion of input data types is negligible at almost 0%. On the other hand, the 1D
CNN architecture was shown to perform better with temporal input data type, meaning
direct signal segments, although the accuracies were lower compared to the fully connected
network. The differences in accuracy and F1 score between different input types were shown
to not be statistically significant, with F = 1.7 (p < 0.2) for accuracy, and F = 1.5 (p <
0.24) for F1 score. This means that even though we observed some networks performed
better with one or other input type, the differences were overall not statistically significant.

4.3.2.5 Visualizations

In addition to numerical and statistical analysis of the results, we also checked confu-
sion matrices of the overall best-performing cases in order to get a better understanding
and overview of classification performance. These are shown in Figure 4.10 for each case
highlighted in green in Table 4.6.

We can observe a similar performance between the first (contact input modality, fre-
quency data type) and third (contact + radar input modalities, frequency + temporal
inputs) row in Figure 4.10, where the model classifies Valsalva, Apnea and TiltUp sce-
narios very well, but has more trouble separating the Resting and TiltDown scenarios.
Alternatively the second row (radar input modality, frequency data type) performs well
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Figure 4.10: Absolute and normalized confusion matrices for the best-performing cases
(bolded and highlighted in green) from Table 4.6. Network, input signal modality and
input data type are given in each subplot title. Darker shades indicate a higher number of
instances.
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in classifying Valsalva and Apnea, but has more trouble separating the TiltUp scenario
compared to the other two. Again, the separation of Resting and TiltDown is the poorest,
being the worst out of all three cases.

Finally, for the overall best performing case, we also show how accuracy and loss were
changing during the training process of the network for train and validation data. This
can be seen in Figure 4.11, where we can observe consistent performance across different
folds, without major variation in accuracy or loss, indicating good robustness regardless of
the specific data split.

Figure 4.11: Changes in accuracy and loss for the best performing model between different
folds. Bold lines are slightly smoothed and represent train and validation accuracy and
loss. Corresponding vertical subplots (same fold) share same colors, otherwise colors are
arbitrary.

We can conclude that a Dense network using contact modality and frequency data rep-
resentation performed the best. The results of using fusion of input modalities and data
representations equalled the best performance, but did not surpass it. This shows that
little-to-no additional information can be obtained from the contact-free radar modality
compared to using gold-standard contact sensors. However, the same network achieves
only 4-5% worse performance when using only the contact-free radar input modality and
frequency data representation. Importantly, such a network achieves almost identical per-
formance in classification of Apnea and Valsalva scenarios, which are the highest interest
for continuous non-invasive sleep monitoring [149]. We will discuss and interpret all the
reported results in more detail in the following chapter.

4.4 Information and Privacy Preservation

We have seen that RF-based monitoring relies on the Doppler effect, providing information
about changes in distance and velocity. This modality is fundamentally different from
optical sensing, as the latter is arguably substantially richer with information and far more
interpretable for humans. The signals obtained from a radar, especially in its raw form, are



56 Chapter 4. RF-based Classification of Hemodynamic Scenarios

in themselves not readable to humans, which makes this modality privacy preserving in the
visual sense. From video or images, one can discern additional information, such as colors,
facial expressions, age, gender, context information, etc., which can enrich physiological
and health monitoring in general, at the cost of privacy preservation.

There are, however, ways to leverage optical modality in ways that attempt to preserve
privacy as much as possible. Facial anonymization in the form of blurring or other similar
mechanisms are an intuitive solution, but only (partially) attempt to solve identification
concerns. Another approach is to simply use small regions or patches of exposed skin (not
necessarily face) for obtaining the information about color change. This is how wearable
PPG sensors work in a sense, as the photodiode monitors a small area such as a fingertip or
wrist. In most extreme cases, such spatial privacy-preserving constraints were investigated
using only a single pixel for monitoring [176], but such approaches are highly sensitive and
SNR can be a concern.

In this chapter, we focused on remotely obtaining the anonymous movement informa-
tion with a radar, however, the optical color and light absorption information should not
be discarded. Based on the understanding of physiological mechanisms governing hemo-
dynamics described in Chapter 2, optical information via light absorption changes would
be useful for BP estimation, which will be the focus of the next Chapter.
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Chapter 5

Optical Measurement of
Multi-wavelength PTT and BP
Estimation

This chapter deals with MW camera-based PTT measurement and subsequent BP esti-
mation based on the underlying mechanisms described in Chapter 2, where fundamental
feasibility of such a novel approach was investigated. Specifically, our goal was to es-
timate SBP and DBP using this approach, with errors as close to clinical standards as
possible [177].

5.1 Data and Materials

For single-site contact-free multi-wavelength (MW) PTT measurement and BP estimation,
hardware capable of capturing independent data from multiple wavelengths is needed,
alongside varied ground-truth BP measurements [178]. Such data and the corresponding
recording setups, alongside the data collection protocols employed for its collection, will
be described in more detail in the following sections.

While a suitable dataset for RF-based monitoring existed and enabled our research in
that direction, the same was not true for an optical video dataset that would initially allow
for multi-wavelength depth-dependent rPPG reconstruction. This is not unexpected, as
such an idea is novel and was previously only recently considered with contact wearable sen-
sors [179]. Subsequently, we designed a data collection setup and protocol ourselves, which
allowed for the collection of required data that met the needs for MW rPPG reconstruction,
allowing for subsequent contactless MW PTT measurement and BP estimation [180].

We captured the data in a MW depth-dependant manner from different layers of skin
of a single measurement site in an attempt to measure the subtle PTT between skin layers.
As we mentioned in previous chapters, this approach is to the best of our knowledge
unique, and offers several key advantages, which we will discuss in more detail in the next
sections. One such advantage, relating to privacy discussion from the previous Chapter,
is also privacy preservation, as this approach can be implemented in a way where camera
records only a patch of (non-facial) skin, not revealing any ambient or easily discernible
personal information.

5.1.1 Hardware and Camera Physics

Obtaining different wavelength information is an inherent property of RGB cameras, as
each color pixel is sensitive to specific wavelengths. This is vital for obtaining delayed
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PPG waveforms from different skin depths and computing the PTT as hypothesized in
Chapter 3. However, the image sensor of an RGB camera is not perfect but is instead
governed by the quantum efficiency of each wavelength pixels, which corresponds to the
relative amount of specific wavelength photons successfully registered by the image sensor
pixels and translated to a digital signal.

An example is shown in Fig. 5.1, which belongs to our specific image sensor, but also
serves well for illustration purposes. The relative intensity of sensor response (photons
registered and translated to digital signal) on the y axis is in the [0, 1] range, where 0
means no photons are registered and 1 means all of them are. The x axis simply shows
different wavelengths of light in the visible and NIR spectrum.

Figure 5.1: Quantum efficiency of the image sensor of our iDS 3040SE RGB camera.
Superimposed black line shows the triple bandpass filter response, which helps with band
overlapping at a hardware level. The red, green and blue lines correspond to pixel responses
of the same color on the image sensor.

Looking at the quantum efficiency shown in Figure 5.1, we can already discern two im-
portant facts and corresponding challenges that must be taken into account when collecting
our data with an RGB camera:

1. Channel response overlap: Looking at each specific channel response (e.g., green),
we see that its pixels also respond to wavelengths in the neighbouring bands (e.g.,
in blue and red wavelengths), meaning that the image and subsequent rPPG trace
obtained from such a channel are an impure mixture of several channels. We can also
observe that all three color-specific pixels respond in the NIR band around 850 nm.
Subsequently we can hypothesise that the PPG waveforms from different wavelengths
are hard to distinguish, since rPPG traces obtained from pixels of each wavelength
are in fact a mixture, which must first be separated.

2. Lower relative response in the NIR: The relative intensity of the pixel response
falls substantially towards the longer wavelengths, reaching only around 20% quan-
tum efficiency. This means that in order to obtain similar amplitudes and prominent
systolic peaks in the NIR rPPG trace compared to other wavelengths, we must com-
pensate by having higher energy in this part of the spectrum coming from the light
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source. Additionally, the band of the triple bandpass filter we used is also wider in
this range to additionally compensate for the lower quantum efficiency.

These challenges are fundamental to consumer RGB cameras and a vast majority of
image sensors, and must therefore be understood and considered when dealing with MW
approaches. We will revisit them and propose suitable solutions in the following chapter.

5.1.1.1 Camera Optics

We have seen in Chapter 2 that the skin layers are thin at 1–2 mm and blood traversal
velocity in capillaries was reported to be around 12 mm/s [62], so the PTT measured
between different skin layers is expected to be short at around 100 ms, with some variations
due to changes in SVR and BP. Knowing this, we required an RGB camera capable of high-
frequency recording, substantially above the standard 30 fps. Having these ranges in mind
and also looking at related work dealing with contact MW PTT measurement [56], [179],
we estimated that our camera should be capable of recording at around 250 fps. This allows
measuring PTT with precision of up to 4 ms, which is more than an order of magnitude
shorter than expected PTT, so it should be able to capture PTT variations related to BP.
Additionally, any on-board image processing is undesired, since any changes to the pixel
values might influence and distort the obtained rPPG waveforms.

Following these requirements we identified the iDS 3040SE-Q RGB camera with the
Sony IMX273 1/3" complementary metal-oxide-semiconductor (CMOS) image sensor and
iDS-5M23-C1618 16 mm lens as a suitable RGB camera for our data collection setup. This
camera allows for variable frame rates of up to hundreds of fps while also offering program-
matic access to the raw images as registered by the image sensor. For our experiments
we fixed the frame rate to 250 fps due to aforementioned reasons and values reported in
literature [56], [179].

