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Abstract. This paper presents a comprehensive comparison between
the performance of state-of-the-art genetic algorithms NSGA-II, SPEA2
and IBEA and their differential evolution based variants DEMONS-II,
DEMOSP2 and DEMOIB. Experimental results on 16 numerical multi-
objective test problems show that on the majority of problems, the algo-
rithms based on differential evolution perform significantly better than
the corresponding genetic algorithms with regard to applied quality in-
dicators. This suggests that in numerical multiobjective optimization,
differential evolution explores the decision space more efficiently than
genetic algorithms.

1 Introduction

Differential Evolution (DE) [1] is a simple yet powerful algorithm that outper-
forms Genetic Algorithms (GAs) on many numerical singleobjective optimiza-
tion problems [2]. In this paper we show that DE can achieve better results than
GAs also on numerical multiobjective optimization problems (MOPs). To this
end, we compare three state-of-the-art Multiobjective Evolutionary Algorithms
(MOEAs), namely NSGA-II [3], SPEA2 [4] and IBEA [5], to their counterparts
– algorithms that use the same environmental selection, but DE instead of GAs
for exploring the decision space. While DE-based algorithms for multiobjective
optimization have already been proposed in the past (see Related Work in Sec-
tion 3), comparisons between these approaches and GA-based algorithms lack:
(a) a wide choice of difficult test problems with more than two objectives, (b)
performance assessment with Pareto compliant indicators, and (c) inferences
about algorithm performance based on statistical tests. The comparison in this
paper includes all these usually omitted features.

The paper is further organized as follows. Section 2 introduces the basic GA
as the underlying algorithm for NSGA-II, SPEA2 and IBEA, while the proposed
algorithm DEMO is explained in detail in Section 3. Section 4 outlines the ex-
periments, whose results are presented and discussed in Section 5. Section 6
concludes the paper with a summary of the results.

2 Multiobjective Optimization with the Basic GA

Most of the efforts spent on adapting GAs to multiobjective optimization have
been focusing on finding new approaches for environmental selection. These
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approaches try to produce good approximations of the Pareto optimal front
by incorporating different preferences. For example, the environmental selection
in NSGA-II [3] first ranks the individuals using nondominated sorting. To distin-
guish between individuals with the same rank, the crowding distance metric is
used, which prefers individuals from less crowded regions of the objective space.
SPEA2 [4] works similarly, calculating the raw fitness of the individuals accord-
ing to Pareto dominance relations between them and using a density measure to
break the ties. The individuals that reside close together in the objective space
are discouraged from entering the archive of best solutions. IBEA [5], on the
other hand, uses a different approach. The fitness of individuals is determined
only according to the value of a predefined indicator. This indicator has to be
dominance preserving and no other explicit diversity preserving mechanism (such
as crowding in NSGA-II or density in SPEA2) is applied.

While directing all attention to environmental selection, the popular
algorithms NSGA-II, SPEA2 and IBEA use practically the same algorithm for
exploring the decision space. It is therefore possible to describe all three algo-
rithms using a unifying framework, which will be called Basic Genetic Algo-
rithm in the remainder of this paper. This algorithm is presented in Fig. 1.
After initialization of the populations P and Q, which is slightly different in
NSGA-II, SPEA2 and IBEA1, the evolutionary steps of selection, crossover and
mutation are repeated until a stopping criterion is met. In environmental selec-
tion, one of the previously described approaches is used to calculate the fitness
of the individuals. This fitness is used again when comparing individuals in
tournament selection. Figure 2 shows the variation operators on individuals en-
coded as real vectors. In case of combinatorial MOPs, different operators need to
be used.

Basic Genetic Algorithm for Multiobjective Optimization
1. Initialize populations P0 and Q0.
2. Set t = 0.
3. Repeat:

3.1. Set t = t + 1.
3.2. Calculate the objectives for new individuals from Pt−1 and Qt−1.
3.3. Get Pt from Pt−1 and Qt−1 with environmental selection.
3.4. If stopping criterion met, return nondominated individuals from Pt.
3.5. Fill the mating pool Mt using tournament selection on Pt.
3.6. Apply variation to individuals from Mt to get Qt (see Fig. 2).

