
Bumblekite

Machine learning summer school in health, care and biosciences

ETH Zürich, Switzerland

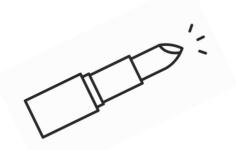
General information

- Annual machine learning summer school
- Target audience:
 - Early career professionals
 - Students (graduate)
- A dynamic schedule:
 - Lectures
 - Tutorials
 - Leadership conversation series
 - Communication sessions

bumblekite machine learning summer school 2024

(final schedule, updated: 2nd July 2024)

Lectures


Bias in Al

- Data is context dependent
- The need to be critical in ML
- Expert knowledge
- Interdisciplinarity

ML in L'OREAL

- Skin tone prediction (CNNs)
- Foundation & lipstick recommendation (CAGAN)
- Skin condition prediction
- Problems with sensor data

Lectures (2)

ML in Novartis

- Use of clinical omics
- Disease markers
- Parkinson's disease, kidney disease, etc.

ML in Roche

- Prioritizing fairness & interpretability
- Debiasing deep chest x-ray classifiers
- Prediction of pulmonary hypotension in newborns
- Prediction of appendicitis

Communiation lecture

- Communication & business development
- Importance of negotiation
 - Value vs price
 - Buy when value > price
- Case study

Tutorials

An invasive measurement of oxygen saturation directly from the blood using an arterial blood gas test.

Bias in Al

- BOLD dataset
- Bias in pulse oximetry accuracy
 - Biased towards darker-skinned patients
 - Hidden hypoxemia
- Predicting in-hospital mortality
- Emphasis on examining bias, not ML

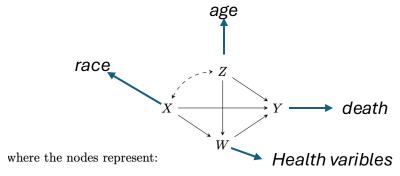
Sa02

95 90 85 80 75 Race Black
Race Black fit: y=0.85(x - 89)+88.32
Race White
Race White
Race White fit: y=0.79(x - 89)+89.40
90 92 94 96 98 100

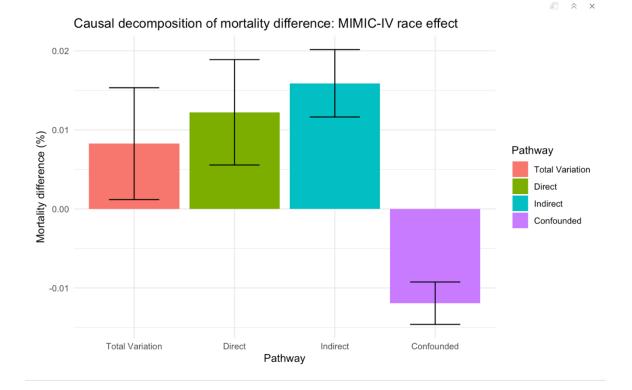
SpO2

Regression Lines for Different Races

A non-invasive method used to measure the oxygen level in the blood. It is usually done using a device clipped onto a finger, toe, or earlobe.


	features	race_ethnicity	auc	Weighted Precision	Weighted Recall	Weighted F1-Score	balanced_accuracy
3	Exaggerated SpO2	Asian	0.727519	0.852817	0.860759	0.819215	0.576241
3	SaO2	Asian	0.726617	0.840190	0.854430	0.807050	0.556241
3	SpO2	Asian	0.728421	0.852817	0.860759	0.819215	0.576241
1	Exaggerated SpO2	Black	0.758489	0.797087	0.832432	0.794723	0.572467
1	SaO2	Black	0.759869	0.797797	0.832432	0.796895	0.577410
1	SpO2	Black	0.760139	0.805853	0.836757	0.801089	0.582496
2	Exaggerated SpO2	Hispanic OR Latino	0.782582	0.801163	0.822014	0.783712	0.597269
2	SaO2	Hispanic OR Latino	0.775523	0.792869	0.817330	0.775786	0.585641
2	SpO2	Hispanic OR Latino	0.782923	0.801163	0.822014	0.783712	0.597269
0	Exaggerated SpO2	White	0.789874	0.825862	0.844906	0.808421	0.594704
0	SaO2	White	0.786374	0.825589	0.844640	0.807706	0.593354
0	SpO2	White	0.789897	0.826829	0.845172	0.808235	0.593974

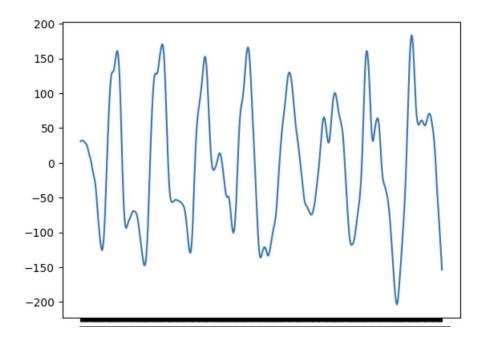
• Logistic regression results for each race; different features

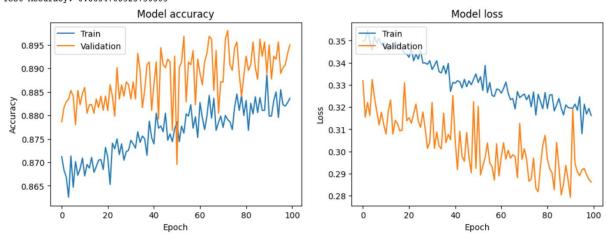

Tutorials (2)

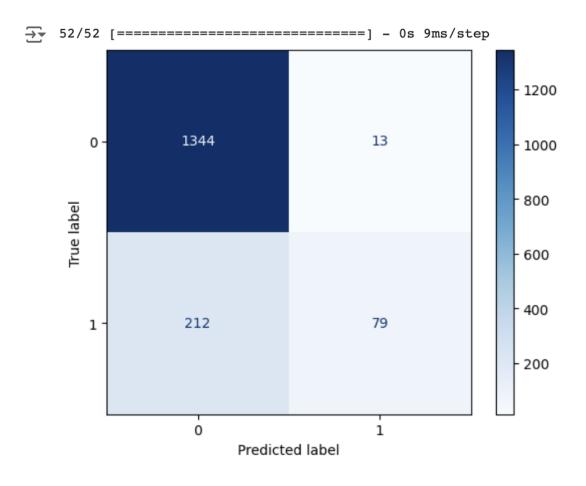
Causal fairness analysis

- MIMIC-IV dataset
 - Health variables + mortality
- Standard fairness model

- the protected attribute, labeled X (e.g., gender, race, religion),
- the set of *confounding* variables Z, which are not causally influenced by the attribute X (e.g., demographic information, zip code),
- the set of *mediator* variables W that are possibly causally influenced by the attribute (e.g., educational level or other job-related information),
- the outcome variable Y (e.g., admissions, hiring, salary).



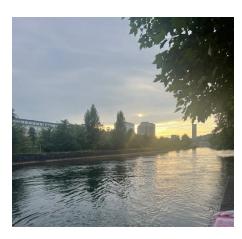

Want to learn more?


Tutorials (3)

Noise in data

- Deep learning (CNN)
- PPG data
- Dependent instances
- Predicting noisiness of the data
- High accuracy, low/decreasing loss

After examining the confusion matrix ...


- Model classifies into category 0
- Train data with imbalanced labels

Solutions?

Social activities, networking

- A lot of events
- Dinners with lecturers
- Community building