As seen in Figure 2.6 and reported by related work [104], capillary loops dominate
the papillary dermis layer reachable by shorter wavelengths, while smaller arterioles and
arteries are found in the deeper layers of the skin, so we wanted to use light that also reaches
those depths. NIR in the wavelengths around 850 nm is suitable for penetrating to deeper
dermis layers, however, the information is not registered by the image sensor of a traditional
RGB camera out of the box, since such cameras come equipped with a default factory IR
filter with a cutoff at 650 nm. This filter is in place to modify the image produced by the
camera to align with the way the human eye works and which light it can perceive. Since
we are not interested in the natural look of images but obtaining the relevant information
from our image, we modified our camera by first physically removing the on-board factory
IR filter and then replacing it with a triple bandpass MidOpt TB475/550/850 filter, which
allows only light in narrow bands of 475±10 nm (blue), 550±10 nm (green) and 850±22 nm
(NIR) to pass. As mentioned before, the band is wider in the NIR due to lower sensitivity of
the image sensor in this range, which can be seen from the quantum efficiency in Figure 5.1.

Furthermore, human skin often exhibits sweating, especially when exposed to heat
or after physical activity, which can result in undesired specular reflections on its sur-
face. These might distort our signal reconstructions, so we additionally used the MidOpt
PR1000 VIS/SWIR Wire Grid Linear Polarizer together with the triple bandpass filter.
This polarizer is effective in the range of 400–2000 nm, which covers our spectral range of
interest.

The combination of these modifications gives us access to NIR information of arterioles
in the deeper reticular dermis, while also partially addressing the first challenge mentioned
above – channel response overlap. As the selected triple bandpass filter has narrow bands, it
isolates the response of the pixels at image acquisition stage, producing a “cleaner” image
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in terms of specific wavelength fidelity, albeit this does not solve the problem entirely.
Additional separation is required and proposed in the form of channel separation algorithms
described in the next chapter.

5.1.1.2 Light Source

In order to capture information from the NIR part of the spectrum, modifying just the
camera is not enough. To obtain this information and to address the challenge mentioned
several times – poor quantum efficiency in the NIR part of the spectrum – we also had
to use a light source that emits the full spectrum of interest, as well as (ideally) increases
in energy towards the NIR. Daylight has a suitable spectrum, however, we wanted good
control and consistency in our light source, so we used an artificial source instead.

The spectrum requirement meant that conventional LED sources are not suitable, since
they have distinct peaks in the blue and green part of the spectrum while emitting virtually
no energy in the NIR. An obvious initial candidate was a traditional incandescent filament
bulb, which has a suitable spectrum for our use case.

Upon making some initial recordings with a standard 230V 50W bulb and our high-
frequency camera, we observed flickering in the recordings, which is a consequence of the 50
Hz alternating current. To circumvent this, we instead used a direct current power source
– a 12V 650W power supply unit – alongside Osram Decostar 51ALU filament bulbs.
These bulbs are coated with thin aluminum coating and unlike their dichroic counterparts,
the heat is fully emitted in front, meaning we get a good amount of (N)IR emission,
compensating for the lower sensor sensitivity in this part of the spectrum. We decided to
use two such 50W bulbs to ensure enough light to get reasonable visibility, as the exposure
time is very short at such high fps. The light was directed towards the ROI of the skin
and the bulbs were placed perpendicular to one another in order to negate any shadows
created by the uneven surface of the recording ROI.

In order to avoid any interference of other different light sources, we decided to record
the subjects in a completely dark room (no windows, no other artificial sources), where
only our selected light source provided visibility as it was directed towards the palm.

5.1.1.3 Blood Pressure Monitor

Ground-truth BP measurements were obtained with a clinical-grade Omron M10-IT cuff-
based digital BP monitoring device in order to obtain precise and trustworthy measure-
ments. The cuff was placed on the upper arm in accordance with the official guidelines.
The cuff was always equipped on the opposite arm of the one being recorded with the
camera, as compression of the tissue (as a consequence of the cuff inflation) influences the
blood flow.

5.1.2 Recording Setup and Data Collection Protocol

Once our recording setup was finalized at the physical level, we also had to ensure that we
removed any on-board default image processing in the software. We did this by developing
a piece of recording software based on the official iDS software development kit (SDK)
together with their Peak library. In short, as mentioned earlier, we set the fps to 250,
which meant that we had to make a trade-off by setting the exposure time to only 4 ms.
This in turn also meant that the light sources had to be strong enough for the image not
to appear completely dark. We additionally turned all the white-balancing corrections off
and set the color gains to the default value of 1.0.

The described and fine-tuned recording setup was used to record the central part of the
palm skin of participating subjects. The palm was chosen for measurement since it is one
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of the places where skin exhibits the most pulsatility (similar to fingertip and forehead,
which are the most commonly used sites in literature) and is relatively comfortable to
record and quite maneuverable. The spectral range between blue (450 nm) and NIR (850
nm) was selected as described previously. Note that such wavelengths penetrate between
0.5 and 4 mm deep in human skin tissue, which accounts for variations in skin thickness
due to calluses or other anomalies [181]. Recordings lasted for 30-seconds, which is enough
time for the digital sphygmomanometer to produce a single measurement via full cuff
compression and decompression cycle. The recording setup with an example anonymous
subject is shown in Figure 5.2.

Figure 5.2: Anonymous subject being recorded with our custom camera and BP recording
setup. Picture used with subject’s explicit permission.

We collected data of 13 volunteers at the Department of Intelligent Systems, Jožef
Stefan Institute (JSI). 10 subjects were male and 3 female with the mean age of 30 ± 3.2
years. Most were healthy young adults, with two exceptions being older and long-time
smokers. All have given explicit consent to participation and their data was anonymized.
We prepared the following two recording scenarios with the aim of inducing substantial
cardiorespiratory and hemodynamic changes, which clearly reflect in the measured BP
values:

1. Resting. The first scenario was resting in a seated position, where the subjects
were taking deep breaths and relaxing with their eyes closed. After one minute,
a 30-second recording was made and their ground-truth BP was measured with the
clinical-grade Omron cuff-based sphygmomanometer. The aim of this scenario was to
obtain a baseline measurement in a relaxed state without physical or mental exertion.

2. Exercise. The second scenario included intense physical activity, consisting of 1
minute of jumping jacks followed immediately by jump squats until failure. At failure,
the subject was immediately measured, as they exhibit substantially elevated BP and
HR due to intense activity and severe exhaustion.
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We repeated this experimental protocol twice for each subject, preferably on different
days (for some subjects this was impossible due to availability), to obtain more varied
information and further validate robustness. This gave us at least two cases of each distinct
hemodynamic state for each subject. Some subjects participated more (depending on
availability), so we obtained more recordings for those.

Each 30-second recording was assigned the ground-truth BP and HR values of the
Omron device. This makes sense since the measurement itself takes around 20 seconds,
and since BP and HR do not change that rapidly outside of extreme circumstances like
arterial bleeding or powerful medicine. A few recordings were also discarded from further
evaluation, as in a couple cases the Omron device returned an error (usually when physical
exertion was very high), meaning we did not have the ground truth BP for such a recording
segment.

Similar pros and cons as were reported for the radar dataset in the last chapter can
also be extended to this one. Namely, the collected data is relatively robust and unique, as
it was recorded with custom modified hardware and a specific recording setup that enables
further MW analysis of interest. Given the unique setup, a novel research direction, and
obtained explicit permissions for data usage from all users, the collected dataset in itself
is a contribution that can be useful to other researchers interested in MW monitoring. On
the downside, this highly controlled and specific recording setup does not reflect everyday
real-world scenarios. However, again, precise control over as many environmental variables
as possible is a good thing when investigating fundamental feasibility of a novel approach.

5.2 Methodology

In previous chapters, we described the blood perfusion between different skin layers and
the mechanisms relating PWV and PTT to BP. We also highlighted how a standard RGB
camera with some modifications can be used to capture information from different wave-
lengths, allowing for reconstruction of depth-dependant rPPG waveforms. While the idea
is well-grounded in physiology, the design of standard RGB image sensors poses many
challenges, which we also listed before. In short, some of them are technical and resolvable
with modifications of hardware (e.g., removal of IR filter, usage of DC power source, usage
of filters on the lens, etc.), while others are fundamental and resolutions are not trivial. An
important example of the latter is the imperfect spectral response of the image sensor in
each wavelength band, causing the obtained signals to be a mixture containing additional
undesired information. Since the phase delays (PTTs) of interest in the waveforms are
extremely short and subtle, a resolution for this challenge is mandatory.

In this section, we again initially describe the data preprocessing methods used on our
raw signals. We then propose models and algorithms for channel separation that allow us
to obtain demixed waveforms from each specific spectral band and subsequently measure
the PTT of interest. In the first phase, we evaluated the methods in terms of correlation
with BP. In the second phase, we additionally proposed and validated a regression model
for explicit SBP and DBP estimation. Similar to our previous experiments, we designed
a robust experimental framework that allows for evaluation and validation of our novel
approach. The high-level overview of this pipeline is shown in Figure 5.3.

5.2.1 Data Preprocessing

We based our experiments on the custom dataset described in the previous section. At this
point we obtained raw 3D matrices corresponding to each frame, which we then manually
Debayered as given in (5.1):
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Figure 5.3: High-level pipeline of our proposed system for contact-free single-site measure-
ment of MW PTT and subsequent BP estimation using a consumer RGB camera. The
green box denotes our main unique contribution in the form of novel channel separation
algorithms.

R,G,B =


R
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2 + G2

2 )

B

(5.1)

where R are the (nearinfra)red pixels, G1 and G2 are the green pixels and B are the blue
pixels in a standard half green, one quarter red and one quarter blue Bayer mosaic pattern
shown in Figure 5.4. Doing this lowered the resolution of the final frames (due to halving
of the green pixels) to 540 x 720 pixels.