Fig. 1. Outline of the basic genetic algorithm

1 While NSGA-II initializes the population P0 with randomly created individuals and
sets Q0 to be empty, in SPEA2, P0 represents the archive of best solutions and
is therefore initially empty, while Q0 is filled with randomly created individuals.
IBEA originally uses a single population of variable size instead of two separate
populations. Without altering its performance, we can assume that IBEA uses two
populations, which are initialized in the same way as in NSGA-II.
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Variation
Input: Mating pool Mt

1. Create empty population Qt.
2. For each pair of individuals Ii, Ii+1 (i = 1, 3, . . . ) from Mt do:

2.1. Modify the individuals Ii, Ii+1 with uniform crossover.
2.2. Modify the individuals Ii, Ii+1 with simulated binary crossover.
2.3. Modify the individual Ii with polynomial mutation.
2.4. Modify the individual Ii+1 with polynomial mutation.
2.5. Add individuals Ii and Ii+1 to Qt.

Output: Population Qt

Fig. 2. Variation of real-coded individuals

3 Multiobjective Optimization with DE

DE [1] is a simple evolutionary algorithm that encodes solutions as vectors and
uses operations such as vector addition, scalar multiplication and exchange of
components (crossover) to construct new solutions from the existing ones. When
a new solution, also called candidate, is constructed, it is compared to its parent.
If the candidate is better than its parent, it replaces the parent in the population.
Otherwise, the candidate is discarded. As a steady-state algorithm, DE implicitly
incorporates elitism, i.e. no solution can be deleted from the population unless
a better solution is found. While being a very successful optimization method,
DE’s greatest limitation originates in its encoding. As no vector representation of
solution exists for combinatorial problems, DE can only be applied in numerical
optimization.

3.1 Related Work

DE has been adapted to solve MOPs in several ways. In the early approaches
(PDE [6] and GDE [7]), only the concept of Pareto dominance was used to
compare the individuals. The candidate replaced its parent only if it (weakly)
dominated it. Otherwise, it was discarded. This is a rather strict demand, es-
pecially when the number of objectives is high. Many subsequent approaches
(PDEA [8], MODE [9], NSDE [10], GDE2 [11], DEMO [12], GDE3 [13] and
NSDE-DCS [14]) used nondominated sorting and/or the crowding distance met-
ric to calculate the fitness of individuals. Only recently, new algorithms that do
not follow the environmental selection of NSGA-II were proposed (ε-MyDE [15]
and DEMORS [16]). To our best knowledge, no algorithms that combine DE
with the environmental selection of SPEA2 or IBEA have been presented so far.

3.2 DEMONS-II, DEMOSP2 and DEMOIB

The idea presented here is to use DE for exploring the decision space and en-
vironmental selection from either NSGA-II, SPEA2 or IBEA to select the best
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individuals for the next population. This idea is implemented in the algorithm
called DEMO (Differential Evolution for Multiobjective Optimization)2.

The outline of DEMO is presented in Figs. 3 and 4. In the main loop, the
candidate replaces the parent if it dominates it. If the parent dominates the
candidate, the candidate is discarded. Otherwise (when the candidate and parent
are nondominated with regard to each other), the candidate is added to the
population. This step is repeated until popSize number of candidates are created.
After that, we get a population of size between popSize and 2 × popSize . If the
population has enlarged, it is truncated to popSize using environmental selection.

Differential Evolution for Multiobjective Optimization
1. Evaluate the initial population P of random individuals.
2. While stopping criterion not met, do:

2.1. For each individual Pi (i = 1, . . . , popSize) from P repeat:
(a) Create candidate C from parent Pi (see Fig. 4).
(b) Calculate the objectives of the candidate.
(c) If the candidate dominates the parent, the candidate replaces the parent.

If the parent dominates the candidate, the candidate is discarded.
Otherwise, the candidate is added in the population.

2.2. If the population has more than popSize individuals, apply environmental
selection to get the best popSize individuals.

