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Ljubljana, 2007





Razvoj algoritma za večkriterijsko
optimiranje z diferencialno evolucijo

POVZETEK

V številnih praktičnih problemih optimiranja je kakovost rešitev opredeljena z več po na-

ravi različnimi kriteriji, kot so na primer cena, učinek in koristnost rešitve. Mnogokrat si

ti kriteriji nasprotujejo, iz česar sledi, da namesto ene obstaja več optimalnih rešitev, kjer

vsaka predstavlja nek kompromis med kriteriji. Klasične metode večkriterijske optimiza-

cijske probleme rešujejo tako, da kriterije z uporabo neke funkcije (pogosto je to utežena

vsota) prevedejo v en sam kriterij, ki ga nato optimirajo. Šele evolucijski algoritmi večkrite-

rijske probleme rešujejo tako, da vse kriterije obravnavajo neodvisno in kot rezultat vrnejo

množico kompromisnih rešitev.

Uveljavljeni večkriterijski evolucijski algoritmi, kot so NSGA-II, SPEA2 in IBEA, iščejo re-

šitve z istim genetskim algoritmom in se razlikujejo le v načinu določanja najboljših rešitev,

ki mu pravimo kriterijska selekcija. V magistrski nalogi predstavljamo nov algoritem DEMO

(angl. Differential Evolution for Multiobjective Optimization), ki lahko uporablja poljuben

pristop za kriterijsko selekcijo in rešitve tvori z diferencialno evolucijo – evolucijskim algorit-

mom, ki v reševanju enokriterijskih problemov pogosto doseže boljše rezultate kot genetski

algoritmi. DEMO smo implementirali v štirih različicah z različnimi pristopi za kriterijsko

selekcijo in ga primerjali z ustreznimi algoritmi NSGA-II, SPEA2 in IBEA (v dveh različicah).

Rezultati obsežnih poskusov kažejo, da so različice algoritma DEMO na večini testnih pro-

blemov signifikantno boljše kot primerjani algoritmi. Iz tega lahko zaključimo, da je diferen-

cialna evolucija učinkovitejša od genetskih algoritmov tudi na večkriterijskih optimizacijskih

problemih.

Na koncu različico algoritma DEMO, ki doseže najboljšo razporeditev vektorjev v pro-

storu kriterijev, uporabimo na praktičnem problemu, kjer je treba nastaviti parametre gra-

dnje odločitvenih dreves tako, da so dobljena drevesa čim bolj točna in čim manjša. DEMO

na preizkušenih domenah strojnega učenja najde dobre kompromise med točnimi in majh-

nimi drevesi in tako uporabnikom olajša izbiro najbolj zaželene rešitve.

Ključne besede: večkriterijsko optimiranje, evolucijski algoritmi, diferencialna evolucija,

Pareto optimalnost, večkriterijski testni problemi, točnost in velikost odločitvenih dreves
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Design of an Algorithm for Multiobjective
Optimization with Differential Evolution

ABSTRACT

In many real-world optimization problems the quality of solutions is determined with

several fundamentally different objectives, such as, for example, cost, performance and pro-

fit. These objectives are often mutually conflicting thus yielding several optimal solutions,

where each of them represents a different tradeoff between the objectives. Classical methods

solve multiobjective optimization problems by first transforming all objectives into a single

one (often using the weighted sum approach) and then optimizing the resulting objective.

Evolutionary algorithms, on the other hand, treat all objectives independently and provide

as a result a set of tradeoff solutions.

Several state-of-the-art multiobjective evolutionary algorithms, such as NSGA-II, SPEA2

and IBEA use the same genetic algorithm to search solutions and differ only in the procedure

used for selecting the best solutions, called environmental selection. In this thesis, a novel al-

gorithm DEMO (Differential Evolution for Multiobjective Optimization) is presented, which

can incorporate an arbitrary environmental selection procedure and generates the solutions

with differential evolution—an evolutionary algorithm that often outperforms genetic algo-

rithms on singleobjective optimization problems. DEMO was implemented in four variants

with different environmental selection procedures and was compared to the correspond-

ing algorithms NSGA-II, SPEA2 and IBEA (in two variants). Results of extensive experiments

show that DEMO variants are significantly better than the compared algorithms on most

test problems. Therefore, we can conclude that differential evolution is more efficient than

genetic algorithms also on multiobjective optimization problems.

Finally, the DEMO variant which achieves the best distribution of vectors in the objective

space is used on the practical problem of setting the parameters of decision tree building

algorithms in such a way that the obtained trees are as accurate and small as possible. On the

tested machine learning domains DEMO finds good tradeoffs between accurate and small

decision trees thus enabling the users to easily choose the most desired solution.

Keywords: multiobjective optimization, evolutionary algorithms, differential evolution,

Pareto optimality, multiobjective benchmark problems, accuracy and size of decision trees





Acknowledgments

During my research and while writing this thesis many special people have helped me

with their guidance and advice or by simply being there for me. These are my thanks.

First, I wish to acknowledge my supervisors. Bogdan Filipič patiently guided and encour-
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1
Introduction

Many real-world optimization problems involve optimization of several, often conflicting

objectives. Consequently, instead of a single optimal solution, a set of optimal solutions

(called Pareto optimal set) exists for such problems. Each of the Pareto optimal solutions

represents a different tradeoff between the objectives and in the absence of preference in-

formation, none of them can be said to be better than others.

Because of multiple objectives we deal with two spaces: the space of decision variables

(or decision space), where the search is conducted, and the space of objectives (or objective

space), where the solutions are evaluated. While classical optimization methods solve mul-

tiobjective problems by converting them into singleobjective ones (thus degenerating the

multidimensional objective space into a one-dimensional space), evolutionary algorithms

can tackle the optimization of all objectives simultaneously. Since two spaces exist, multi-

objective evolutionary algorithms tend to work on two levels: they use a search procedure to

explore the decision space and a so-called environmental selection procedure to select the

best solutions according to their positioning in the objective space. Although the two are not

completely independent (the search in the decision space is usually guided by the objective

values of the solutions), they can be seen as two separate tasks.

In the last twenty years, several multiobjective evolutionary algorithms have been pro-

posed. While these algorithms present different approaches to environmental selection,

most of them, including the popular NSGA-II (Deb et al., 2002), SPEA2 (Zitzler et al., 2001)

and IBEA (Zitzler and Künzli, 2004), use a nearly identical Genetic Algorithm (GA) for search-

1



2 Introduction

ing the decision space. Only recently, approaches relying on other evolutionary algorithms,

such as Differential Evolution (DE) (Storn and Price, 1997), were proposed.

1.1 Motivation

The motivation for this work was three-fold. First, we wanted to design an efficient algo-

rithm for multiobjective optimization, which would use DE for exploration of the decision

space in a straightforward way. While DE-based algorithms for multiobjective optimization

have already been proposed in the past (see the related work presented in Section 3.2), they

either disregarded DE’s basic characteristic of comparing every new solution to its parent or

applied it too strictly for multiobjective optimization. Moreover, the existent approaches use

only the environmental selection method from NSGA-II, while our aim was to allow combi-

nations of DE-based exploration of the decision space and arbitrary approaches to environ-

mental selection.

Second, since DE often outperforms GAs on singleobjective problems, we wanted to

check if this holds also for multiobjective problems. Similar comparisons reported so far

(see Sections 3.2 and 3.4) lack: (1) a wide choice of difficult test problems with more than

two objectives, (2) proper performance assessment, and (3) inferences about algorithm per-

formance based on statistical tests. Furthermore, when in the past a DE-based algorithm

was compared to a GA-based one, the two algorithms often differed in many aspects, not

only in the approach used for exploring the decision space. Therefore, whatever the results

of such a comparison, they cannot be attributed solely to the exploration approach used.

The third goal of this thesis was to apply our DE-based multiobjective optimization al-

gorithm to the real-world problem of setting the parameters of machine learning algorithms

so that the resulting theories would be accurate and simple. Many domain experts who use

machine learning algorithms for finding theories that would explain their data are not famil-

iar with these algorithms. They usually do not know how to set the parameters of machine

learning algorithms in order to produce the desired results. Moreover, they rarely know be-

forehand exactly what kind of theory they are looking for. Our approach could help them by

exploring the parameter space of the learning algorithms while searching for theories with

highest prediction accuracy and lowest complexity. The resulting set of the best found theo-

ries gives the users the possibility of comparing the theories among themselves and provides

an additional insight into the data. All this helps the users to choose the theory that best suits

their needs.
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In the following, we limit our discussion on machine learning theories to decision trees

for classification, where the best trees (or theories) are regarded as those that are accurate

and small.

1.2 Contributions

The first contribution of this thesis is the design of the algorithm called Differential Evolution

for Multiobjective Optimization (DEMO), which explores the decision space using DE and

selects the best solutions for the next population using an arbitrary environmental selection

procedure. DEMO is implemented in four variants: DEMONS-II, DEMOSP2, DEMOIBǫ+ and

DEMOIBHD , which use environmental selection mechanisms from NSGA-II, SPEA2, IBEAǫ+

and IBEAHD, respectively.