Figure 5.4: The Bayer filter design [182] commonly used by the vast majority of consumer
RGB cameras. Distribution of pixels is standard, the order in which they appear is specific
to camera or manufacturer.

The sequence of frames was first globally spatially averaged (taking all pixels, since only
skin is present in each frame) in order to obtain three temporal RGB traces from the image
pixels. These traces were then zero-phase filtered with a 2nd order Butterworth band-pass
filter with cutoff frequencies of [0.5, 6.0] Hz. This removed low-frequency baseline wander-
ing and eliminated high-frequency noise. Finally we normalized our signals amplitude to
a constant range of [−1, 1], as PPG amplitude in absolute sense has an arbitrary unit (no
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unit) – only relative changes in a certain time period are informative [183]. At this point
we obtained relatively clean traces with obvious cardiac pulsatility, as seen in Fig. 5.5.

Figure 5.5: An example of all three rPPG traces after the preprocessing pipeline. Vertical
dashed lines are the steepest systolic rise reference points. Zoomed frame highlights the
subtle PTT between two cycles.

Methods used in this processing pipeline were universally applied to all signals, as they
were carefully designed to not influence the waveforms in any way that would distort the
relationship under investigation, especially the PTTs in the form of phase delays. More
specifically, both the amplitude normalization and the zero-phase filtering were chosen
specifically to be generally applicable and to not influence the temporal position of the
systolic peak or the steepest systolic rise point, regardless of the subject.

5.2.2 Pulse Transit Time Measurement

In order to measure the PTT, we opted to use a reference-point method, meaning we used
a single robustly detectable stable point per cardiac cycle, between which we measure PTT
in different waveforms. Specifically we chose the systolic rise, as it is more apparent even
in noisy signals, while systolic peaks are sometimes difficult to precisely determine even
for state-of-the-art peak detection algorithms [184]. Stability is important in this case
because even a slight temporal missdetection of a few samples can represent a large part
of the very short PTT. We detected these reference points by using the derivative method,
taking the more clearly-expressed peaks in the first derivative. As precision and stability of
these reference points is vital, we cross-checked our detections with state-of-the-art systolic
rise/peak detection algorithms proposed by Elgendi et al. and Han et al. [185], [186],
which were specifically developed to tackle challenging conditions and cardiac anomalies
respectfully. Since we ensured our signals were as clean as possible, by both stabilizing the
measurement site, as well as using aforementioned preprocessing pipeline, all algorithms
detected the same locations of reference points. Detected example reference points can
again be seen in Fig. 5.5, represented by the star markers and their temporal locations
marked by the vertical dashed lines.

At this point of the pipeline, an initial observation of the PTTs can be made by looking
at the steepest points locations in each channel, and then computing the difference between
these. To do this early estimation, we first took the green channel and its corresponding
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steepest point detections as the reference, because green has been both historically and
empirically (from our observations) identified – and also widely accepted in the field – as
the trace with the most expressed and stable pulsatility. We then checked a very narrow
area before and after these reference points by defining a short threshold of 20 samples or
80 ms in each direction, and searching for the steepest point detections in the other two
traces (red and blue). If such points were found within the defined threshold, we computed
the temporal difference (PTT), otherwise we ignored the cycle.

Looking at the waveforms obtained after the preprocessing pipeline, we came to two
important initial observations. First, the waveforms were relatively clean and stable in
NIR and green, while the blue often expressed very shallow and noisy pulsatility with low
SNR. Second, the PTTs were extremely short, lasting just a sample or two, which is less
than expected and reported in literature [179]. Given the former, while also knowing that
blue wavelengths have the shallowest penetration mostly reaching the upper less blood-
perfused epidermis, and concerns expressed in related work about lower wavelengths [104],
we decided to simply remove the blue channel from further analysis, since it was too
unstable. Following this, the PTT for one recording was computed as the average PTT
between NIR and green reference points in the whole 30-second recording with a single
reference ground-truth BP measurement.

Regarding the unobservable PTTs, this was in fact not entirely unexpected, due to
the problematic inter-channel influence highlighted several times, which was only partially
resolved at the hardware level by using the narrow-band triple band-pass filter.

5.2.3 Channel Separation

We devised several algorithmic approaches to resolve the persistent problem of cross-
channel influence and allow for precise measurement of physiologically informative PTT [187].
In general we can assume, as seen in Figure 5.6, that each color trace obtained from an
RGB image sensor is a combination of the actual response in the relevant wavelength as
well as undesired response in the other wavelengths, especially when the IR-block filter is
removed from the camera, as this unlocks the response around 850 nm. Our aim is thus
to nullify this spectral band overlap and obtain clean traces from each spectral band of
interest.

5.2.3.1 Blind Source Separation Methods (BSS)

A commonly used method for blind source separation of linear mixtures are PCA and
ICA [45]. These are data-driven black-box methods and do not use any underlying un-
derstanding or models for the separation of channels. PCA requires the variation in the
amplitude of the components to be sufficiently different to determine the eigenvector direc-
tions of demixing matrix, while ICA assumes that the sources are statistically independent
and non-Gaussian [45]. As discussed previously, the resulting waveforms after prepro-
cessing remain mixtures of overlapping channels, as those are not very different from one
another in terms of frequency. Subsequently, PCA and ICA can then be used to separate
the overlapping source channels present in the mixture [188].

However, we hypothesize that the above assumptions of PCA and ICA are problematic
with respect to obtaining meaningful phase-delayed channel-separated traces, as such traces
cannot be said to be sufficiently different nor independent. Based on skin physiology and
hemodynamics shown in Figure 2.6 and described in related work [189], we know that the
blood perfusion is interconnected and continuous throughout the cardiovascular system,
including the skin layers, thus influencing one another.
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Figure 5.6: Quantum efficiency of the image sensor of our iDS 3040SE RGB camera.
Superimposed black line shows the triple band-pass filter response, and the colored areas
under the curves represent the ratios of channel mixture.

We investigated both PCA and ICA to confirm or reject our above hypothesis and as
benchmark methods that can intuitively be considered as potential candidate methods to
resolve the channel overlap in contact-free MW monitoring. Given the model we propose
in Equation 5.11, we considered the preprocessed R, G and B traces obtained from the
camera as input and then always assumed we also want three output source components
corresponding to demixed pulsatile color signals.

5.2.3.2 Physics-based Channel Separation

Another intuitive approach to channel separation is to use the information explicitly avail-
able in the quantum efficiency of the camera, which shows the camera-specific representa-
tion of the inter-channel influence and spectral band overlap. In our initial physics-based
approach, we started from Figure 5.6 and first assumed the response of all pixels in the IR
part of the spectrum around 850 nm to be equal. Moreover, we also truncated the very
minor response of the IR channel in other wavelengths to zero. This allows us to write the
trace equations as follows:

R = r

G = g + x · b+ r

B = b+ y · g + r

(5.2)

where R, G and B are the red, green and blue values produced by the camera, and r,
g and b are the corresponding channel-separated red, green and blue values. Parameters
x and y describe the ratio of the corresponding color present in a mixture that must
therefore be determined. Using areas under the quantum efficiency response curves marked
in Figure 5.6, we can compute the two ratios as:
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x =
Sg1

Sb1

in [450, 500] nm

y =
Sb2

Sg2

in [520, 570] nm

(5.3)

where Sg1 and Sb1 are the areas under the curve in the blue band of the filter, while Sb2

and Sg2 are the areas under the curve in the green band of the filter. This essentially tells
us the amount of one color present in the other one, where the unwanted “incorrect” color
is the numerator and the dominant “true” color is the denominator, as shown in Figure 5.6.
For our specific camera and image sensor we obtained x = 0.61 and y = 0.13.

Once x and y are computed via definite integration of the curves in Figure 5.6 bound
by the filter bands, we can follow 5.2 to express channel-separated r, g and b traces as
follows:

r = R

g = G−R− x · b
b = B −R− y · g

(5.4)

With some expression manipulation we can express the channel-separated traces as
follows. First we express b by inserting g:

b = B −R− y · (G−R− x · b)
b = B −R− y ·G+ y ·R+ x · y · b

b =
B −R− y · (G−R)

1− x · y

b =
1

1− x · y
· (B −R− y · (G−R))

(5.5)

Inserting this back into g gives us:

g = G−R− x · b

g = G−R− x · B −R− y · (G−R)

1− x · y

g =
G−R− x · (B −R)

1− x · y

g =
1

1− x · y
· (G−R− x · (B −R))

(5.6)

where all the variables are known and can be obtained from the system. The leading
factor 1

1−x·y is a camera-specific constant that only influences the amplitude, which was
normalized, so we can omit it, giving us the final forms as:

r = R

g = G−R− x · (B −R)

b = B −R− y · (G−R)

(5.7)

Refined method. In the description above, we made simplifications by truncating the
low response of red pixels in other parts of the spectrum to zero and assumed equal response
of all pixels in the NIR part of the spectrum around 850 nm. In the next step we refined the
physics-based method by removing these simplifications. This refined method supersedes
the previous simplified version entirely, as it is a better representation of ground truth.
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However, both are included in subsequent results to show evolution of the work, which
started with the simplified method [178] and continued with the refined version. To refine
the method, we introduced additional parameters describing the channel overlap in the
initial equations, which are modified as follows:

R = r + i · g + j · b
G = w · r + g + x · b
B = q · r + y · g + b

(5.8)

where R, G and B are again the values obtained from the sensor, r, g and b are the
corresponding channel-separated red, green and blue values, and i, j, w, x, q and y are
the coefficients describing the ratio of the corresponding color present in the mixture. This
system can be represented in matrix form as:

RG
B

 =

1 i j
w 1 x
q y 1

rg
b

 (5.9)

representing the system d = W · x, where d is the data vector of our measured values, W
is the weights matrix of our coefficients and x is the vector of our channel-separated values
of interest. We solved this system using sympy library and obtained the following results:

r =
−B · i · x+B · j +G · i−G · j · y +R · x · y −R

−i · q · x+ i · w + j · q − j · w · y + x · y − 1
=

=
R(1− xy)−G(i− jy)−B(j − ix)

1 + iqx+ jwy − iw − jq − xy

g =
−B · j · w +B · x+G · j · q −G−R · q · x+R · w

−i · q · x+ i · w + j · q − j · w · y + x · y − 1
=

=
G(1− jq)−R(w − qx)−B(x− jw)

1 + iqx+ jwy − iw − jq − xy

b =
B · i · w −B −G · i · q +G · y +R · q −R · w · y

−i · q · x+ i · w + j · q − j · w · y + x · y − 1
=

=
B(1− iw)−G(y − iq)−R(q − wy)

1 + iqx+ jwy − iw − jq − xy

(5.10)

where all the values on the right-hand side of equations are either known or can be com-
puted with the same process of definite integration of the curves in Figure 5.6 as before.
Doing so, we computed i = 0.07, j = 0.06, w = 0.90, x = 0.61, q = 0.98 and y = 0.12.