2.3. Randomly enumerate the individuals in P .
3. Return nondominated individuals from P .

Fig. 3. Outline of DEMO

Candidate creation
Input: Parent Pi

1. Randomly select three individuals Pi1 , Pi2 , Pi3 from P , where
i, i1, i2 and i3 are pairwise different.

2. Calculate candidate C as C = Pi1 + F (Pi2 − Pi3), where F
is a scaling factor.

3. Modify the candidate with binary crossover with the parent Pi.
4. Repair the candidate if it falls out of bounds of the decision space.
Output: Candidate C

Fig. 4. Candidate creation using scheme DE/rand/1/bin

Note that the newly created candidates that enter the population (either by
replacement or by addition) instantly take part in the creation of subsequent can-
didates. This helps achieving fast convergence to the Pareto optimal front. More-
over, it resembles very closely the steady-state mechanism of DE. This is why we
prefer the described approach to a somewhat more straightforward way to use DE

2 DEMO is a generalization of the DEMO/parent variant presented in [12], which used
the DE/rand/1/bin scheme [2] and environmental selection from NSGA-II.
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in the basic GA, which consists of replacing the variation phase (see Fig. 2) with
candidate creation (as in Fig. 4) for each individual from the mating pool.

In candidate creation, the use of vector addition can result in candidates that
fall out of bounds of the decision space. In such cases, many repair methods are
possible. We address this problem by replacing the candidate value violating the
boundary constraints with the closest boundary value. In this way, the candidate
becomes feasible with as few alterations to it as possible and there is no need
for making a new candidate. It is important to note, however, that this repair
method may yield more boundary individuals and is biased for problems where
the Pareto optimal set lies on one of the bounds of the decision space.

DEMO, as described in Fig. 3, can incorporate arbitrary environmental se-
lection. In the remainder of the paper we will use DEMONS-II, DEMOSP2 and
DEMOIB to denote the variants of DEMO that use environmental selection from
NSGA-II, SPEA2 and IBEA, respectively.

4 Experimental Setup

To compare the presented algorithms, extensive experiments on 16 test problems
were performed. The focus of the experiments was on comparing DEMONS-II to
NSGA-II, DEMOSP2 to SPEA2, and DEMOIB to IBEA, and not on compar-
ing algorithms with different environmental selection among themselves. Such a
comparison can be found, for example, in [5].

4.1 Test Problems

Two test problem suits were used in the experiments. The first consists of the
first seven DTLZ test problems from [17] and the second of the nine WFG test
problems presented in [18]. Both suits comprise difficult problems that present
many challenges for multiobjective optimizers, such as the existence of many
local Pareto optimal fronts, uneven distribution of points on the Pareto optimal
front, nonseparable variables etc.

Let n and m denote the dimensionality of the decision space and variable
space, respectively. Each of the 16 problems was used three times – each time
with a different number of objectives (m = 2, 3 and 4). The other parameters
were set as follows:

– The parameters of DTLZ problems were set as recommended in [17], i.e.
n = m + k − 1, where k = 5 for DTLZ1, k = 10 for problems DTLZ2 to
DTLZ6 and k = 20 for DTLZ7.

– Parameters of the WFG test suite are: the number of position related param-
eters k, number of distance related parameters l and number of objectives m.
The number of decision variables is calculated as n = k + l. Because of some
additional requirements (l must be an even number for WFG2 and WFG3,
and k must be divisible by m − 1), we used the following setting: k = 6 and
l = 4 (consecutively n = 10), which satisfies all the requirements for m = 2,
3 and 4.

All test problems suppose minimization of all objectives.
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4.2 Parameters of the Algorithms

The experiments with NSGA-II, SPEA2 and IBEA were performed using the
PISA environment [19]. The parameter settings for the basic GA, used by all
three algorithms, are the same as the ones used in the comparison between
NSGA-II and SPEA2 on the DTLZ1 problem in [17]:

– population size = 100,
– number of generations = 300,
– tournament size = 2,
– size of the mating pool = 100,
– individual crossover probability = 1,
– variable probability for SBX crossover = 1,
– distribution index for crossover ηc = 15,
– variable uniform crossover probability = 0.5,
– individual mutation probability = 1,
– variable polynomial mutation probability = 1/n,
– distribution index for mutation ηm = 20.