Additionally, we define the so-called basic genetic algorithm: a multiobjective evolution-

ary algorithm, which uses a GA to explore the decision space and an arbitrary environmental

selection procedure to select the best solutions. In this way, the NSGA-II, SPEA2, IBEAǫ+and

IBEAHD algorithms can be simply seen as special cases of the basic GA, enabling us to make

pairwise comparison between NSGA-II and DEMONS-II, SPEA2 and DEMOSP2, IBEAǫ+and

DEMOIBǫ+ , and IBEAHD and DEMOIBHD . The algorithms are compared on 16 state-of-the-

art benchmark problems (each with 2, 3 and 4 objectives), where the four variants of DEMO

significantly outperform their GA-based counterparts.

Finally, we apply DEMO to the problem of finding parameter settings of a decision tree

building algorithm so that the resulting decision trees are accurate and small. This practical

study and the comparison study on artificial benchmark problems give additional evidence

of the usefulness of DE in numeric optimization.

1.3 Organization of the thesis

Chapter 2 describes the background required for proper understanding of the challenges

posed by multiple objectives. Beside the formal definitions of the concepts specific to multi-

objective optimization, the chapter presents the recommended performance measures to be

used for assessing multiobjective optimization algorithms. The chapter ends with the intro-

duction of the basic GA and a detailed description of the different environmental selection

approaches used in this thesis.
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Chapter 3 is dedicated to DE and the DEMO algorithm. Starting with a detailed de-

scription of DE, it reviews the related work—both preceding and following the publication

of DEMO. Two comparison studies follow: the first compares four GA-based algorithms to

the corresponding DEMO variants, while the second explores the differences among DEMO

variants.

Chapter 4 deals with the problem of optimizing accuracy and size of decision trees. After

a short introduction to classification problems and the discussion of the related work, the

experiments with DEMO are presented.

Chapter 5 ends the thesis with concluding remarks and ideas for future work.
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Background

This chapter reviews the essential background knowledge on multiobjective optimization

and multiobjective evolutionary algorithms. Section 2.1 describes the specialities of mul-

tiobjective optimization that distinguish multiobjective optimization problems from sin-

gleobjective ones. Among them are, for example, the concept of Pareto dominance and the

existence of incomparable solutions and incomparable sets of solutions. All this has a great

impact also on the performance assessment of multiobjective optimization algorithms. This

important topic is covered in Section 2.2. Finally, Section 2.3 presents evolutionary algo-

rithms and their adjustment to multiobjective optimization, showing in more detail the par-

ticular mechanisms of three state-of-the-art algorithms: NSGA-II, SPEA2 and IBEA.

2.1 Properties of multiobjective optimization

In multiobjective optimization, we wish to simultaneously optimize several (possibly con-

flicting) objectives. This single demand yields many principles that make multiobjective op-

timization very different from (and usually more challenging than) singleobjective optimiza-

tion. The basic principles are described here—see (Knowles et al., 2006) for more details.

2.1.1 Pareto dominance and Pareto optimality

The multiobjective optimization problem (MOP) consists of finding the optimum of a func-

5



6 Background

tion

f : X →Z

f : (x1, . . . ,xn ) 7→ ( f 1(x1, . . . ,xn ), . . . , f m (x1, . . . ,xn )),

where X is an n-dimensional decision space, and Z is an m -dimensional objective space (m ≥

2). Each solution x ∈ X is called a decision vector, while the corresponding element z =

f (x ) ∈ Z is an objective vector. From this moment on we assume without loss of generality

that Z ⊆Rm and the objectives f j : X →R are to be minimized for all j ∈ {1, . . . , m }.

Definition 2.1 (Pareto dominance of vectors). The objective vector z 1 dominates the ob-

jective vector z 2 (z 1 ≺ z 2)
def

⇐⇒ z 1
j ≤ z 2

j for all j ∈ {1, . . . , m } and z 1
k < z 2

k for at least one

k ∈ {1, . . . , m }.

Definition 2.2 (Weak Pareto dominance of vectors). The objective vector z 1 weakly domi-

nates the objective vector z 2 (z 1 � z 2)
def

⇐⇒ z 1
j ≤ z 2

j for all j ∈ {1, . . . , m }.

Definition 2.3 (Strict Pareto dominance of vectors). The objective vector z 1 strictly domi-

nates the objective vector z 2 (z 1 ≺≺ z 2)
def

⇐⇒ z 1
j < z 2

j for all j ∈ {1, . . . , m }.

When z 1 = f (x 1), z 2 = f (x 2) and z 1 (weakly or strictly) dominates z 2, we say that the solution

x 1 (weakly or strictly) dominates the solution x 2. Note that z 1 ≺≺ z 2 =⇒ z 1 ≺ z 2 =⇒ z 1 � z 2.

The weak Pareto dominance is a natural generalization of the ≤ relation on R. While ≤

induces a total order on R, the � relation induces only a partial order on Rm . This means

that two objective vectors (and therefore two solutions) can be incomparable.

Definition 2.4 (Incomparability of vectors). The objective vectors z 1 and z 2 are incompa-

rable (z 1 || z 2)
def

⇐⇒ z 1 � z 2 and z 2 � z 1.

In case of conflicting objectives the multiobjective optimization problem can have mul-

tiple optimal solutions.

Definition 2.5 (Pareto optimality). The solution x ∗ and its corresponding objective vector

z ∗ = f (x ∗) are Pareto optimal
def

⇐⇒ there exists no z ∈Z such that z ≺ z ∗.

All Pareto optimal solutions compose the Pareto optimal set, while the corresponding objec-

tive vectors constitute the Pareto optimal front.
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Example 2.1. For a better understanding of these definitions consider the MOP presented in

Figure 2.1. While x1 and x2 denote the decision variables, z 1 and z 2 indicate the objectives

to be minimized. For solutions x i and the corresponding objective vectors z i = f (x i ), where

i ∈ {1, 2, 3, 4}, the following statements can be made: x 3 strictly dominates x 4, while all other

pairs of solutions are mutually incomparable. In addition, x 3 is Pareto optimal as are all the

solutions represented by black points.

DECISION SPACE OBJECTIVE SPACE

x1

x2

z 1

z 2

x 1

x 2

x 3

x 4 z 1

z 2

z 3

z 4

f

0 0
0 0

5 5

5 5

10 10

10 10

15 15

15 15

Figure 2.1: The decision and objective space for a MOP. Black points represent Pareto opti-
mal decision and objective vectors.

2.1.2 Preference-based and ideal principle

Each element of the Pareto optimal front represents a tradeoff between the objectives. With-

out additional preference information we cannot decide among different Pareto optimal so-

lutions. Like in singleobjective optimization, the ultimate goal of multiobjective optimiza-

tion (at least from the user’s perspective) is to obtain a single Pareto optimal solution. This

can be done using either the preference-based or the ideal principle as shown in Figure 2.2

(Deb, 2001).

Following the preference-based principle, the multiobjective optimization problem is first

transformed into a singleobjective one according to some preference for the objectives. This

can be achieved, for example, by combining the objectives using a weighted sum. A sin-

gle solution to the multiobjective problem is then acquired by solving the corresponding

singleobjective problem. Using the preference-based principle when the preference for the
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PREFERENCE-BASED PRINCIPLE IDEAL PRINCIPLE

one optimalone optimal
solution found solution chosen

multiple optimal
tradeoff solutions

found

use of high-level information:
ideal multiobjective optimizer

multiobjective optimization problem:multiobjective optimization problem:

singleobjective optimizer use of high-level information

transformation into a
singleobjective optimization problem:

minimize f (x ) = ( f 1(x ), . . . , f k (x ))minimize f (x ) = ( f 1(x ), . . . , f k (x ))

w = (w1, . . . , wk )

minimize
g (x ) =w1 f 1(x )+ · · ·+wk f k (x )

Figure 2.2: The preference-based and ideal principle in multiobjective optimization.

objectives is unknown has some disadvantages. For example, the solutions acquired by this

principle depend on the function with which the multiobjective problem is transformed into

a singleobjective one. With a different transformation, some other solution could be found.

Moreover, some of the functions that are most often used for this transformation (such as the

weighted sum) are incapable of reaching the concave portions of the Pareto optimal front.

Using the ideal principle, on the other hand, the multiobjective problem is first solved

and only then the preference information is used to select a single solution among several

alternatives. The ideal principle is ideal in the sense that it does not demand from the user

to set a preference for the objectives before optimization. Only when several tradeoff solu-

tions are known, the users chooses the preferred one among them. It is of course reasonable

to use this principle only when the preference for the objectives is unknown beforehand.
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Otherwise, the preference-based approach should be used.

However, we are interested in providing the user with a set of tradeoff solutions and we

only consider methods that follow the ideal principle in this work.

2.1.3 Approximation sets

An algorithm employed for solving MOPs is called a multiobjective optimizer. The result of a

multiobjective optimizer that follows the ideal principle is usually a set of mutually incompa-

rable solutions, called Pareto set approximation, while the corresponding objective vectors

form the Pareto front approximation or approximation set for short.

Definition 2.6 (Approximation set). Let Z ⊆ Z be a set of objective vectors. Z is called an

approximation set
def

⇐⇒ any element of Z does not weakly dominate any other element in

Z . The set of all approximation sets is denoted as Ω.

The objective vectors from a set Z ⊆Z which are not dominated by any other vector from

Z are often called nondominated vectors.

For approximation sets, the relations of Pareto dominance, weak and strict Pareto dom-

inance and incomparability can be defined similarly as for separate vectors (see the defini-

tions in Subsection 2.1.1).