We show and analyze the waveform effects of this physics-based channel separation in
detail in the following Chapter. We focused especially on the analysis of PTT before and
after this procedure and also on its correlation with BP, which is of vital importance for
our end goal of explicit BP estimation from MW single-site PTT.

Such a method is fully dependant on precise quantum efficiency and spectrum informa-
tion, which are unique for each image sensor and light source. Our aim was to generalize
this method and make it fully data-driven in the sense that we propose an algorithm that
can be used without the image sensor quantum efficiency and light source specifics known
in advance.
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5.2.3.3 Generalized Channel Separation

In the previous approach, we have read the information about the spectral overlap from
the quantum efficiency in Figure 5.6. However, more generally we can assume that each
color channel is a combination of all other channels. Thus the RGB traces obtained from
a camera can generally be written as given in Equation 5.11

R = a1 · r + a2 · g + a3 · b
G = b1 · r + b2 · g + b3 · b
B = c1 · r + c2 · g + c3 · b

(5.11)

where R,G,B are the original channel-overlapped traces obtained from the camera, r, g, b
are the actual pure channel-separated responses, and an, bn and cn are the coefficients
representing the ratios of each response present in the overlap.

Understanding the underlying physiology of the skin tissue and pulse wave propagation
properties described previously, we can make some assumptions that simplify the general
system in Equation 5.11. As mentioned before, the blue trace can be discarded, since it
exhibits relatively noisy signal with low SNR, as well as makes little physiological sense
due to its low penetration depth and lack of perfusion in the epidermis [190]. Furthermore,
we always consider the coefficient corresponding to the color we are trying to separate
(e.g., a1 for red and b2 for green in Eq. (5.11)) to be 1. Finally, the remaining coefficients
in Equation 5.11 can be constrained to the range [-1, 0], as we are always subtracting
undesired response from the mixture, never adding it. Considering these constraints, our
general model simplifies to the one in Equation 5.12

R = r + a2 · g + a3 · b
G = b1 · r + g + b3 · b

(5.12)

where the remaining variables represent the same quantities as reported in Equation 5.11.
These simplifications notably decrease the search space, but the system remains overdeter-
mined and challenging to solve [191]. We decided to investigate genetic algorithms (GA) to
find approximate solutions with respect to two different fitness functions and also compare
against BSS methods that are common in literature [192].

Genetic Algorithm using BP (GA-BP). Our goal was to measure the PTT in order
to ultimately train a regressor for BP estimation. It only makes sense to use such a
regression model as a fitness function if the importance of the PTT to the model is high,
meaning it can serve as a meaningful physiological feature for BP estimation.

We thus initially checked the average feature importances of the trained Random Forest
regression models using the PTTs obtained after our initial physics-based channel separa-
tion. We ran a LOSO experiment with personalization, meaning that one instance of rest
and one instance of activity of the left out subject were added to the training data. This
simulates model calibration to a specific subject, which is widely accepted as a vital step
to improve BP prediction performance [108]. We checked the average importance of the
PTT for SBP and DBP estimation as per mean decrease in impurity (MDI), and found
that the PTT is extremely dominant compared to other features, as shown in Figure 5.7.

This shows that the model relies heavily on the PTT and makes sense to use as a fitness
function to evaluate the quality of the PTT, or rather the channel separation algorithm that
facilitates its computation. In addition to the PTT, some commonly-used morphological
and demographic features were added to each instance for the training of the Random
Forest regressor. These are listed in Table 5.1 and explained in Figure 5.8.
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Figure 5.7: Comparison of average feature importances obtained from the Random Forest
regressors for BP prediction. Green box denotes the most important feature, while orange
and red boxes denote features with low to very-low importance.

Table 5.1: The set of morphological and demographic features that were used together
with PTT in training a BP regression model.

Group Feat. Description

Morphological

Tc Average cycle length
Ts Average systolic rise time
Td Average diastolic fall time
AUCc Average AUC of the whole cycle
AUCs Average AUC of the systolic rise
AUCd Average AUC of the diastolic fall

Demographic Age Subject age
Sex Subject sex

Figure 5.8: Visual representation of the morphological PPG features per cycle.

After PTT importance was confirmed, we framed the problem described in Equa-
tion 5.12 as an optimization problem, where one determines the optimal value of coef-
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ficients with respect to a fitness function. When choosing the fitness function, we initially
decided to use the average MAE of the accompanying trained Random Forest regressors
predicting SBP and DBP. The regressor was evaluated each time in a 5-fold CV experiment
without shuffling (instances of the same subject stayed together to avoid overfitting within
the CV), using the PTTs computed with a given candidate vector.

Once the MAE of a regression model estimating BP was chosen as the fitness function,
we attempted to find solutions to our optimization problem by using a genetic algorithm
that trained a regression model for the computation of the fitness function of each candi-
date vector. For our case, we defined an initial population of n = 100 vectors containing
random values (within previously described constraints) representing the channel separa-
tion coefficients we were optimizing. We optimized them through g = 200 generations.
Tournament selection was used for creating the next generation offspring due to its sim-
plicity and effectiveness in maintaining genetic diversity. We set the tournament size to
k = 5, selecting k subjects at random for each tournament. Fitness of each subject in the
tournament was then computed and the winner with the best fitness function was chosen
for crossover until we had a sufficient number of selected parents. We used arithmetic
crossover, which linearly combines two parent vectors to produce two new offspring using a
weighted average of corresponding elements from the two parent vectors. We set the weight
of each parent to α = 0.5, making them both contribute equally to the computation of the
offspring, which was done as given in Equation 5.13

oi = α · ai + (1− α) · bi, (5.13)

where oi is the i-th element of the offspring, α is the parameter influencing the contribution
of each parent, and ai, bi are the i-th elements of each parent.

We also used standard random mutation, where we randomly added or subtracted a
small random value in the range [0.01, 0.1] to a small subset of subjects. Such a GA
approach is expected to converge towards channel-separation coefficients that minimize
the BP estimation error (which is our fitness function and our ultimate goal), but does
not ensure convergence to a global optimum. It also requires training a regression model
with current PTTs each time a candidate vector is evaluated during the execution of the
GA. This is why we decided to use a Random Forest regression model, as it can be trained
quite quickly, while historically showing good and robust performance on a wide range of
problems [193]. The pseudocode is given in Algorithm 5.1.

Generalized Genetic Algorithm using Phase Delay (GA-PD). The previously
described algorithm has a major drawback in that it requires ground-truth BP measure-
ments for the regression models training, which are in general not readily available. The
evaluations are also computationally expensive, especially if the chosen regression model
is complex (e.g., Support Vector Machine with polynomial kernel). We wanted to fur-
ther generalize to achieve a solely input-data-driven approach, meaning a change in fitness
function was required.

As the initial problem was rooted in the fact that PTTs are near-impossible to measure
due to the mixture of traces, and we wanted to separate them as much as possible, an
intuitive approach is to thus consider maximizing the phase delay between the channel-
separated traces, assuming that this preserves the per-cycle PTT information in the se-
quence. This can be alternatively defined as minimization of the cross-correlation between
the traces (up to a certain maximal lag threshold) [193].

The cross-correlation between signals x and y at different lags (phase delays) was
computed using the MATLAB implementation in the function xcorr(x, y). This returns
correlations between the two signals at different possible delays or lags, up to a pre-defined
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Algorithm 5.1: GA-BP using Random Forest regressor as fitness

Input: random population n× [1, a2, a3, b1, 1, b3]
minimize MAE of regressors:

for each vector:
RGBi = channel_sep(RGB, [1, a2, a3, b1, 1, b3]i)
PTTi = compute_PTT (Gi, Ri)
morphi = compute_morph_feats(Gi)
feats = merge_feats(PTTi,morphi, age, sex)
MAEs = train_test_model(feats,BPs)
fitness = avg(MAESBP ,MAEDBP )

selected_vectors = tournament_selection(fitness)
offspring = arithmetic_cross(selected_vectors)
mutate(offspringsubset)

repeat g times
Output: best coefficients [1, a2, a3, b1, 1, b3]best

threshold. It makes sense to set the threshold at average cycle length, as cross-correlation
for periodic repetitive signals decreases up to a half cycle length and then begins to increase
again, since the signals become re-aligned. Moreover, the delay we are interested in is
physiological and should be notably less than one cycle. The phase delay at which the
correlation is the lowest is then taken. Algorithm 5.1 thus gets modified as given in 5.2.