The parameters of all three variants of DEMO were set as in [12] (except for
the number of generations, which equals the number of generations used by the
basic GA):

– population size = 100,
– number of generations = 300,
– DE selection scheme = DE/rand/1/bin,
– scaling factor F = 0.5,
– probability used in binary crossover = 0.3.

DEMOIB and IBEA used additional parameters: indicator = IHD
3, scaling factor

κ = 0.05 and reference point for the hypervolume calculation ρ = (2, . . . , 2) ∈
IRm. Each algorithm was run on each problem 30 times.

4.3 Performance Assessment

The performance assessment was carried out using PISA and the guidelines
from [20] and [21]. Consider for example the comparison between DEMONS-II

and NSGA-II on one problem. Firstly, the bounds of approximation sets of both
algorithms were calculated so that the approximation sets could be normalized
to the interval [1, 2]. After that, a dominance rank was calculated for each of
the 60 approximation sets by simply counting the number of approximation sets
that are better than the observed one. The Mann-Whitney rank sum test was
used to discover if there are significant differences between the dominance ranks
of the two algorithms.
3 The same set of experiments was performed also with the Iε+ indicator. Be-

cause of space limitations, we report only the results obtained using IHD as they
are less favorable for DEMOIB. The interested reader can access all results from
http://dis.ijs.si/tea/EMO2007/demo.htm .

http://dis.ijs.si/tea/EMO2007/demo.htm
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Additional assessment was carried out using unary quality indicators. From
the approximation sets of both algorithms, the set containing only nondominated
solutions was computed and used as the reference set for the unary indicators
I1
ε+ and I1

R2. Other parameters of the I1
R2 indicator were: ρ = 0.01, (0.9, . . . , 0.9)

and (2.1, . . . , 2.1) ∈ IRm served as the ideal and Nadir points, and 501, 496 and
455 uniformly spread parameter vectors were used for the problems with two,
three and four objectives, respectively. The hypervolume indicator IH used the
point (2.1, . . . , 2.1) ∈ IRm as the reference point. All three indicators were cal-
culated for each approximation set of both algorithms. The significance of these
outcomes was tested independently with the Fisher’s independent permutation
test. Because we used dominance ranking and three indicators on the same data,
the significance level α for all significance tests was reduced from 0.05 to 0.0125
using the Bonferroni correction.

The same procedure was repeated in comparing DEMOSP2 to SPEA2 and
DEMOIB to IBEA. The outcomes of these comparisons are presented in the
next section.

5 Results and Discussion

Looking at the outcomes of dominance ranking (Tables 1, 3 and 5) we can observe
that on many problems, approximation sets of DEMO achieve significantly better
domination ranks than the approximation sets of the basic GA. Only rarely (see
Subsection 5.3), the basic GA outperforms DEMO. On the majority of problems,
however, there are no significant differences between the two algorithms with
regard to dominance ranking.

As expected, when dominance ranking shows a significant difference between
two algorithms, so do the three applied indicators (an exception is again ex-
plained in Subsection 5.3). On the majority of problems, DEMO achieves sig-
nificantly better results with regard to the chosen indicator (see Tables 2, 4 and
6). Note that on a few problems (see for example DTLZ5 for m = 4 in Table 2),
DEMO is significantly better than the basic GA with regard to one indicator
(I1

r2) and significantly worse with regard to another indicator (IH). This sug-
gests that the outcomes of DEMO and the basic GA are incomparable on such
problems.

Besides these results, we also investigated the plots of approximation sets (for
m = 2 and 3) and plots of attainment surfaces (for m = 2) [22] to gain further
insight into the comparison between DEMO and the basic GA. Despite statistical
tests show that there is almost always a significant difference in indicator values
of the two algorithms, in general no noticeable distinction was visible between
the approximation sets (and attainment surfaces) of DEMO and the basic GA on
problems DTLZ2, DTLZ4, DTLZ5, DTLZ7, WFG3, WFG4, WFG5, WFG8 and
WFG9. On problems DTLZ1, DTLZ3 and DTLZ6, where it is very difficult to
converge to the Pareto optimal front, and on the non-separable WFG6 problem,
DEMO generally attained the Pareto optimal front more efficiently than the
basic GA. On problems DTLZ3, WFG1, WFG2 and WFG7, DEMO achieved
better spread of solutions along the Pareto optimal front than the basic GA.
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Table 1. Outcomes of the Mann-Whitney rank sum test (α = 0.0125) on dominance
ranking for DEMONS-II and NSGA-II. The ‘� p-value’ (‘� p-value’) denotes the prob-
lems, on which DEMONS-II is significantly better (worse) than NSGA-II, while ‘-’ in-
dicates there are no significant differences between the two algorithms.