Definition 2.7 (Pareto dominance of approximation sets). The approximation set Z1 dom-

inates the approximation set Z2 (Z1 ≺Z2)
def

⇐⇒ every vector from Z2 is dominated by at least

one vector from Z1.

Definition 2.8 (Weak Pareto dominance of approximation sets). The approximation set Z1

weakly dominates the approximation set Z2 (Z1 � Z2)
def

⇐⇒ every vector from Z2 is weakly

dominated by at least one vector from Z1.

Definition 2.9 (Strict Pareto dominance of approximation sets). The approximation set Z1

strictly dominates the approximation set Z2 (Z1 ≺≺Z2)
def

⇐⇒ every vector from Z2 is strictly

dominated by at least one vector from Z1.

Definition 2.10 (Incomparability of approximation sets). The approximation sets Z1 and

Z2 are incomparable (Z1||Z2)
def

⇐⇒ Z1 �Z2 and Z2 �Z1.

Additionally, for approximation sets the better relation is defined in the following way.
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Definition 2.11. The approximation set Z1 is better than the approximation set Z2 (Z1 ⊳

Z2)
def

⇐⇒ Z1 �Z2 and Z1 6=Z2.

Note that Z1 ≺≺ Z2 =⇒ Z1 ≺ Z2 =⇒ Z1 ⊳Z2 =⇒ Z1 � Z2. A visual representation of these

definitions is provided in the following example.

Example 2.2. Consider again the MOP from Example 2.1. Figure 2.3 shows three approxima-

tion sets A1, A2 and A3. While A1 and A2 are incomparable, A1 is better than A3 and A2

strictly dominates A3.

OBJECTIVE SPACE

∈A1

∈A2

∈A3

z 1

z 2

0
0

5

5

10

10

15

15

Figure 2.3: Three approximation sets for an example MOP. Black points represent Pareto
optimal objective vectors.

Besides searching for approximation sets as close to the Pareto optimal front as possible,

multiobjective optimizers usually try to attain and maintain a uniform spread of objective

vectors along the Pareto optimal front. In this way, the user can choose among a wide se-

lection of tradeoffs. While being able to achieve an even spread of vectors is often a very

desirable property of a multiobjective optimizer, it is not compliant with the Pareto domi-

nance relation defined previously. This means that the convergence to the Pareto optimal

front is regarded as the only goal of multiobjective optimization, while the even spread of

vectors is merely a preferred property and cannot be formally considered a second goal of

multiobjective optimization. This contradicts the notion of two goals in multiobjective opti-

mization found often in the literature (Deb, 2001).
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2.2 Assessment of multiobjective optimizers

Performance assessment of optimizers on the given problem should always take into con-

sideration the quality of the obtained solutions as well as the computational cost required

to produce them. A frequently used procedure for comparing performance of optimizers

on a problem is to first set a maximal number of function evaluations (or CPU time) at dis-

posal and then compare the quality of the solutions produced by the optimizers within this

limitation.

In multiobjective optimization, the quality of solutions produced by the optimizers is

assessed by comparing their approximation sets. If the optimizers use stochastic methods,

they should be run several times on the given MOP and the resulting sets of approximation

sets should be compared. Because of the existence of incomparable solutions and incom-

parable approximation sets, there exist many different approaches to performance assess-

ment of multiobjective optimizers. In this work we follow the guidelines from (Knowles et al.,

2006) and use dominance ranking, quality indicators and the empirical attainment function

for comparing (sets of) approximation sets.

The choice of the right benchmark MOPs is an additional important aspect to be consid-

ered when comparing multiobjective optimizers. This topic will not be covered here—see

Subsection 3.5.1 for a description of the benchmark MOPs used in this work.

2.2.1 Dominance ranking

Two multiobjective optimizers A and B can be compared according to the dominance ranks

of their approximation sets. Suppose that both algorithms were run r times, which yields

approximation sets A1, . . . ,Ar for the first optimizer and approximation sets B1, . . . ,Br for

the second one. First, we gather all approximation sets in the collection C = {C1, . . . ,C2r }.

Then, each approximation set is ranked according to the number of approximation sets that

are better than the selected approximation set:

dom_rank (Ci ) = 1+
�

�

¦

Cj ∈C | Cj ⊳Ci

©�

� for all i ∈ 1, . . . , 2r.

In this way, we obtain two sets of ranks: {dom_rank (A1), . . . , dom_rank (Ar )} for the first and

{dom_rank (B1), . . . , dom_rank (Br )} for the second optimizer. At this point, one of the statis-

tical ranking tests can be applied to determine if there exists a significant difference between

the values of the two sets. Note that the lower the ranks, the better the corresponding ap-

proximation sets.
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While dominance ranking possesses the desired property of evaluating approximation

sets based solely on Pareto dominance (and not on some preference for the objectives), this

limits its expressive power and is therefore at the same time its weakness (see Example 2.3).

In addition, as was noted in (Tušar and Filipič, 2007), dominance ranking sometimes per-

forms differently from what would be expected (see also the explanation of the Figure 3.3

in Subsection 3.5.4). Consider the case when the approximation sets A1, . . . ,Ar dominate

each other, while the approximation sets B1, . . . ,Br are incomparable among themselves and

incomparable to the sets A1, . . . ,Ar . As a consequence, the ranks of the approximation sets

A1, . . . ,Ar are mostly greater than 1, while the ranks of the approximation sets B1, . . . ,Br are

equal to 1. This means that according to dominance ranking, the optimizer B is better than

the optimizer A, although none of the approximation sets B1, . . . ,Br actually dominates any

of the approximation sets A1, . . . ,Ar .

Example 2.3. Dominance ranks of the three approximation sets from Example 2.2 (see also

Figure 2.3) are: dom_rank (A1) = 1, dom_rank (A2) = 1 and dom_rank (A3) = 3. While dom-

inance ranking correctly establishes that approximation sets A1 and A2 are better than A3,

it does not distinguish between the two incomparable sets A1 and A2. Moreover, dominance

ranking provides only ranks of approximation sets and not a measure of difference between

approximation sets. Thus, we only know that A1 and A2 are better than A3, but we do not

know how big this difference is, and consequently, we do not know if there is a bigger differ-

ence between A1 and A3 than between A2 and A3.

2.2.2 Quality indicators

A quality indicator is a function, which assigns a real value to any vector of approximation

sets by means of some preference information. In this way (assuming the ≤ (or ≥) relation

on R), a quality indicator induces a total order on the set of approximation sets Ω. This

means that for any two (vectors of) approximation sets, we can calculate which one is better

according to the chosen quality indicator. While quality indicators can be of any order (see

(Zitzler et al., 2003) for a detailed analysis of quality indicators), we deal only with unary and

binary indicators here.

Definition 2.12 (Unary quality indicator). The function I :Ω→R, which assigns a real value

to any approximation set Z ∈Ω, is called unary quality indicator.
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Definition 2.13 (Binary quality indicator). The function I : Ω×Ω→R, which assigns a real

value to any pair of approximation sets (Z1,Z2)∈Ω×Ω, is called binary quality indicator.

With quality indicators we get a finer distinction between approximation sets than with

dominance ranking and we can quantify the differences even between incomparable ap-

proximation sets. Note, however, that each such inference is preference-based, i.e., with

different indicators, approximation sets are evaluated differently. Although by definition, an

arbitrary function Ω → R could serve as a unary quality indicator, it is important that an

indicator is Pareto compliant.

Definition 2.14 (Pareto compliant indicator). The unary indicator I : Ω→R is Pareto com-

pliant
def

⇐⇒ for every pair of approximation sets Z1 and Z2, for which Z1 � Z2 and I (Z1) is

not worse than I (Z2).

Pareto compliant indicators define refinements of the partial order induced by weak Pareto

dominance, while Pareto non-compliant indicators can prefer dominated approximation

sets to nondominated ones. In the following, we present three Pareto compliant quality in-

dicators that are frequently used for performance assessment of multiobjective optimizers:

the hypervolume indicator IH, the unary additive epsilon indicator I 1
ǫ+

and the unary R2 in-

dicator I 1
R2.

Hypervolume indicator I H

For an approximation set Z , the indicator value IH(Z) represents the hypervolume of the

subspace S r
Z
⊆ Z , bounded by points from Z on one side and the reference point r on the

other side (Zitzler and Thiele, 1999). The reference point must be chosen so that:

rj > z j for every j ∈ {1, . . . , m } and every objective vector z ∈Z .

The larger the hypervolume indicator, the better the approximation set. For this indicator,

the following holds: if Z1 ⊳Z2, then IH(Z1) > IH(Z2). Consequently, if IH(Z1) < IH(Z2), then

Z1 cannot be better than Z2.

Example 2.4. Consider again the three approximation sets from Example 2.3 (their corre-

sponding subspaces S r
Ai

are shown in Figure 2.4). The hypervolume indicators for these sets

are: IH(A1) = 96.8, IH(A2) = 91.6, and IH(A3) = 56.6. This means that the approximation

set A1 is found to be better than the other two sets according to this indicator and the chosen

reference point.
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Figure 2.4: The reference point r and the resulting subspaces S r
A1

, S r
A2

and S r
A3

for the three
approximation sets from Figure 2.3.