Algorithm 5.2: GA-PD using phase delay/xcorr as fitness

Input: random population n× [1, a2, a3, b1, 1, b3]
minimize xcorr:

for each vector:
RGBi = channel_sep(RGB, [1, a2, a3, b1, 1, b3]i)
fitness = min(xcorr(Gi, Ri, lags = avg_cycle_len))

selected_vectors = tournament_selection(fitness)
offspring = arithmetic_cross(selected_vectors)
mutate(offspringsubset)

repeat g times
Output: best coefficients [1, a2, a3, b1, 1, b3]best

The proposed GA-PD Algorithm 5.2 substantially and importantly lessens the input
requirements as it does not require the ground-truth BP to train a regression model for the
fitness function computation each time. It also omits the potentially high time complexity
of the specific regression model training. For a simple model, like Random Forest, the
time complexity is O(n · log(n)) [194], but this can increase dramatically for more complex
models like SVM, reaching O(n2) or even O(n3) depending on the kernel used [195].

5.2.4 Experimental Design and Evaluation

Effects, performance and comparison between different proposed channel separation meth-
ods is reported in detail in the following chapter. Generally we expected the algorithms
to converge to similar coefficient values for channel separation as those that were obtained
explicitly from the quantum efficiency of our camera using the physics-based approach.
Naturally the effects of the channel separation must also make sense in the scale of the ob-
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tained PTTs (milliseconds) and importantly in the decreased MAEs of the BP estimation
model.

To estimate the latter, we again devised a robust LOSO evaluation experiment with
and without personalization. This experiment was chosen as it avoids overfitting or rather
its personalization can be fully and clearly controlled. In the case without personalization,
the model was trained on all subjects except the one it was tested on. As we mentioned
previously, it was shown in related work that it is infeasible to train a generalized BP pre-
diction model for general population, meaning that calibration/personalization should be
considered to substantially improve the performance [108]. We thus investigated person-
alization by adding two instances of the left-out subject (one with elevated BP, one with
resting BP) to the training data to personalize the model in each iteration of the LOSO
experiment.

We compared MAEs computed in these two final experiments when using the channel
separation coefficients from the physics-based approach, GA-BP and GA-PD, against stan-
dard BSS methods of PCA and ICA, and also against the baseline of no channel separation.
Our results are reported in the next chapter, followed by discussion and interpretation of
the obtained results.

5.3 Results

The optical monitoring experiments were split into two parts – PPG reconstruction and
subsequent PTT measurement, and BP estimation with a regression model. Since we
conducted experiments on a dataset collected by ourselves and no other work dealt with
this specific methodology, let alone published a dataset on it, we had no ground truth
for the PTT. This means that the first part of results presents the exploratory analysis
of PTT. The observations are compared with hypotheses based on our understanding of
underlying physiology and literature. For the BP estimation part we compared with the
ground-truth clinical digital sphygmomanometer and placed the obtained results in the
context of standards for clinical BP estimation devices.

5.3.1 Channel Separation Coefficients

For our specific experimental setup, the physics-based channel separation approach can
be considered the ground truth in terms of channel separation coefficients, since the lat-
ter are computed directly using camera-specific quantum efficiency of the image sensor.
Specifically, the most precise computation was done with the refined physics-based method
described in Section 5.2.3.2. It thus makes sense to compare the channel separation coef-
ficients obtained with the GA-based data-driven methods to those of the refined physics-
based approach, to see if they converge to the same values. These are reported in Table 5.2
for all methods except PCA and ICA, which do not return coefficients but the channel-
separated traces directly. We can observe close matches and very small differences between
all considered methods, indicating convergence to the same values.

The channel separation coefficients of the original physics-based approach used a couple
of simplifications, such as the response of the NIR channel in other wavelengths being
truncated to zero, and the response of all channels in the NIR band (800–900 nm) being
equalized. However, the refined variant, alongside the GA-BP and GA-PD algorithms,
did not use these assumptions and thus all returned non-zero values for a2 and a3 as seen
in Table 5.2. The coefficients obtained with the GA-BP and GA-PD algorithms were
similar to those obtained with the original simplified physics-based approach, with a slight
discrepancy – b1 and b3 differed by 0.06 and 0.045 on average, respectively, which is a
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Table 5.2: Comparison of the channel separation coefficients obtained using the physics
approach, the GA and the GA-PD. a1 and b2 were constant due to the constraints we used.

Coefficient Physics (orig.) Physics (refined) GA-BP GA-PD Max diff. ∆
a1(constant) 1.0 1.0 1.0 1.0 -

a2 0.0 0.07 0.07 0.04 0.07
a3 0.0 0.06 0.03 0.06 0.06
b1 -1.0 -0.90 -0.95 -0.93 -0.10

b2(constant) 1.0 1.0 1.0 1.0 -
b3 -0.61 -0.61 -0.64 -0.67 -0.06

5.3% overall difference. However, comparing with the refined physics-based approach, we
see these discrepancies decrease further, as b1 and b3 differ by only 0.04 and 0.045 on
average, which is now a 4.3% difference. Furthermore, comparing values of a2 and a3 to
the refined physics-based approach now shows minuscule differences of 0.015 on average,
which is a substantial improvement compared to previous differences. This indicates that
the GA approaches converged closer to the real ground truth represented by the refined
physics-based approach.

5.3.2 PTT Analysis

We analyzed the PTTs between different color channel traces, as computed from the cor-
responding steepest systolic reference points defined in the previous section. Initially,
before channel separation, the PTTs were miniscule and sometimes negative, indicating
overlapping spectral response. As a consequence, the computed PTTs initially exhibited
little-to-no variation, making them non-informative and physiologically meaningless. Af-
ter the channel separation step, the PTTs became much more distinct and varied, while
also appearing in the chronological order expected based on physiological background and
related work [56], [179]. It is important to keep in mind that a single PTT value was com-
puted for each signal segment as the average of per-cycle PTTs, as we had only a single
ground-truth BP value corresponding to each recording. The average changes in PTTs
before channel separation and after each proposed method are reported in Table 5.3.

Table 5.3: Overview of average PTT changes when using different channel separation
methods.

Ch. Sep. Method Avg. PTT ∆ from baseline % in expected order
Baseline (no separation) 2.7 ms - 61.4%
Physics-based (orig.) 46.9 ms +42.2 ms 98.7%
Physics-based (refined) 47.4 ms +44.7 ms 98.9%
GA-BP 44.8 ms +40.1 ms 97.3%
GA-PD 49.2 ms +44.5 ms 99.1%

We can observe that all the channel separation methods achieve similar average PTTs
and increases compared to the baseline. Our initial hypothesis based on literature [73]
and physiological background described in Section 2.2.3 was that the cardiac wave from
the deeper vessels in the NIR range should be observed first, while those in the shallower
layers like papillary dermis should be delayed. We defined our observed time as PTT =
timestamp_steepestgreen − timestamp_steepestNIR, so we expected them to be positive,
if in agreement with the order hypothesis.

The averages reported in Table 5.3 indicate that the channel separation algorithms
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separate the color traces in a way that substantially increases PTT, however, it is of
utmost importance when doing so to not lose the physiological information. Given our
understanding of relationship between PWV, PTT and BP, we also expected the PTTs
measured after activity scenario to be shorter compared to the rest scenario, as BP and
SVR are higher, increasing the PWV and decreasing the PTT.

We checked the channel separation effects in more detail by creating boxplots of all
per-cycle PTTs for each subject in both scenarios. These are shown for each method in
Figure 5.9, confirming the average lower PTTs after activity while also showing a vast
majority of individual measurements to be positive and in the expected order. In contrast,
using no channel separation (baseline) yields low PTTs centered around 0, while also
exhibiting much smaller differences between the rest and activity scenario.

Figure 5.9: Boxplots of per-subject PTTs after different channel separation methods. The
baseline without channel separation in subplot a) exhibits low and often negative PTTs. We
only show a single plot for physics-based channel separation (refined version) approach due
to high similarity between all non-baseline plots resulting from different channel separation
methods.

Positive effects can also be observed on the waveforms themselves, as shown in Fig-
ure 5.10. We show an example only for the original physics-based channel separation, as
the effects are quite similar with all the methods.

These initial results indicate channel separation effects in line with physiology and
literature-based expectations, however, this in itself does not ensure the methods being
useful, since the relation between PTTs and physiological changes may still lose important
nuances.
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Figure 5.10: Visual presentation of channel separation effects on example rPPG waveforms
from NIR and green part of the spectrum.

5.3.3 PTT and BP Correlation

To ensure that the effects of channel separation preserve the physiological information
relating to PWV, SVR and ultimately BP, we investigated the correlations between the
measured PTTs and corresponding ground-truth BP.

Initially we checked the correlations across our whole dataset, taking average PTTs
from recordings of all subjects and both scenarios and their corresponding measured BP
values. This is shown in Figure 5.11.

We can initially observe good separation between the blue and red group, corresponding
to the rest and activity scenario. The blue group on average exhibits longer PTTs and
lower BP values, while the red group exhibits the opposite characteristics – shorter PTTs
and higher BP values. This holds for both SBP and DBP, although the variations in
DBP are smaller compared to SBP. This is a known fact in medical literature, as DBP is
generally more stable and changes less [196].

Additionally we can observe good correlation between PTT and BP, with Pearson’s
correlation coefficients (R) of −0.51 (p < 0.001) and −0.63 (p < 0.001) for DBP and SBP,
respectively. P-values were computed using a t-test in which we tested the null hypothesis
that there is no relationship between the observed phenomena.