m = 2 m = 3 m = 4
DTLZ1 - � 3.9×10−13 � 7.9×10−15

DTLZ2 - - -
DTLZ3 � 2.0×10−11 � 3.9×10−13 � 3.5×10−12

DTLZ4 � 0.0052 - -
DTLZ5 - - -
DTLZ6 � 4.1×10−14 � 7.9×10−15 � 3.9×10−13

DTLZ7 - - � 1.5×10−4

WFG1 - � 1.6×10−7 -
WFG2 - - -
WFG3 - - -
WFG4 - - -
WFG5 - - -
WFG6 � 1.5×10−4 - -
WFG7 - - -
WFG8 - - -
WFG9 - - -

Table 2. Outcomes of the Fisher-independent test (α = 0.0125) on indicator values for
DEMONS-II and NSGA-II. A ‘�’ (‘�’) under the indicator I means that DEMONS-II

is significantly better (worse) than NSGA-II regarding indicator I , while ‘-’ indicates
there are no significant differences between the two algorithms regarding indicator I

m = 2 m = 3 m = 4
I1

ε+ IH I1
R2 I1

ε+ IH I1
R2 I1

ε+ IH I1
R2

DTLZ1 � � � � � � � � �
DTLZ2 � � � � � � � � �
DTLZ3 � � � � � � � � �
DTLZ4 � � � � � � � � �
DTLZ5 � � � � � � - � �
DTLZ6 � � � � � � � � �
DTLZ7 � � � � � � � � �
WFG1 � � � � � � � � �
WFG2 � � � � � � � � �
WFG3 - � � � � � - � �
WFG4 - � - - � � � � �
WFG5 � - � - - - - - �
WFG6 � � � � � � - � �
WFG7 � � � � � � - � -
WFG8 � - � - - - - - �
WFG9 - � - - � � - - -
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Table 3. Outcomes of the Mann-Whitney rank sum test (α = 0.0125) on dominance
ranking for DEMOSP2 and SPEA2. The ‘� p-value’ (‘� p-value’) denotes the problems,
on which DEMOSP2 is significantly better (worse) than SPEA2, while ‘-’ indicates there
are no significant differences between the two algorithms.

m = 2 m = 3 m = 4
DTLZ1 - � 9.7×10−13 � 3.2×10−13

DTLZ2 - - -
DTLZ3 � 2.2×10−11 � 2.0×10−14 � 3.2×10−13

DTLZ4 - - -
DTLZ5 - - -
DTLZ6 � 2.0×10−14 � 7.9×10−15 � 1.7×10−12

DTLZ7 - - -
WFG1 - � 2.7×10−9 -
WFG2 - - -
WFG3 - - -
WFG4 - - -
WFG5 - - -
WFG6 � 2.6×10−6 - -
WFG7 - - -
WFG8 - - -
WFG9 - - -

Table 4. Outcomes of the Fisher-independent test (α = 0.0125) on indicator values
for DEMOSP2 and SPEA2. A ‘�’ (‘�’) under the indicator I means that DEMOSP2 is
significantly better (worse) than SPEA2 regarding indicator I , while ‘-’ indicates there
are no significant differences between the two algorithms regarding indicator I .

m = 2 m = 3 m = 4
I1

ε+ IH I1
R2 I1

ε+ IH I1
R2 I1

ε+ IH I1
R2

DTLZ1 � � � � � � � � �
DTLZ2 � � � � � � � � �
DTLZ3 � � � � � � � � �
DTLZ4 � � � � � � � � �
DTLZ5 � � � � � � � - �
DTLZ6 � � � � � � � � �
DTLZ7 � � � � � � � � �
WFG1 � � � � - - � � �
WFG2 � � � � � � � � �
WFG3 � � � - - - � - -
WFG4 - � - - � � - � �
WFG5 � � � � � � � � �
WFG6 � � � � � � - � �
WFG7 � � � � � � � � �
WFG8 � - � � � � - � �
WFG9 - - - � � � - � �

In the following subsections, we review the performance of DEMO and basic
GA on selected problems in more detail.
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Table 5. Outcomes of the Mann-Whitney rank sum test (α = 0.0125) on dominance
ranking for DEMOIB and IBEA. The ‘� p-value’ (‘� p-value’) denotes the problems,
on which DEMOIB is significantly better (worse) than IBEA, while ‘-’ indicates there
are no significant differences between the two algorithms.

m = 2 m = 3 m = 4
DTLZ1 - - -
DTLZ2 - - -
DTLZ3 - � 3.0×10−12 � 9.7×10−12

DTLZ4 � 0.0013 � 0.0104 -
DTLZ5 - - -
DTLZ6 � 1.2×10−13 � 2.4×10−11 -
DTLZ7 � 0.0023 � 1.3×10−7 � 1.8×10−7

WFG1 - � 0.0058 -
WFG2 - - -
WFG3 - - -
WFG4 - - -
WFG5 - - -
WFG6 � 6.1×10−6 - -
WFG7 - - -
WFG8 - - -
WFG9 - - -

Table 6. Outcomes of the Fisher-independent test (α = 0.0125) on indicator values
for DEMOIB and IBEA. A ‘�’ (‘�’) under the indicator I means that DEMOIB is
significantly better (worse) than IBEA regarding indicator I , while ‘-’ indicates there
are no significant differences between the two algorithms regarding indicator I .

m = 2 m = 3 m = 4
I1

ε+ IH I1
R2 I1

ε+ IH I1
R2 I1

ε+ IH I1
R2

DTLZ1 � � � � � � � � -
DTLZ2 - - � - � � - - �
DTLZ3 - � � � � � � � �
DTLZ4 � � � � � � � � �
DTLZ5 - - � � � � � � �
DTLZ6 � � � � � � � � �
DTLZ7 � � � � � � � � -
WFG1 � � � � � � � � �
WFG2 � � � � � � - � �
WFG3 - � � - � � � � �
WFG4 - � � - � � - � �
WFG5 � � � - - � - � �
WFG6 � � � � � � � � �
WFG7 � � � - � � - � �
WFG8 - - - - - � - - �
WFG9 � � - - � � - - �
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Fig. 5. Plots of normalized attainment surfaces and approximation sets of DEMONS-II

and NSGA-II on the DTLZ6 problem: (a) the best, worst and 50%-attainment surfaces
for each algorithm on the problem with two objectives; (b) 30 approximation sets for
each algorithm on the problem with three objectives

5.1 DEMONS-II vs. NSGA-II

The comparison between DEMO and the basic GA is very favorable to DEMO,
when nondominated sorting is used for environmental selection. Let us explore
in more detail the outcomes of both algorithms on the DTLZ6 problem. The
difficulty of this problem reflects in poor convergence of certain algorithms to the
Pareto optimal front. Figure 5 shows that DEMONS-II reaches the Pareto optimal
front for m = 2 and m = 3, while NSGA-II does not. The most probable cause
for such behavior is the repair method used by DEMO, since in this problem,
the Pareto optimal set lies at the bounds of the decision space and boundary
points are likely to be found after applying DEMO’s repair method.

It is interesting to note, however, that on the only other problem (DTLZ7),
where the Pareto optimal set lies on the bounds of the decision space, no big dif-
ferences between approximation sets could be noticed. This is probably because
on this problem, none of the algorithms has difficulties in reaching the Pareto
optimal front.

5.2 DEMOSP2 vs. SPEA2

Using the strength Pareto approach for environmental selection yields very sim-
ilar results in the comparison between DEMO and the basic GA as the use of
nondominated sorting. The findings from the previous subsection (on problems
DTLZ6 and DTLZ7) hold also for DEMOSP2 and SPEA2. Similarly, some of
the characteristics of the comparison between DEMOSP2 and SPEA2 on the
WFG1 problem, which will be discussed shortly, are true also when comparing
DEMONS-II and NSGA-II.