Unary additive epsilon indicator I 1
ǫ+

Let us first look at the binary additive epsilon indicator (Zitzler et al., 2003), from which the

unary is derived. Iǫ+(Z1,Z2) equals the smallest summand ǫ to which each vector from Z2

can be added in every objective such that the resulting approximation set is weakly domi-

nated by Z1 :

Iǫ+(Z1,Z2) = inf
ǫ∈R

¦

for every z 2 ∈Z2 exists a z 1 ∈Z1 so that z 1 �ǫ+ z 2
©

,

where �ǫ+ is the additive ǫ-dominance relation:

z 1 �ǫ+ z 2
def

⇐⇒ z 1
j
≤ ǫ+ z 2

j
for every j ∈ {1, . . . , m }.

Let us illustrate the meaning of this definition with an example.

Example 2.5. Examine once more the approximation sets A1 and A2 from Figure 2.5. If all

vectors from A2 are increased by ǫ = 2.1 in each objective, we get the corresponding set A′2,

which is weakly dominated by A1. Since 2.1 is the smallest possible value of ǫ so that A1 �A
′
2,

this means that Iǫ+(A1,A2) = 2.1.

Each binary quality indicator can be used as a unary indicator by replacing the second

approximation set with a reference set of objective vectors R :

I 1(Z) = I (Z ,R).
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Figure 2.5: The approximation sets A1 and A2 and the shifted set A′2.

The ideal choice for the reference set is the Pareto optimal front. Since it is usually unknown,

mutually incomparable objective vectors from the union of all available approximation sets

can be used instead.

Smaller values of the unary additive epsilon indicator denote better sets. For this indica-

tor, the following holds: if Z1 ⊳Z2, then I 1
ǫ+
(Z1)≤ I 1

ǫ+
(Z2). Consequently, if I 1

ǫ+
(Z1)> I 1

ǫ+
(Z2),

then Z1 cannot be better than Z2.

Example 2.6. If we choose the Pareto optimal front from Figure 2.3 to be the reference set,

the unary additive epsilon indicators for the three approximation sets are: I 1
ǫ+
(A1) = 5.7,

I 1
ǫ+
(A2) = 3.6, and I 1

ǫ+
(A3) = 5.7. The approximation set A2 is the best one according to the

unary additive epsilon indicator and the chosen reference set. Note that according to the hy-

pervolume indicator, A1 is better than A2. The disagreement between two unary Pareto com-

pliant indicators means that the approximation sets A1 and A2 are incomparable.

Besides the additive epsilon indicators, the multiplicative variants also exist. We will not

discuss them here. The interested reader is referred to (Zitzler et al., 2003) for more informa-

tion.

Unary R 2 indicator I 1
R 2

Hansen and Jaszkiewicz (1998) proposed three different binary R indicators (IR1, IR2 and

IR3). We only use the unary version of IR2 in this work, therefore please see (Hansen and

Jaszkiewicz, 1998) or (Knowles, 2002) for details on the other indicators.
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All R indicators comprise the user’s preference in the form of utility functions:

u : Z →R.

Suppose that every preference is written as a vector of parameters λ = (λ1, . . . ,λm ) ∈ Λ and

that the utility function uλ is parameterized with such vectors from Λ. Then, the binary

indicator IR2 is defined as:

IR2(Z1,Z2) =
1

|Λ|

∑

λ∈Λ

�

max
z∈Z1

uλ(z )−max
z∈Z2

uλ(z )

�

.

There are several possibilities for the choice of the parameterized utility function uλ. In this

work we use the augmented Chebyshev function (recommended by Knowles et al. (2006)):

uλ(z ) =−






max

j=1,...,m
λj |z

∗
j
− z j |+ρ

m
∏

j=1

|z ∗
j
− z j |






,

where z ∗ is an ideal reference point (one that weakly dominates all other points) and ρ is a

sufficiently small positive real number. The set Λ of vectors of parameters should contain a

sufficiently large number of uniformly dispersed vectors, which need to be normalized with

respect to the ideal point and the Nadir point (one that is weakly dominated by all other

points).

The unary indicator I 1
R2 is derived from the binary: I 1

R2(Z) = IR2(Z ,R), where R is the

reference set. The smaller the value of the I 1
R2 indicator, the better the approximation set. If

Z1 ⊳Z2, then I 1
R2(Z1) ≤ I 1

R2(Z2). Consequently, if I 1
R2(Z1) > I 1

R2(Z2), then Z1 cannot be better

than Z2.

Example 2.7. Let us use the I 1
R2 indicator for evaluating approximation sets A1, A2 and A3

from Figure 2.4. If we use the recommended parameters: Pareto front as the reference set, the

origin (0, 0) as the ideal point, the point r as the Nadir point, 501 uniformly dispersed param-

eter vectors and ρ = 0.01, we get the following indicator values: I 1
R2(A1) = 0.134, I 1

R2(A2) =

0.120, and I 1
R2(A3) = 0.186. This means that according to the I 1

R2 indicator (and assuming all

the presumptions), A2 is the best approximation set.

Performance assessment with quality indicators

As already pointed out, in case of comparing the performance of two stochastic multiobjec-

tive optimizers on a given MOP, several runs for each optimizer have to be made. After r runs,
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we get two sets of approximation sets: A1, . . . ,Ar for the first optimizer and B1, . . . ,Br for the

second one. Afterwards, a Pareto compliant quality indicator is calculated for each approxi-

mation set thus yielding values I 1(A1), . . . , I 1(Ar ) and I 1(B1), . . . , I 1(Br ). It is important to note

that all parameters of quality indicators, such as the reference set and the reference point,

have to be equal for all evaluated approximation sets. In many cases, it is also reasonable to

normalize the approximation sets before the use of indicators. Finally, one of the statistical

tests can be used for making inferences about the performance of the two optimizers with

regard to the chosen quality indicator.

2.2.3 Empirical attainment function

The third approach to performance assessment is based on the multiobjective concept of

goal-attainment: an objective vector is attained when it is weakly dominated by the approx-

imation set returned by the optimizer. If the optimizer is run r times, each objective vector

can be attained between 0 and r times. The empirical attainment function of the objective

vector z gives the frequency with which z was attained by the approximation sets Z1, . . . ,Zr

(Grunert da Fonseca et al., 2001):

αr (z ) =
1

r

r
∑

i=1

I (Zi � {z }) ,

where χ is the characteristic function, defined as:

χ(b ) =







1 if b is true,

0 otherwise.

Two multiobjective optimizers can be compared on a MOP by performing a statistical

test on the results of the corresponding empirical attainment functions. Additionally, this

function can be used for visualization of multiple runs of one (or more) optimizers in the

following way. Suppose we wish to visualize the objective vectors that have been attained in

k % of the runs. The k %-attainment surface of the approximation sets Z1, . . . ,Zr consists of

the tightest objective vectors that have been attained in at least k % of the runs:

Sk %
r
= {z ∈Z |αr (z )≥ k/100∧¬(Zi ≺≺ {z } for all i ∈ 1, . . . , r )} .

Thus, the k %-attainment surface Sk %
r

divides the objective space into two parts: one, where

the objective vectors have been attained in at least k % of the runs, and the other one, where

the objective vectors were attained in less than k % of the runs.
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Example 2.8. Suppose that the tree approximation sets A1, A2 and A3 from Example 2.3 rep-

resent three different runs of a multiobjective optimizer. Figure 2.6 shows all attainment sur-

faces for these runs: Sk
3 for k = 1/3, 2/3 and 3/3.
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Figure 2.6: Attainment surfaces for the three approximation sets form Figure 2.3.

2.2.4 Multiple testing issues

Several approaches to performance assessment can be simultaneously used for comparing

two optimizers on a MOP. In this case, the same data (approximation sets) is used for mul-

tiple testing. As this is in contradiction with some assumptions of statistical testing proce-

dures, the significance levels of such tests are not reliable.

One possibility to overcome this problem is to use the Bonferroni correction (Bonferroni,

1936) for reducing the significance levels of the statistical tests. For example, if we want

to compare two sets of approximation sets with n different quality indicators and we wish

to consider an overall significance level α, then we must set the significance level for each

comparison to αs =α/n .

2.3 Multiobjective evolutionary algorithms

Evolutionary Algorithms (EAs) are search methods that imitate the principles of the Dar-

winian theory of evolution. By applying selection, crossover and mutation to a population
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of individuals1, they create better and better offspring individuals. EAs are known to be ro-

bust and able to handle all types of functions. Therefore, they have been successfully used

in singleobjective optimization.

Since the ideal principle requires elements of the approximation set to be available si-

multaneously, population-based search methods are the most appropriate for this task. This

is why in the last twenty years EAs have been frequently used also as multiobjective opti-

mizers (Coello Coello et al., 2002; Deb, 2001). Some of the most popular Multiobjective Evo-

lutionary Algorithms (MOEAs) are based on Genetic Algorithms (GAs). In the following we

review three such algorithms, namely NSGA-II, SPEA2 and IBEA, using a unifying framework,

which we call the basic genetic algorithm.

2.3.1 Basic genetic algorithm

The outline of the basic GA is presented in Algorithm 2.1. Unlike GAs for singleobjective opti-

mization, the basic GA uses two populations. Population Q contains the current individuals,

while population P preserves the best individuals found so far.