While the above results give a reasonable overview of our whole dataset, we also inves-
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Figure 5.11: Correlations between average PTTs of all recordings and the ground-truth
SBP and DBP values.

tigated the per-subject correlations. The latter have substantially lower statistical power
compared to correlations on a larger sample size, but still give an intuitive overview of
whether the correlation between MW PTT and BP holds generally, or if it is subject-
dependent. These are shown in Figure 5.12, in which we can observe and confirm that the
correlation also holds for each subject individually.

We have already observed previously in Figure 5.7 that a Random Forest regression
model trained with such post-channel-separation MW PTT (alongside other demographic
and morphological features) for SBP and DBP prediction assigns the highest feature im-
portance to PTT. Detailed correlation analysis confirms the relationship between the two
variables, further confirming the validity of the approach.
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5.3.4 BP Estimation

As described previously, we conducted a LOSO experiment to evaluate our regression model
when using PTTs obtained from different channel separation algorithms.

It is a point of contention in literature whether a general BP estimation model is possible
to train [108]. General relationship between PWV, PTT and BP holds true universally,
however, as we saw in Chapter 2, many factors can contribute to changes in PWV and PTT.
Based on our experience and related work [108], we decided to compare the performance of
a general model to that of a personalized model, which uses some instances of the left-out
subject to calibrate. This type of calibration by adding some instances of the test subject
makes the evaluation optimistic compared to LOSO, but it is deliberate and based on
physiological grounds.

The average MAEs for both types of experiments are reported in Table 5.4.

Table 5.4: Comparison of the final MAEs in mmHg for SBP and DBP estimation when
using different channel separation algorithms. We compare against the baseline of using no
channel separation. We report results for experiments with and without personalization in
the final LOSO experiment.

General regressor [mmHg] Personalized regressor [mmHg]
Algorithm MAESBP MAEDBP MAEAVG MAESBP MAEDBP MAEAVG

Baseline 11.31±1.50 9.02±1.60 10.17±1.55 8.64±1.62 6.12±1.48 7.38±1.55
PCA 10.22±1.31 8.91±1.19 9.57±1.25 8.01±1.25 5.99±1.35 7.00±1.30
ICA 9.81±1.20 6.97±1.10 8.39±1.15 6.83±1.10 5.75±1.30 6.29±1.20

Physics (or.) 7.72±1.00 5.46±0.98 6.59±0.99 4.78±0.96 3.89±0.97 4.34±0.97
Physics (ref.) 6.94±1.02 5.03±0.96 6.06±1.01 4.00±0.94 2.88±0.99 3.39±1.00

GA-BP 6.89±0.95 4.91±0.98 5.90±0.97 3.48±1.02 2.61±0.90 3.05±0.96
GA-PD 7.02±1.03 4.97±0.97 6.00±1.00 4.01±0.98 3.03±0.96 3.52±0.97

The errors indicate that a personalized regressor outperforms the general regressor on
average by 2.53 mmHg. The differences are relatively consistent between different chan-
nel separation methods. To more robustly analyze its performance and show differences
between a general and personalized model, we created a Bland-Altman plot, which is a
common visual representation of means and variance of errors, alongside limits of agree-
ment between actual and predicted values [197]. It is shown for the best-performing GA-BP
algorithm in Figure 5.13.

When comparing the Bland-Altman plots of the best-performing algorithm for general
(first column) and personalized (second column) models, we can observe similar distri-
butions of errors with similar standard deviations for different means. Vast majority of
errors fall within two standard deviations from the mean. The means between the general
and personal model differ by 3.41 mmHg for SBP and 2.3 mmHg for DBP, whereas the
standard deviations for the general model are ±0.95 mmHg and ±0.98 mmHg for SBP
and DBP. For a personalized model, the standard deviations are similar at ±1.02 mmHg
and ±0.90 mmHg. Considering this distribution of errors, and also looking at the Bland-
Altman plots, we can see that the overlap between the general and personalized model is
very small for SBP and slightly larger for DBP.

Another observation is that differences in errors are quite small between the both
physics-based, GA-BP and GA-PD methods, while all of these differ more substantially
from the baseline, PCA and ICA methods. The former group generally outperforms the
latter, although when considering standard deviations, ICA becomes closer. Additionally,
when no channel separation is used (baseline algorithm), the standard deviations are sub-
stantially larger compared to all other cases, indicating that the variance of the errors is
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Figure 5.13: Bland-Altman plots after GA-BP channel separation for systolic (first row)
and diastolic (second row) BP. Columns represent training a general or personalized re-
gression model. Dashed lines are limits of agreement, defined as 1.96 times the standard
deviation.

the largest in this case, and the mean values are least reliable.
Furthermore, we can observe that the distribution of errors is relatively equal across

different values of SBP and DBP, observing no trends that would indicate a substantial
increase of errors with lower or higher BP values.

In the next chapter, we will revisit the results reported in the current chapter, discuss
and interpret their implications, practical feasibility, and place them in the context of
standards where applicable. We will also accept or reject the hypotheses put forth in
Chapter 3 in accordance with the obtained results.
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Chapter 6

Discussion

The results reported in the previous chapter support several findings for both RF-based
and optical monitoring of physiological parameters. We will discuss them individually
per-topic, focusing especially on the implications for practical feasibility and potential in
resolving challenges highlighted in the early chapters of this dissertation.

6.1 RF-based Classification of Hemodynamic Scenarios

We previously mentioned the main advantages of RF-based monitoring over optical, namely
privacy preservation and potential for sleep monitoring due to no direct exposure and am-
bient lighting requirements. Apnea detection with a more comfortable method is especially
valuable due to it being a dangerous condition that is not often monitored with conven-
tional methods, as those are very obtrusive and difficult for the user (e.g., sleep laboratory
or mask).

6.1.1 Interpretation of Results

Our results indicate that detection of complex hemodynamic and cardio-respiratory states,
such as Apnea and Valsalva, which influence several physiological parameters at once, is
feasible with a neural network achieving high accuracy of 88% using gold-standard contact
sensor inputs. More importantly, this performance degrades only by 4-5% when using
contact-free radar inputs instead of traditional contact sensors, showing that such detection
remains accurate even when only radar is used. The performance degradation mostly
occurs with similar scenarios, which are most often misclassified (tilting table and resting),
while Valsalva and Apnea consistently maintain high accuracy and robust classification
performance across different input modalities. We showed that results when using contact
input modality are statistically significantly superior to those of radar input modality,
which is expected, as both richer and more precise information is available in such sensors,
such as ECG. Additionally, we saw that when fusion of both input modalities is used,
there is no statistically significant difference between the performance. Again, this is not
unexpected, since radar modality does not contribute additional information, meaning the
performance stays at the level of contact input modality.

Additionally we showed that using longer signal segments as inputs statistically signifi-
cantly improves performance by 15–20%. As explained earlier, this is likely due to a longer
window better capturing the periodic nature of cardio-respiratory signals, thus offering
a better representation of the physiological phenomena. This could also be a reason for
slightly superior performance of frequency input data type, as the FFT makes more sense
on more periodic signal segments. Moreover, we observed a slightly superior performance
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of the fully-connected Dense network with frequency data representation, while 1D CNN
worked best with temporal inputs. This could be interpreted as the fully-connected net-
work being more suited for (frequency) feature-space representation of inputs, while CNN
is better suited for raw temporal representation, allowing it to derive features on its own.
However, the differences between different input data types proved to not be statistically
significant, so this interpretation should be reconsidered.

Finally, the fully-connected Dense network overall slightly outperformed the CNN.
More importantly, the training of such a network is less computationally expensive, mean-
ing that even at similar performance, it is worth using.

When interpreting results of ANNs, special consideration must be given to generaliza-
tion capabilities and overfitting, since such models have large expressive power. We opted
for a tradeoff between computational complexity and robustness in carefully designing a
5-fold CV experiment that largely avoided overfitting. We also observed consistent perfor-
mance across all folds, showing that classification performance is consistent regardless of
the specific data split. While we withheld the test set every time, there is still the danger
of generally overfitting to the dataset. The performance should thus be additionally vali-
dated either on additional datasets or better still in a real-world scenario. Only then can
practical feasibility and generalization be completely robustly validated.

6.1.2 Significance and Value

Such a system could be implemented in a variety of scenarios, being beneficial to both
average subjects as well as specific groups. We already mentioned its advantages of con-
tinuous non-invasive sleep monitoring, which greatly lessens the burdens of traditional
highly-obtrusive setups. However, there are groups of people for which traditional moni-
toring is not only difficult, but completely infeasible, for instance people with PIMD [198],
[199] or people with severe skin conditions (allergies, burns, etc.). A radar setup could be
mounted statically in a configuration around the bed or other monitoring site, so that it
would monitor cardio-respiratory movement in each direction, as a person can obviously
turn even during sleep. Due to the aforementioned advantages of radar-based sleep moni-
toring, many manufacturers recently developed devices that facilitate it, such as Halo Rise
from Amazon [142], [200] and One+ from Sleepiz [201].

The use cases are not limited only to medical scenarios, as for instance respiration
is important in many fields. A non-medical example could be monitoring of respiratory
patterns in musicians studying instruments that require specific skills and pulmonary ma-
nipulation, such as flute or trumpet. People studying such instruments are trained from
a young age in regards to inhalation and exhalation patterns, which could be more easily
traced and validated with a non-invasive radar system. Such a system could again be used
both by teachers in schools, as well as practitioners in their home environment, where
direct feedback from a teacher is not available.

Another popular use case could be meditation and mindfulness techniques often prac-
ticed by people to reduce stress and increase general well-being. These again heavily lean on
correct respiratory patterns, which can be difficult to track and evaluate by practitioners,
since it distracts them and thus defeats the whole purpose of such exercises.