Consider now the WFG1 problem for m = 2. From the plot of attainment
surfaces (see Fig. 6) we can see that DEMOSP2 reaches a wider portion of the
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Fig. 6. Plots of normalized attainment surfaces and approximation sets of DEMOSP2

and SPEA2 on the WFG1 problem: (a) the best, worst and 50%-attainment surfaces
for each algorithm on the problem with two objectives; (b) 30 approximation sets for
each algorithm on the problem with three objectives

Pareto optimal front than SPEA2, while having comparable convergence prop-
erties in the best and average case (50%-attainment surface) and a little worse
in the worst case. When this problem is tackled in three objectives, DEMOSP2

loses some of its convergence power while keeping the good coverage. SPEA2, on
the other hand, still covers only a small part of the whole front, while achieving
much better convergence than DEMOSP2. Although this is not visible from the
plots, we wish to point out that neither of the algorithms reached the Pareto
optimal front for this problem.

There is an additional interesting aspect of the results on this problem, which
is related to the performance assessment using dominance ranking and quality
indicators. Note that Tables 3 and 4 show that DEMOSP2 is significantly better
than SPEA2 with regard to dominance ranking, and significantly worse than
SPEA2 with regard to the I1

ε+ indicator. This happens because the approxi-
mation sets of DEMOSP2 are never dominated, while the approximation sets of
SPEA2 sometimes dominate each other. As a result, dominance ranking prefers
DEMOSP2 to SPEA2 although approximation sets of SPEA2 are closer to the
Pareto optimal front than approximation sets of DEMOSP2.

5.3 DEMOIB vs. IBEA

From Tables 5 and 6 it is obvious that using indicator based environmental
selection brought DEMO less improvement over the basic GA than using the
other two approaches. For the first time, DEMO was outperformed with regard
to dominance ranking. The DTLZ7 problem with 2m−1 disconnected Pareto
optimal regions proved to be very hard for DEMOIB. While the convergence
to the Pareto optimal front was not difficult, maintaining diverse solutions was
hard for DEMOIB. Out of 30 runs for each objective space dimensionality, DEMO
converged to a single point 29 times for m = 2, 26 times for m = 3 and 25 times
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Fig. 7. Plots of normalized approximation sets of DEMOIB and IBEA on the DTLZ3
problem: (a) 30 approximation sets for each algorithm on the problem with two ob-
jectives; (b) 30 approximation sets for each algorithm on the problem with three
objectives

for m = 4. Note, however, that in combination with all other approaches to
environmental selection (including using I1

ε+ instead of IHD in indicator based
selection), DEMO could always maintain diverse solutions.

Let us analyze in more detail also the DTLZ3 problem, where the main dif-
ficulty rises from its 310 − 1 local Pareto optimal fronts. As shown in the plots
in Fig. 7, IBEA has more difficulties in reaching the Pareto optimal front than
DEMOIB. In the case of two objectives, DEMOIB performs worse than IBEA
in the worst case while achieving a much better spread in the best case. On
the three-objective problem, DEMOIB achieves good results in all 30 runs, while
IBEA still gets stuck in local optima and has a poor spread of solutions.

6 Conclusion

This paper compared the well-known multiobjective evolutionary algorithms
NSGA-II, SPEA2 and IBEA to their DE-based variants DEMONS-II, DEMOSP2

and DEMOIB on 16 state-of-the-art benchmark problems (each with 2, 3 and
4 objectives). The results have shown that on 20% of the problems, DEMO
achieved significantly better dominance ranks than the basic GA, while signifi-
cantly worse dominance ranks were obtained on only 3% of the problems. Fur-
thermore, DEMO outperformed the basic GA with regard to the used quality
indicator on the majority (almost 83%) of the problems.

On the basis of these results we conclude that DE explores the decision space
more efficiently than GAs also when multiple objectives need to be optimized.
It is important to note, however, that DE and, consequently, DEMO are limited
to vector representation of solutions and can therefore only be used in numerical
optimization.
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