Basic Genetic Algorithm

Input: Parameters of the algorithm.
1. Initialize populations P0 and Q0.
2. Set t = 0.
3. Repeat:

3.1. Set t = t +1.
3.2. Calculate the objectives for new individuals from Pt−1 and Qt−1.
3.3. Get Pt from Pt−1 and Qt−1 with an environmental selection procedure.
3.4. If stopping criterion met, exit the loop.
3.5. Fill the mating pool Mt using tournament selection on Pt .
3.6. Apply variation to individuals from Mt to get Qt (see Algorithm 2.2).

Output: Nondominated individuals from Pt .

Algorithm 2.1: Outline of the basic GA.

After initialization of the first populations P0 and Q0, the main loop is executed for sev-

eral generations until a stopping criterion is met. At each generation t , we first calculate the

objective function for the new individuals from populations Pt−1 and Qt−1. Because all pop-

ulations have a fixed (and usually equal) size, an environmental selection procedure is ap-

1Note that in the field of evolutionary computation, the terms individual and population are often used
instead of solution and set of solutions, respectively.
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plied for selecting the best individuals that enter the next population. If only the Pareto dom-

inance concept is used, many individuals are incomparable. Therefore, the environmental

selection procedure ranks individuals from both populations according to some preference.

Usually this preference comprises information on domination between pairs of individu-

als and their spread in the objective space. Only the better half of individuals according to

this ranking enters the population Pt . Finally, the evolutionary steps of mating selection,

crossover and mutation are applied to obtain a new offspring population Qt from the parent

population Pt .

In the case of numeric MOPs, the individuals are usually encoded as real-valued vec-

tors. In such cases the variation consists of uniform and simulated binary crossover and

polynomial mutation (Deb and Agrawal, 1995), as shown in Algorithm 2.2. When tackling

combinatorial MOPs, different encoding and variation operators need to be used.

Variation procedure

Input: Mating pool Mt .
1. Create empty population Qt .
2. For each pair of individuals x i , x i+1 (i = 1, 3, . . . ) from Mt do:

2.1. Modify the individuals x i , x i+1 with uniform crossover.
2.2. Modify the individuals x i , x i+1 with simulated binary crossover.
2.3. Modify the individual x i with polynomial mutation.
2.4. Modify the individual x i+1 with polynomial mutation.
2.5. Add individuals x i and x i+1 to Qt .

Output: Population Qt .

Algorithm 2.2: Outline of variation procedure in the basic GA for individuals encoded as
real-valued vectors.

The popular algorithms NSGA-II, SPEA2 and IBEA, which will be soon presented in more

detail, can be viewed as special cases of the basic GA. The main differences among them lie

in the approach used for environmental selection.

2.3.2 Nondominated sorting

The Nondominated Sorting Genetic Algorithm II (NSGA-II) by Deb et al. (2002) is probably

the most widely-used MOEA and was applied to many real-world problems. NSGA-II ini-

tializes the first parent population P0 with randomly created individuals and sets the first

offspring population Q0 to be empty. Its environmental selection procedure is based on

nondominated sorting and the crowding distance metric. At generation t, the individuals
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from populations Pt−1 and Qt−1 are joined and ranked according to the number of individ-

uals that dominate them. All nondominated individuals are allocated into the first front and

nondominated sorting is applied again to the remaining individuals. In this way, we get a

sequence of fronts, where individuals from precedent fronts are preferred to those from sub-

sequent fronts. The new population Pt is filled in turn with the individuals from the best

fronts. If a front cannot fit into Pt entirely, the individuals from this front are further ranked

according to the crowding distance metric.

Sorting based on crowding distance prefers individuals from less crowded regions of the

objective space. For the individual x i , the distance d j (x i ) between its neighboring individu-

als x i− and x i+ in the objective j is calculated as:

d j (x
i ) =

f j (x i+)− f j (x i−)

f max
j − f min

j

,

where f max
j and f min

j denote the maximum and minimum value of the objective j . The two

solutions with extreme values of f j are assigned the biggest possible d j . The crowding dis-

tance for the individual x i is then defined as:

c (x i ) =

m
∑

j=1

d j (x
i ).

The individuals with the biggest crowding distance are included in the next population. The

environmental selection procedure of NSGA-II is illustrated in the next example.

Example 2.9. Consider the two joined populations Pt−1 and Qt−1 presented in Figure 2.7 (a).

After nondominated sorting, only the first front enters the next population entirely. From the

second front, three best individuals must be chosen. Figure 2.7 (b) shows the calculation of

the crowding distance metric. The individuals represented as black points are the best ones

according to this metric and therefore enter the next population.

The overall worst-case complexity of NSGA-II is O(m N 2), where m denotes the number

of objectives and N is the number of individuals in the joined population Pt−1 ∪Qt−1. The

complexity is due to nondominated sorting, which requires at most O(m N 2) operations,

while crowding distance calculation and sorting by crowding distance require O(m N log N )

and O(N log N ) operations in the worst case, respectively.

2.3.3 Strength Pareto approach

Besides NSGA-II, the Strength Pareto Evolutionary Algorithm 2 (SPEA2) by Zitzler et al. (2001)

is a popular genetic algorithm, which performs comparably to NSGA-II regarding conver-
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Figure 2.7: Environmental selection procedure in NSGA-II.

gence to the Pareto optimal front and often achieves a more uniform spread of individuals

than NSGA-II.

Instead of a parent and offspring population, SPEA2 uses a basic population Q, which is

initialized with random individuals, and an archive of best individuals P , which is initially

empty (note that this is just the opposite of the initialization in NSGA-II). Evaluation of in-

dividuals is done by measuring their strength, raw fitness and density. The strength of an

individual at generation t is equal to the number of individuals from Pt−1 and Qt−1 that are

dominated by it (see Figure 2.8 (a)):

S(x i ) =
�

�

¦

x j ∈Pt−1 ∪Qt−1 | x
i ≺ x j
©�

�.

The raw fitness of an individual is computed by summing the strengths of all individuals that

dominate it (see Figure 2.8 (b)):

R(x i ) =
∑

x j≺x i

S(x j ).

Because with evolution the majority of individuals become nondominated (and have raw

fitness equal to 0), the ties are broken using additional information on their spread in the

objective space. For all individuals x i with the same raw fitness R(x i ), the density is calcu-

lated as:

D(x i ) =
1

σk
i +2

,

whereσk
i is the distance to the k -nearest neighbor of x i (k is a parameter dependent on pop-

ulation and archive size and is usually set to
p

|P |+ |Q|). The true fitness of the individual is
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Figure 2.8: Environmental selection procedure in SPEA2.

finally calculated by summing the raw fitness and density and should be minimized:

F (x i ) =R(x i )+D(x i ).

Example 2.10. In the example from Figure 2.8, we must choose among the three individuals

with raw fitness equal to 4. If k = 3, the individuals represented as black points are chosen for

the next population.

The strength Pareto approach is computationally more expensive than nondominated

sorting. Since computing raw fitness of individuals requires at most O(m N 2) operations and

density O(m N 2 log N ) operations, the overall worst-case complexity of SPEA2 amounts to

O(m N 2 log N ) operations. Again, m denotes the number of objectives and N is the number

of individuals in the joined population Pt−1 ∪Qt−1.

2.3.4 Indicator-based selection

The Indicator-Based Evolutionary Algorithm (IBEA) by Zitzler and Künzli (2004) is the most

recent of the presented algorithms and uses a different approach to environmental selection

than NSGA-II or SPEA. Individuals are evaluated according to the preference information of

the decision maker, which is given in the form of a Pareto compliant binary quality indicator

(see Subsection 2.2.2), and no other explicit diversity preserving mechanism is needed.
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IBEA originally uses a single population of variable size instead of two separate popu-

lations. Without altering its performance, we can assume that IBEA uses two populations,

which are initialized in the same way as in NSGA-II.

Before environmental selection at each generation t , the objective values of all individ-

uals must be normalized to the [0, 1] interval. Environmental selection procedure in IBEA

ranks the individuals according to their usefulness regarding the chosen quality indicator.

For example, an individual x i from the joined population Rt−1 =Pt−1 ∪Qt−1 could be eval-

uated by simply summing up its indicator values with respect to the rest of population:

F ′(x i ) =
∑

x j ∈Rt−1\{x i }

I ({x j },{x i }).

The fitness value F ′, which is to be maximized, is a measure for the loss in quality if x i is

removed from the population. For the Iǫ+ indicator (see Subsection 2.2.2), the F ′(x i ) divided

by the population size equals the average ǫ needed to cover x i by other population members.

However, IBEA uses a slightly different schema, which amplifies the influence of dominating

population members over dominated ones:

F (x i ) =
∑

x j ∈Rt−1\{x i }

−e−I ({x j },{x i })/(c κ),

where κ is a positive scaling factor and c is the maximum absolute value of I on individuals

from Rt−1. The fitness defined in this way should be minimized.

The environmental selection procedure consists of repeating the following two steps: (1)

the individual x ∗ with the smallest fitness is removed from Rt−1 and added to Pt , (2) the

fitness values of the remaining individuals x are updated with:

F (x ) = F (x )+ e−I ({x ∗},{x })/(c κ).

The selection stops, when the population Pt is full.