6.1.3 Limitations

While the use cases are plentiful and performance on our dataset was good, there are
some limitations that must be considered before real-world implementation. First, as
briefly highlighted earlier, the whole evaluation was done on a single dataset. While we
attempted to ensure robustness, validation should be conducted across different datasets.
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Moreover, this dataset was closely resembling sleep monitoring, during which there are
a lot less movement artefacts present. Movement artefacts are also not very problematic
for potential applications in meditation and musician training, however, in many other
everyday scenarios (e.g., exercise), a lot more movement noise is expected to be present.

Additionally, we relied on some derived signals as our inputs, which were computed in
a black-box manner by the dataset authors. While we did interpret them and postulated
them to be relatively simple to derive from the raw signals, this still requires both additional
verification as well as computational efforts. Further generalization should be investigated
in the sense of only using raw signal inputs, without their derivatives.

Finally, the proposed ANN approaches are black-box in nature, offering no inter-
pretability or explainability. This could be partially alleviated using methods for model
explainability, although these are largely designed in the context of 2D inputs, such as im-
ages. Still, a performance comparison with traditional ML approaches using hand-crafted
features or applying explainability methods to existing black-box models could be valuable.

6.2 Optical Measurement of Multi-wavelength PTT and BP
Estimation

When analyzing related work in earlier chapters, we highlighted the advantages of each
existing approach, while also mentioning their disadvantages. Our proposed novel single-
site MW PTT measurement and BP estimation approach merged the ideas of individual
existing approaches with the aim of alleviating their disadvantages, while keeping their
specific advantages. We showed that low errors can be obtained with such an approach,
offering an attractive alternative to perform one of the most important and commonly
performed physiological measurements.

6.2.1 Interpretation of Results

The reported results showed that when MW PTT is estimated remotely with an RGB
camera, channel separation is a vital step. When using the quantum efficiency information
of a specific image sensor, we can successfully isolate color channels of each spectral band
of interest, increasing the measured PTT on average by 42 ms. This in turn also makes
the steepest systolic reference points appear in the expected order. Given visual inspection
of the rPPG waveforms, we saw that original waveforms are nearly identical in terms of
positions of different reference points (steepest systolic point or systolic peak), which makes
sense as they are a mixture of different spectral responses, which already have very subtle
differences in isolation.

While channel separation can be done in various ways, the most robust starting point
is to use the mentioned quantum efficiency information, as this gives precise information
about the amounts of spectral overlap. In this sense it can be considered the ground truth
for the specific image sensor. Comparing our GA algorithms for channel separation with
the physics-based approaches representing the ground truth, we observed very close results
both in terms of obtained channel separation coefficients, as well as BP prediction errors.
We can conclude that both versions of GA converge towards physics-based ground truth,
but do not reach precisely the same values. The channel separation coefficients of both
GA approaches differ from the refined physics-based approach for about the same amount
(difference of 2-3% between GAs), however, the GA-BP approach deviates in a way that
allows for lower BP estimation errors, while GA-PD deviates in a way that allows for more
apparent PTTs.
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Looking at correlations between PTTs obtained with these channel separation ap-
proaches and the ground-truth BP values, we observed a strong correlation between the
two. Importantly, we observed good separation between two groups – those with longer
PTTs and lower BPs in the rest scenario and those with shorter PTTs and higher BPs after
physical activity. This is in line with the physiological understanding reported in Chap-
ter 2. Furthermore, the strong correlations between PTT and both SBP and DBP are
statistically significant, confirming that PTT obtained after channel separation maintains
physiological information and relationship with BP. Finally, we also checked the signifi-
cance of PTTs via feature importances of a Random Forest regressor, which additionally
confirmed its importance for BP estimation. Moreover, its importance was far larger com-
pared to other simple demographic and morphological PPG features, which are often used
in literature for BP estimation from PPG. Such morphological features are generally highly
dependant on precise PPG morphology and subject of discussion in the field in terms of
their general relationship with BP.

Moreover, superior and robust performance of the MW PTTs obtained with our pro-
posed channel separation methods was confirmed in both general and personalized regres-
sion experiments. The former demonstrated higher errors on average, which is expected,
since the model was completely subject-independent. When calibrating the model using
only a few instances of the test subject, the errors decreased by 2-3 mmHg on average. We
observed that the distribution of errors is stable across different BP values and standard
deviations are relatively low at 1 mmHg on average.

There exist a number of standards for clinical BP monitoring devices. The two most
widely used ones are the Association for the Advancement of Medical Instrumentation
(AAMI) standard, which is commonly used in the U.S. for the performance and accuracy
of blood pressure monitors, and the British Hypertension Society (BHS) standard, which
is more common in Europe. Their requirements are as follows:

• AAMI standard: The AAMI standard (specifically the AAMI SP10) requires that
blood pressure monitors should have a mean error within ±5 mmHg and a standard
deviation of < 8 mmHg when compared to a mercury sphygmomanometer.

• BHS standard: The BHS standards provide a grading system (A, B, C, worse)
based on the accuracy of blood pressure monitors. Grades are based on the mean
absolute difference between the predicted value and a mercury sphygmomanometer.
All grades and their requirements are listed in Table 6.1.

Table 6.1: Grades of BP monitoring devices based on the BHS standard.

Grade MAE ≤ 5 mmHg MAE ≤ 10 mmHg MAE ≤ 15 mmHg
A 60% 85% 95%
B 50% 75% 90%
C 40% 65% 85%

worse < 40% < 65% < 85%

Looking at the standards and the reported Bland-Altman plots in the previous chapter,
we can conclude that the calibrated personalized model meets the AAMI SP10 requirements
for both SBP and DBP, while the general model does not, especially for SBP. Furthermore,
in terms of the BHS standard, the personalized model results would be placed in the A
grade, while the general model would be borderline A grade for DBP and C grade for SBP.
It is important to note that the SBP estimation is more difficult and important, since
variation is greater, and SBP is the main early indicator of hypertension.
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Another important consideration is the fact that our ground-truth BP was measured
using a digital sphygmomanometer meeting these same standards (highest grade), which
means that some error is also inherently present in our ground truth. It would be bet-
ter to instead use a mercury-based sphygmomanometer, however, that would require a
professional with experience (a medical worker) in order to obtain reliable measurements.
Going even a step further, the most accurate ground truth would be obtained with an
invasive catheter. However, it is easy to see why these two methods were not feasible in
our experiments, as a trained professional was not available for extensive data collection
and an invasive method is only plausible in a hospital setting. Should we obtain more
precise ground truth, it is not unreasonable to expect our results to improve further, since
PTT is expected to be even better correlated with actual BP than the one obtained with
a digital sphygmomanometer.

6.2.2 Significance and Value

Due to the prevalence of hypertension and other cardiovascular conditions indicated by
elevated BP, the significance of novel measuring methods is paramount. As before, the
contact-free nature of measurement in itself offers important advantages, especially for
sensitive subject groups that we discussed. Furthermore, it does not influence the physi-
ology like a cuff does and potentially decreases the white coat syndrome effects due to its
nature.

Compared to existing contact-free methods which rely on rPPG morphology, the PTT-
based methods are much more robust, since the reconstructed rPPG waveform often loses
detailed characteristics needed for feature computation (e.g., diastolic notch or peak).
Compared to contact-free PTT methods, ours requires only a single measurement site,
such as palm, making it more suited for privacy preservation (no face required) and more
robust (no make up, glasses, hair, etc., which are common on the face).

Practical implementation would be valuable both in home environments and in clinician
offices. An early prototype could consist of an enclosure (e.g., box) in order to isolate the
dedicated light source and avoid interference and also to pre-define the distance between
the camera and the palm. A patient could for example put their hand in such an enclosure
before seeing his doctor, avoiding the necessary intervention of a nurse to place the cuff,
while also obtaining a more relevant measurement (again avoiding the white coat syndrome
and stress). The measurement could be forwarded to the doctor in advance, again saving
time reporting the measured values.

In a home setting, this could potentially be extended for use with more wide-spread
consumer devices, which are already omnipresent, such as webcams, phone cameras and
bathroom mirrors (which can have a dedicated light source). If such measurements would
be made daily, preferably several times, such measurements could be used for telemedicine
and data aggregation across longer time periods, again without the need for wearing cuffs
or other wearables. For such extensions, our proposed GA-PD channel separation approach
would be especially valuable, as it would allow for implementation across different cameras
without the need to calibrate it to a specific image sensor based on its quantum efficiency
and without the need for ground-truth BP measurements to train a regression model in
advance, making wide-spread adoption more feasible.

Such wide-spread home monitoring would be especially valuable for elderly people,
who inevitably face hypertension and are often treated with prescription blood pressure
medications [202].
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6.2.3 Limitations

It should be kept in mind that all results were obtained in a highly-controlled prototype
environment. As before, performance should be further validated on a larger dataset,
ideally with subjects having various cardiovascular conditions. Moreover, the currently
trained regression model is quite small and simple. A more powerful, potentially end-to-
end model could be better suited for practical deployment.

As always, real-world applications also pose many challenges that were avoided via a
controlled environment, namely environmental influence and more movement. The former
could be circumvented with an enclosure as suggested, but the movement could be more
problematic, introducing major artefacts in very subtle waveforms. A practical solution
could be a mechanism for stabilization of the hand (e.g., memory foam within the enclosure)
or further preprocessing dealing with major noise.

6.3 Hypotheses

In Chapter 3, we proposed three hypotheses based on our understanding of physiology and
analysis of literature, which we now revisit:

1. Hypothesis 1: Contact-free sensing can offer comparable performance to traditional
contact approaches in monitoring of complex hemodynamic conditions and vitals
(apnea detection via respiration and blood pressure estimation).

2. Hypothesis 2: Fusion of different sensor and input modalities (contact + contact-
free, temporal + frequency) can achieve superior performance and better robustness
compared to using individual modalities.

3. Hypothesis 3: PTT can be measured between different skin layers leveraging differ-
ent penetration of light using a customized off-the-shelf RGB camera and used as an
informative feature for single-site contact-free BP estimation, achieving established
medical standards for BP estimation in terms of error.

Evaluating them in the context of obtained results, we can come to the following
conclusions:

1. Hypothesis 1: Accepted. We showed in Section 4.3 that using contact-free modal-
ities we can achieve a performance within 5% of traditional contact sensors. Specif-
ically, with radar signals we achieve accuracies 4-5% behind those obtained using
contact signals for classification of five hemodynamic scenarios, including sleep ap-
nea. We additionally demonstrated in Section 5.3 that using an RGB camera we
can obtain (personalized) BP estimation models equalling the contact-PPG-based
BP estimation performance reported in literature. Overall contact-free approaches
were shown to achieve results rivalling traditional contact approaches.

2. Hypothesis 2: Rejected. We found equal performance between contact and fusion
of input signal modalities when classifying five hemodynamic scenarios, as reported
in Section 4.3. The minuscule differences of ≈ 1% were not statistically significant.
Importantly, we initially only hypothesized about the fusion of radar and traditional
contact sensors, as a way to increase performance, and did not yet consider potential
fusion of different contact-free sensors (e.g., radar and camera), as our data was not
suitable. It is plausible that such fusion could increase performance and robustness.
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3. Hypothesis 3: Accepted. We showed in Section 5.3 that with proper algorith-
mic channel separation we can obtain phase-delayed traces from different spectral
bands, which in turn allow for pronounced and meaningful MW PTT measurement
in accordance with literature. We showed that such a MW PTT exhibits the highest
feature importance per mean decrease in impurity for both SBP and DBP. We used
it to train regression models predicting SBP and DBP, which met the standards for
clinical devices in terms of errors, when using personalization.





89

Chapter 7

Conclusions

In the early chapters of this dissertation we identified the need for contact-free physiological
monitoring by highlighting many specific groups of people who would benefit greatly from
such monitoring. Furthermore, advantages of unobtrusive physiological monitoring extend
to the general population, especially in light of the world’s aging population and inevitable
rise of diseases that come with aging [203]. Here, we briefly summarize our findings and
conclusions and propose directions for future work.

7.1 Summary

In our research we specifically focused on two parts of the EM spectrum that allow for
unobtrusive privacy-preserving contact-free monitoring of physiological state, while being
harmless to humans – radio frequency and visible + (near) infrared light. The former (RF-
based) has its advantages in not requiring a light source and having better penetration,
making it feasible for use even with barriers, but requires conspicuous movement to obtain
meaningful information. The latter (optical) offers optical modality with richer information
that allows for monitoring of parameters that are more difficult to observe, but requires a
light source and direct exposure.

7.1.1 RF-based Classification of Hemodynamic Scenarios

We demonstrated that using a radar one can accurately detect major changes in hemody-
namic condition of individuals, which also manifests in changes of the respiratory state.
Complex states like apnea and Valsalva maneuver, where the circulatory system undergoes
a cascade of deviations from normal functioning, are of particular interest and impor-
tance. Extreme states like apnea can lead to severe consequences and should be detected
promptly and robustly. We found that training a branched ANN with radar data allows
for highly-accurate detection of different hemodynamic states, including apnea, making it
a good candidate for wide-spread adoption in sleep monitoring. Additionally, as briefly
mentioned earlier, the use cases of unobtrusive hemodynamic monitoring (especially res-
piratory changes) extend beyond health applications, including monitoring and training
for the general well-being (meditation) and specific activities where respiration is crucial
(musicians, divers, etc.).

7.1.2 Optical Measurement of Multi-wavelength PTT and BP Estima-
tion

In light of its overall importance as an indicator of cardiovascular state and many related
diseases, BP is paramount. A lot of research effort in literature was directed towards
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contact-free unobtrusive monitoring, as the awkward and user-unfriendly cuff-based meth-
ods remain prevalent. While direct BP estimation from rPPG is desired, there is little
agreement in literature about the feasibility of such methods due to them requiring precise
waveform morphology. Instead, a PTT-based approach is considered more feasible and
robust, but suffers from the requirement of two synchronized sensors. MW approaches
were proposed to circumvent this, but implementations on custom hardware are in early
prototypes and importantly still have the traditional downsides of wearables (e.g., battery),
while also compressing skin at the measuring site. We found that using a high-fps RGB
camera modified for (N)IR recording it is possible to obtain traces from different skin lay-
ers at different depths. However, due to the design of modern image sensors, the obtained
information is mixed between all three spectral bands, meaning the obtained rPPG signals
initially exhibit no expected delay between corresponding reference points. We showed
that using the precise information about the quantum efficiency of the image sensor allows
for algorithmic separation of such signals based on camera physics, allowing for measur-
able PTTs. However, such an approach is camera-specific, so we instead proposed novel
data-driven camera-independent approaches based on GA, which achieve nearly identical
performance to the physics-based approach.

We further demonstrated that such MW PTT obtained from a single measuring site is
the most important feature (compared to morphological and demographic features) when
training a regression model to predict SBP and DBP. We finally found that personalized
models achieve substantially better performance compared to general models, allowing for
MW contact-free BP estimation borderline achieving AAMI and BHS standards.

While our initial prototype setup was highly-controlled, it is not infeasible to extended
it to real-world applications in the form of enclosures for palm insertion (e.g., at a doctors
office or in the waiting room, at home, etc.) and potentially also to non-dedicated sensors
like smartphone cameras or bathroom mirrors, with suitable adjustments for loosened en-
vironments. While a dedicated device is still envisioned as an early prototype, its comfort,
ease of use and speed arguably surpass that of the currently used cuff-based methods.

7.2 Future Work

Continuation of the work described in this dissertation can be based on the limitations of
each approach described in Chapter 6. In short, the work we did investigated fundamental
feasibility of proposed contact-free approaches for physiological monitoring, meaning the
data originated from highly controlled settings in order to maximize its quality and observe
the phenomena of interest. Extensions towards more varied and more challenging data from
real-world scenarios are mandatory to confirm practicality and real-world potential of the
proposed methods. Specifically, we expect the data to be much noisier in everyday life,
meaning that additional robust preprocessing methods would likely be required.

On the other hand, such preprocessing could be done implicitly when using end-to-end
deep learning approaches. In our RF-based monitoring scenario, we still included manual
preprocessing in an attempt to increase SNR of the data being fed to the NN. However,
such steps could potentially be excluded, as NNs were shown to be successful in dealing
with noise present in the data and even increase robustness when noise is present [204].
In line with this reasoning, an end-to-end approach could also be applied to MW PTT
and BP estimation. There are at least two ways to go about this. One could train a
two-phase model attempting to extract MW PTT in the first phase and then estimate BP
in the second phase, or a completely end-to-end NN could be trained, taking a sequence
of images as input and attempt to predict BP directly. Naturally, in case of black-box
approaches, especially when models have a high capacity for overfitting, an interpretability
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and explainability analysis should accompany such attempts.
Another way to increase robustness is to obtain information from both radar and camera

simultaneously or design a mechanism that selects the more adequate sensor based on
contextual environmental conditions (e.g., radar at night, both during the day). One can
envision the potential fusion of both sensors in a prototype device containing a radar and
camera. It is plausible to assume this would enhance the performance and importantly
increase robustness and real-world application potential.

Recently some ideas were also proposed in terms of cross-modal signal reconstruction,
for instance reconstructing ECG (electrical modality) from PPG (optical modality) [205].
While such research is still in its early phases and its feasibility subject of discussion,
a system could be proposed that would include a radar (RF modality) and a camera
(optical modality) and then models could be investigated that would fuse available signals
to reconstruct for example electrical modality as well (like ECG). In such a case, one could
get more detailed QRS complexes that could allow for the detection of additional cardiac
conditions and diseases, which manifest more subtly and cannot be observed in the PPG.

Additionally, some research recently proposed contact-free monitoring of novel param-
eters such as blood glucose [206], which is another exceptionally demanding invasive mea-
surement that must be done frequently by diabetes patients. While some promising results
were reported initially, it was later argued that feasibility of such monitoring is question-
able [207]. Despite this, research in this direction continues.

Ultimately the goal of contact-free physiological monitoring is to ease the burden of
demanding measurements, which must often be done regularly or even continuously, while
nearing the accuracy and precision of current gold-standard wearable devices. Ideally, a
system would be developed that would allow for completely non-intrusive and privacy-
preserving monitoring of the widest array of parameters possible.

Privacy preservation is especially challenging, as it does not only relate to visual cues,
which are more easily masked or circumvented, but physiological signature of individu-
als as well. We previously listed a number of applications where such a system could be
useful, yet there are also many applications where it could be abused. Some examples
include job (or other) interviews, games and sports (e.g., poker and chess), business (or
other) negotiations, etc. These are all cases where information about a person’s physiol-
ogy, which could be obtained discreetly without them knowing, could provide important
information not only about their physiological, but also psychological state, thus offering
an advantage or leverage to one party over the other. To further extrapolate potential
misuse of such technology, specific combinations of physiological parameters and signals
allow for augmentation of already existing identification systems [208]–[210], which could
lead to unwanted surveillance and tracking.

With suitable resolutions for the highlighted challenges (e.g., federated learning for
model training, input signal transformations, etc.), such an unobtrusive system could im-
mensely improve the speed, cost and comfort of physiological monitoring, both at home
and in hospitals, and could include methods proposed in this dissertation to reach this
goal.
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