While arbitrary Pareto compliant binary indicators can be used with IBEA, the algorithm

was presented in combination with the binary additive epsilon indicator Iǫ+ and the binary

HD indicator, defined as:

IHD(Z1,Z2) =







IH(Z2)− IH(Z1) if Z1 ≺Z2,

IH(Z1 ∪Z2)− IH(Z1) otherwise,

where IH is the hypervolume indicator. In the reminder of the thesis we use IBEAǫ+and

IBEAHD to denote the two versions of IBEA that use the corresponding quality indicators.
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Let m denote the number of objectives and N the number of individuals in the joined

population Rt−1. If the computation of the indicator of two solutions requires O(m ) opera-

tions (as is the case for Iǫ+ and IHD indicators), the overall worst-case complexity of IBEA is

O(m N 2), which is equal to that of NSGA-II.
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3
Differential Evolution for Multiobjective

Optimization

This chapter presents the main contribution of this thesis, namely the algorithm Differential

Evolution for Multiobjective Optimization (DEMO). As its name suggests, DEMO is based

on Differential Evolution (DE)—a successful evolutionary algorithm for singleobjective op-

timization introduced in Section 3.1. The first adaptations of DE for solving multiobjective

optimization problems are listed in Section 3.2. After that, the DEMO algorithm is presented

in detail in Section 3.3, while Section 3.4 reports on the recent adaptations of DE to multi-

objective optimization. The chapter concludes with two empirical studies: Section 3.5 de-

scribes the experiments and results of the comparison between DEMO and the basic GA,

while Section 3.6 contains the results of the comparison among different DEMO variants.

3.1 Differential evolution

Differential evolution, contrived by Storn and Price (1997), is a simple population-based al-

gorithm that encodes solutions as vectors and uses operations such as vector addition, scalar

multiplication and exchange of components (crossover) to construct new solutions from the

existing ones.

27
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3.1.1 Algorithm outline

DE, as evolutionary algorithms in general, starts with a population of random solutions, from

which better and better solutions are obtained at each generation. For each parent solution,

a so-called candidate is constructed using one of the many possible strategies. After that,

the candidate is evaluated and compared to its parent. If the candidate is better than or

equal to its parent, it replaces the parent in the population. Otherwise, the candidate is

discarded. This procedure is repeated in turn for each parent solution from population P .

After that, all solutions are randomly enumerated so that the order of parents changes. When

the stopping criterion is met, the best solution found is returned. The DE algorithm is shown

in Algorithm 3.1.

Differential Evolution

Input: Parameters of the algorithm.
1. Evaluate the initial population P of random solutions.
2. While stopping criterion not met, do:

2.1. For each solution x i (i = 1, . . . , |P |) from P repeat:
(a) Create candidate c from parent x i (see Algorithm 3.2).
(b) Evaluate the candidate.
(c) If the candidate is better than or equal to the parent, the candidate

replaces the parent. Otherwise, the candidate is discarded.
2.2. Randomly enumerate the solutions in P .

Output: The best solution from P .

Algorithm 3.1: Outline of DE.

3.1.2 The DE/rand/1/bin strategy

The candidate is created using one of the so-called DE strategies. In this work, we use the

DE/rand/1/bin strategy (see Algorithm 3.2 and Figure 3.1) as this is one of the most fre-

quently used DE strategies, also referred to as classic DE in (Price et al., 2005). From the

current population and the current parent x i , the candidate c is constructed with the help

of three randomly chosen solutions x i 1 , x i 2 and x i 3 :

c = x i 1 + F (x i 2 −x i 3),

where i , i 1, i 2 and i 3 are pairwise different and F is a scaling factor for the difference vector

x i 2 − x i 3 . This step is often referred to as mutation. Afterwards, the candidate is subject to
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binomial crossover with the parent, where some components of the parent are copied to the

corresponding components in the candidate. Let l be a random integer from {1, . . . , n}. After

binomial crossover, each candidate’s component ck is equal to:

ck =







ck if k = l or rk ≤CR,

x i
k otherwise,

where each rk is chosen randomly from the [0, 1] interval. Note that the CR probability used

here has a different meaning than the crossover probability usually used by GAs. In binomial

crossover, the smaller the CR, the greater the influence of the parent. But even if CR= 0, the

candidate does not inherit all components from its parent, since the component c l always

remains intact for a randomly chosen l .

Candidate creation

Input: Population P and the chosen parent x i .
1. Randomly select three solutions x i 1 , x i 2 and x i 3 from P , where i , i 1, i 2 and i 3 are

pairwise different.
2. Calculate candidate c as c = x i 1 + F (x i 2 −x i 3 ), where F is a scaling factor.
3. Modify the candidate by binomial crossover with the parent x i using probability CR.
4. Repair the candidate if necessary.
Output: Candidate c .

Algorithm 3.2: Outline of candidate creation with the DE/rand/1/bin strategy.
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Figure 3.1: Visual representation of candidate creation with DE/rand/1/bin strategy.
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Sometimes, the newly created candidate falls out of bounds of the decision space. In

such cases, many repair methods can be used. We address this problem by replacing the

candidate value violating the boundary constraints with the closest boundary value. In this

way, the candidate becomes feasible with as few alterations to it as possible and there is no

need for making a new candidate. It is important to note, however, that this repair method

may yield more boundary solutions and is biased for problems where the optimal solution

lies on one of the bounds of the decision space.

A repair method is needed also in the case when the decision variables are not continu-

ous. For example, if the decision space is discretized, the operations of vector addition and

scalar multiplication can result in a point that is not part of the discretized decision space.

In such cases, two possible repair schemes can be adopted. According to the Lamarckian

repair, the candidate’s values must be rounded to that of the nearest point in the decision

space. The Baldwinian repair, on the other hand, rounds the candidate’s values only to en-

able the correct calculation of its objectives, while actually leaving the original values unre-

paired. See (Ishibuchi et al., 2005) for a comparison between the two repair schemes on the

multiobjective 0/1 knapsack problem.

The basic idea behind DE is that differences between solutions are used as search direc-

tions. If the differences lead to new solutions, which are good (better than the existing parent

solution used for comparison), then this reinforces the search in this promising direction.

Otherwise, the newly obtained (bad) solutions are discarded and the unpromising direction

is not fortified. Through evolution in DE, the solutions converge closer together and the dif-

ferences among solutions are reduced. This serves as an automatic adaptation of the search

procedure: at the beginning, the solutions are more diverse and there is more focus on the

exploration of the decision space, while in the end, the solutions are closer together and the

method concentrates on the exploitation of the decision space.

All DE strategies are written using the DE/x/y/z notation, where x represents the method

of selection of the first solution x i 1 , which can be selected randomly (rand) or as the best

vector so far (best); y is the number of difference vectors used; and z defines the type of

crossover which can be binomial (bin) or exponential (exp) (Price et al., 2005). Besides the

DE/rand/1/bin strategy, the following strategies can also be frequently found in the litera-

ture: DE/best/1/bin, DE/best/2/bin, DE/rand/2/exp and similar. For more information on

these and other DE strategies, please see (Price et al., 2005) and (Mezura-Montes et al., 2006).
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3.1.3 Advantages, limitations and applications

Since no solution can be removed from the population unless a better solution is found, DE

implicitly incorporates elitism—a desirable property of evolutionary algorithms that assures

the preservation of good solutions. Moreover, the newly obtained good solutions immedi-

ately participate in the creation of new candidates, which speeds up the convergence to the

optimal solutions. But perhaps the key advantage of DE is its simplicity: it is easy to under-

stand, implement and use.

The biggest disadvantage of DE originates in the limitations of its encoding. Because

of operations of vector addition and scalar multiplication, the decision space needs to be a

vector space. This does not necessarily mean that the solutions have to be encoded as real

vectors, but they need to be encoded in such way, that the addition of two solutions and

scalar multiplication have a sensible definition. As no such vector representation of solu-

tion exists for combinatorial problems, the DE’s principle can only be applied in numerical

optimization.

DE has been successfully applied to many real-world optimization problems, such as de-

sign of aeronautic shapes (Rogalsky et al., 1999), neural network learning (Ilonen et al., 2003),

parameter identification of induction motors (Ursem and Vadstrup, 2003), flexible ligand

docking in bioinformatics (Thomsen, 2003) and others. While it is a very efficient and reli-

able optimizer of non-noisy functions, experiments show that its performance deteriorates

on noisy functions, when the fitness of solutions approaches the fitness variance caused by

the noise (Krink et al., 2004).

3.2 First adaptations to multiobjective optimization

After the successful application of GAs to MOPs, the first multiobjective optimizers based on

DE were proposed. The greatest challenge in adapting DE to multiobjective optimization is

the comparison between the parent solution and the newly crated candidate. Researchers

have confronted with this challenge in different ways.

Abbass et al. (2001) introduced the Pareto-frontier Differential Evolution (PDE), in which

only the nondominated solutions can take part in the reproduction process. The dominance

relation is used to determine if the candidate can replace its parent, i.e., only the candidates

that dominate their parents are allowed to take their place, while all the other candidates are

discarded. PDE was compared to SPEA (Zitzler and Thiele, 1999) on two test problems and



32 Differential Evolution for Multiobjective Optimization

found to outperform it.

In a short technical report, Lampinen (2001) defined a DE’s selection rule which was re-

ferred to as Generalized Differential Evolution (GDE) in subsequent publications. GDE is

designed for multiobjective problems with constraints where some solutions can be infea-

sible. When the candidate solution and its parent are both feasible, the candidate replaces

the parent if it weakly dominates it. This rule is very similar to the selection in PDE. The only

difference is that instead of the dominance relation, the weak dominance relation is used.

The following year, Madavan (2002) proposed the Pareto Differential Evolution Approach

(PDEA1). Like PDE, PDEA uses DE for creating new solutions. It then merges the parent and

offspring populations and calculates the nondominated rank (with Pareto-based ranking as-

signment) and diversity rank (with the crowding distance metric) for each solution. Two

variants of PDEA were investigated. The first compares each candidate with its parent. The

candidate replaces the parent if it has a higher nondominated rank or, if it has the same

nondominated rank and a higher diversity rank. Otherwise the candidate is discarded. This

variant was found inefficient—the diversity was good, but the convergence slow. The other

variant simply takes the best solutions according to the nondominated rank and diversity

rank (like in NSGA-II). This variant has proved to be very efficient and was applied to several

MOPs where it produced favorable results.

Xue et al. (2003) presented Multiobjective Differential Evolution (MODE). This algorithm

also uses the Pareto-based ranking assignment and the crowding distance metric, but in a

different manner than PDEA. In MODE, the fitness of a solution is first calculated using

Pareto-based ranking and then reduced with respect to the solution’s crowding distance

value. This single fitness value is then used to select the best solutions for the new popu-

lation. MODE was tested on five benchmark problems where it produced better results than

SPEA.

Parsopoulos et al. (2004) took a different approach with the Vector Evaluated Differen-

tial Evolution (VEDE) inspired by the Vector Evaluated Genetic Algorithm (VEGA) (Schaffer,

1984). VEDE is a multi-population algorithm, where M populations are evolved simultane-

ously (while M can be greater than the number of objectives, we assume that M equals the

number of objectives for the purpose of this presentation). DE is used for constructing new

candidates in each of the M populations and the Pareto dominance criterion (like in PDE)

is used to determine if the candidates are to replace their parents. In the end of each gener-

1This acronym was not used in (Madavan, 2002). We introduce it to make clear distinction between his
approach and other implementations of DE for multiobjective optimization.
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ation, the ‘best’ solution from population i is sent into population i + 1 (the ‘best’ solution

from the last population is sent to the first population), where it is later used for creating new

solutions in the next generation. The ‘best’ solution from population i is defined as the so-

lution with the lowest value of the objective f i . In the mentioned study, VEDE outperformed

VEGA on all four tested multiobjective problems.

Iorio and Li (2004) used Non-dominated Sorting Differential Evolution (NSDE), an ap-

proach identical to PDEA, to solve rotated multiobjective optimization problems. For a pre-

sented rotated problem, NSDE achieved significantly better results than NSGA-II.

Three years after the first introduction of GDE, Kukkonen and Lampinen (2004) pre-

sented the Extension of Generalized Differential Evolution, also called GDE2. Let us again

restrict to the case when the candidate and its parent are both feasible. GDE2 chooses the

candidate over its parent when the candidate weakly dominates the parent (as in GDE) or

when they do not dominate each other and the parent resides in a more crowded region

than the candidate. GDE2 was compared to SPEA, NSGA-II and GDE on five test problems,

where it achieved better results than SPEA and comparable performance to NSGA-II and

GDE.

3.3 The DEMO algorithm

The idea presented in this work is to use differential evolution for exploring the decision

space and environmental selection mechanisms from NSGA-II, SPEA2, IBEA (see their de-

scription in Section 2.3) or some other approach to select the best individuals for the next

population. This idea is implemented in the DEMO algorithm2, presented in this section.

The outline of DEMO is shown in Algorithm 3.3. Like DE, the algorithm starts with a

population P of p randomly created solutions. At each generation, the following steps are

repeated. A candidate is constructed from its parent (and other solutions from P) using the

DE/rand/1/bin strategy described earlier (see Subsection 3.1.2). After that, the candidate is

evaluated and compared to its parent. At this point, DEMO differs from DE (see step 2.1 (c)

in Algorithms 3.1 and 3.3). In DEMO, the candidate replaces the parent only if it dominates

it. If the parent dominates the candidate, the candidate is discarded. Otherwise (when the

candidate and parent are incomparable), the candidate is added to the population. After

repeating this step p times, we get a population of size between p and 2p . If the population

2DEMO is a generalization of the DEMO/parent variant presented in (Robič and Filipič, 2005), which used
the DE/rand/1/bin strategy for candidate creation and environmental selection procedure as in NSGA-II.
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has enlarged, it must be truncated to size p using one of the approaches to environmental

selection. In the end of generation, the solutions from P are randomly enumerated (as in

DE). The final output of DEMO consists of nondominated solutions from P .

Differential Evolution for Multiobjective Optimization

Input: Parameters of the algorithm.
1. Evaluate the initial population P of p random solutions.
2. While stopping criterion not met, do:

2.1. For each solution x i (i = 1, . . . , p ) from P repeat:
(a) Create candidate c from parent x i (see Algorithm 3.2).
(b) Calculate the objectives of the candidate.
(c) If the candidate dominates the parent, the candidate replaces the parent.

If the parent dominates the candidate, the candidate is discarded.
Otherwise, the candidate is added to the population.

2.2. If the population has more than p solutions, apply an environmental
selection procedure to get the best p solutions.

2.3. Randomly enumerate the solutions in P .
Output: Nondominated solutions from P .

Algorithm 3.3: Outline of DEMO.

Note that the newly created candidates that enter the population (either by replacement

or by addition) instantly take part in the creation of subsequent candidates. This helps

achieving fast convergence to the Pareto optimal front. Moreover, it resembles very closely

the steady-state mechanism of DE—on the contrary to the related PDEA algorithm described

earlier.

Besides the environmental selection mechanism from NSGA-II, which has been often

used in previous DE-based algorithms, DEMO can incorporate an arbitrary environmental

selection procedure. In the remainder of this thesis we will use the notations DEMONS-II,

DEMOSP2, DEMOIBǫ+ and DEMOIBHD for DEMO variants that use environmental selection

procedures from algorithms NSGA-II, SPEA2, IBEAǫ+and IBEAHD, respectively.

Because DEMO immediately discards the dominated solution in the comparison be-

tween the candidate and its parent, its population size rarely reaches 2p before environ-

mental selection. Therefore, the computational complexity of the employed environmental

selection procedure is often smaller than the same environmental selection procedure ap-

plied on the simple GA.
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3.4 Recent adaptations to multiobjective optimization

Soon after the first proposal of DEMO (Robič and Filipič, 2005), Kukkonen and Lampinen

(2005) presented the third evolution step of GDE, called GDE3. In the case of unconstrained

problems, GDE3 is almost equal to DEMO—the only difference is that DEMO uses Pareto

dominance when comparing two solutions, while GDE3 uses weak Pareto dominance. The

performance of GDE3 was compared to that of NSGA-II on unconstrained problems with

one, two and three objectives as well as on some constrained two-objective problems. GDE

achieved better diversity and sometimes better convergence than NSGA-II.

At the same time, Santana-Quintero and Coello Coello (2005) introduced the ǫ-MyDE

algorithm, which deals with constrained and unconstrained optimization problems. In the

case when no constraints are violated, the selection procedure is the following. If the can-

didate dominates its parent, the candidate is chosen and if the parent dominates the candi-

date, the parent is chosen. Otherwise, the winner is determined randomly (with 50% chance

of each outcome). Additionaly, ǫ-MyDE uses an external archive of elite solutions. When se-

lecting the solutions for the archive, the ǫ-dominance relation (see its definition on page 14)

is used instead of the Pareto dominance relation. In comparison to PDE, NSGA-II and ǫ-

MOEA (Deb et al., 2003), ǫ-MyDE achieved good results on two test problems.

Two other approaches that use DE for multiobjective optimization were proposed very

recently. Iorio and Li (2006) extended their NSDE algorithm by taking into consideration the

directional information of solutions in the decision space. Three different algorithms were

presented—one that tries to optimize the convergence to the Pareto optimal set (NSDE with

Directional Convergence, or NSDE-DC), one that aims at obtaining well-spread solutions

(NSDE with Directional Spread, or NSDE-DS) and one that combines both goals (NSDE with

Directional Convergence and Spread, or NSDE-DCS). The basic difference between the three

algorithms and NSDE (or PDEA) lies in the way they select the solutions used for the calcu-

lation of the new candidate. While NSDE selects these solutions randomly, the new variants

select the solutions in such a way that the difference vector points in the general direction

of the Pareto optimal set (the NSDE-DC variant), along the Pareto optimal set (the NSDE-DS

variant) or either (the NSDE-DCS variant). Although such a limitation on the direction of

the search could cause the algorithm to get stuck in a local optimum, tests show that the

three presented variants (and especially NSDE-DCS) outperform NSGA-II and its predeces-

sor NSDE on all four presented problems.

The second recent approach by Hernández-Díaz et al. (2006) uses rough sets theory to
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help DE to converge closer to the Pareto optimal front. The resulting algorithm, called Differ-

ential Evolution for Multiobjective Optimization with Rough Sets (DEMORS), consists of two

phases. In the first phase, a DE-based approach is used for finding new solutions. Besides

the commonly-used population of solutions, two archives of already evaluated solutions are

kept. The solutions are arranged in the archives according to the so-called Pareto adaptive

ǫ-dominance relation between them. In the second phase, a local search procedure based

on rough sets theory is applied in order to improve the solutions obtained in the first phase.

DEMORS is a rather complicated algorithm and introduces some new parameters in addi-

tion to the ones used by DE. Nevertheless, it is able to obtain very good solutions using only

a small number of evaluations.

3.5 Comparison between DEMO and the basic GA

We wish to compare the performance of DEMO to that of the basic GA when the environ-

mental selection procedure of both algorithms is the same. For this purpose, we compare

DEMONS-II to NSGA-II, DEMOSP2 to SPEA2, DEMOIBǫ+ to IBEAǫ+, and DEMOIBHD to IBEAHD on

16 benchmark problems and assess the results using appropriate performance indicators. A

part of this comparison has been covered in (Tušar and Filipič, 2007).

3.5.1 Benchmark problems

Two test problem suites were used in the experiments. The first consists of the first seven

DTLZ test problems from (Deb et al., 2005), while the second comprises the nine WFG test

problems presented in (Huband et al., 2005). Both suites comprise difficult problems that

present many challenges to multiobjective optimizers, such as the existence of many local

Pareto optimal solutions, uneven distribution of points in the objective space and different

geometries of the Pareto optimal front. Additionally, the WFG test suite incorporates non-

separable problems, deceptive problems and problems where the fitness landscape has flat

regions (see (Huband et al., 2006) for a detailed study on benchmark problems for multiob-

jective optimization).

Let n and m denote the dimensionality of the decision and variable space, respectively.

Each of the 16 problems was used three times—each time with a different number of objec-

tives (m = 2, 3 and 4). The other parameters were set as follows:

• The parameters of DTLZ problems were set as recommended by Deb et al. (2005), i.e.,
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n =m+k−1, where k = 5 for DTLZ1, k = 10 for DTLZ2 to DTLZ6 problems and k = 20

for DTLZ7.

• Parameters of the WFG test suite are: the number of position related parameters k ,

number of distance related parameters l and number of objectives m . The number of

decision variables is calculated as n = k + l . Because of some additional requirements

(l must be an even number for WFG2 and WFG3, and k must be divisible by m − 1),

we used the following setting: k = 6 and l = 4 (consequently n = 10), which satisfies

all the requirements for m = 2, 3 and 4.

All test problems require minimization of all objectives.

3.5.2 Parameters of the algorithms

The parameter settings for the basic GA are the same as the ones used in the comparison

between NSGA-II and SPEA2 on the DTLZ1 problem in (Deb et al., 2005):

– population size = 100,

– number of generations = 300,

– tournament size = 2,

– size of the mating pool = 100,

– individual crossover probability = 1,

– variable probability of simulated binary crossover = 1,

– distribution index for crossover ηc = 15,

– variable probability of uniform crossover = 0.5,

– individual mutation probability = 1,

– variable probability of polynomial mutation = 1/n ,

– distribution index for mutation ηm = 20.

The parameters of all four DEMO variants were set as in (Robič and Filipič, 2005) (except for

the number of generations, which equals the number of generations used by the basic GA):

– population size = 100,

– number of generations = 300,

– DE selection scheme =DE/rand/1/bin,
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– scaling factor F = 0.5,

– probability in binomial crossover CR= 0.3.

DEMOIBHD and IBEAHD used additional parameters: scaling factor κ = 0.05 and reference

point for the hypervolume calculation ρ = (2, . . . , 2)∈Rm .

Each algorithm was run on each problem 30 times. The experiments with NSGA-II,

SPEA2 and IBEA were performed using the PISA multiobjective optimization environment

(Bleuler et al., 2003).

3.5.3 Performance assessment

The performance assessment (see Section 2.2) was carried out separately for each pair of

algorithms. Consider for example the comparison between DEMONS-II and NSGA-II on one

problem. First, the bounds of approximation sets of both algorithms were calculated and

the approximation sets were normalized to the [1, 2] interval. After that, the dominance rank

was calculated for each of the 60 approximation sets. The Mann-Whitney rank sum test

(Conover, 1999) was used to discover if there are significant differences between the domi-

nance ranks of the two algorithms.

Additional assessment was carried out using unary quality indicators. From the approx-

imation sets of both algorithms, the set containing only nondominated solutions was com-

puted and used as the reference set for the unary indicators I 1
ǫ+

and I 1
R2. Other parameters of

the I 1
R2 indicator were as follows: (0.9, . . . , 0.9), (2.1, . . . , 2.1)∈Rm served as the ideal and Nadir

points, ρ = 0.01, while 501, 496 and 455 uniformly spread parameter vectors were used for

the problems with two, three and four objectives, respectively. The hypervolume indicator

IH used the point (2.1, . . . , 2.1) ∈ Rm as the reference point. All three indicators were calcu-

lated for each approximation set of both algorithms. The significance of these outcomes was

tested independently with the Fisher’s independent permutation test (Conover, 1999). Be-

cause we used four performance metrics (dominance ranking and three indicators) on the

same data, the significance level αs for each significance test was set to 0.05/4= 0.0125 using

the Bonferroni correction (Bonferroni, 1936).

Finally, the results on two objective problems were compared also by plotting the best,

worst and 50%-attainment surfaces. The same procedure was repeated also for compar-

ing DEMOSP2 to SPEA2, DEMOIBǫ+ to IBEAǫ+, and DEMOIBHD to IBEAHD. Performance assess-

ments were done using the PISA environment.
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3.5.4 Results and discussion

Tables 3.1, 3.3, 3.5 and 3.7 present the outcomes of dominance ranking, while Tables 3.2, 3.4,

3.6 and 3.8 show the results of statistical tests on the I 1
ǫ+

, IH and I 1
R2 indicators.

Looking at the outcomes of dominance ranking, we can observe that on some problems,

approximation sets of DEMO achieve significantly better domination ranks than the approx-

imation sets of the basic GA. Only on two problems (when IHD indicator-based selection was

used) the basic GA outperforms DEMO. These cases will be commented in more detail later.

On the majority of problems, however, there are no significant differences between the two

algorithms with regard to dominance ranking.

As expected, when dominance ranking shows a significant difference between two al-

gorithms, so do the three applied indicators (an exception will be explained later). On the

majority of problems, DEMO achieves significantly better results with regard to the chosen

indicator. Note that on a few problems (see for example DTLZ5 for m = 4 in Table 3.2),

DEMO is significantly better than the basic GA with regard to one indicator (I 1
R2) and signifi-

cantly worse with regard to another indicator (IH). This suggests that the outcomes of DEMO

and the basic GA are incomparable on such problems.

Besides these results, we also investigated the plots of approximation sets (for m = 2 and

3) and plots of attainment surfaces (for m = 2) to gain further insight into the comparison

between DEMO and the basic GA. Despite statistical tests show that there is almost always a

significant difference in indicator values of the two algorithms, in general no noticeable dis-

tinction was visible between the approximation sets (and attainment surfaces) of DEMO and

the basic GA on the DTLZ2, DTLZ4, DTLZ5, DTLZ7, WFG3, WFG4, WFG5, WFG8 and WFG9

problems. On the DTLZ1, DTLZ3 and DTLZ6 problems, where it is very difficult to converge

to the Pareto optimal front, and on the non-separable WFG6 problem, DEMO generally at-

tained the Pareto optimal front more efficiently than the basic GA. On the DTLZ3, WFG1,

WFG2 and WFG7 problems DEMO achieved better spread of solutions along the Pareto op-

timal front than the basic GA.

In the following, we review the performance of DEMO and basic GA on selected problems

in more detail.

DEMONS-II vs. NSGA-II. The comparison between DEMO and the basic GA is very favor-

able to DEMO when nondominated sorting is used for environmental selection. Let us ex-

plore in more detail the outcomes of both algorithms on the DTLZ6 problem. The diffi-
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Table 3.1: Outcomes of the Mann-Whitney rank sum test (α = 0.05, αs = 0.0125) on domi-
nance ranking for DEMONS-II and NSGA-II. The ‘Î p -value’ (‘Ï p -value’) denotes the prob-
lems, on which DEMONS-II is significantly better (worse) than NSGA-II, while ‘-’ indicates
there are no significant differences between the two algorithms.

m = 2 m = 3 m = 4
DTLZ1 - Î 3.9×10−13 Î 7.9×10−15

DTLZ2 - - -
DTLZ3 Î 2.0×10−11 Î 3.9×10−13 Î 3.5×10−12

DTLZ4 Î 0.0052 - -
DTLZ5 - - -
DTLZ6 Î 4.1×10−14 Î 7.9×10−15 Î 3.9×10−13

DTLZ7 - - Î 1.5×10−4

WFG1 - Î 1.6×10−7 -
WFG2 - - -
WFG3 - - -
WFG4 - - -
WFG5 - - -
WFG6 Î 1.5×10−4 - -
WFG7 - - -
WFG8 - - -
WFG9 - - -

Table 3.2: Outcomes of the Fisher-independent test (α = 0.05, αs = 0.0125) on indicator
values for DEMONS-II and NSGA-II. A ‘Î’ (‘Ï’) under the indicator I means that DEMONS-II is
significantly better (worse) than NSGA-II regarding indicator I , while ‘-’ indicates there are
no significant differences between the two algorithms regarding indicator I . The p -values
are omitted for the sake of brevity (see Tables B.1, B.2 and B.3 in Appendix B for complete
results).

m = 2 m = 3 m = 4
I 1
ǫ+ IH I 1

R2 I 1
ǫ+ IH I 1

R2 I 1
ǫ+ IH I 1

R2

DTLZ1 Î Î Î Î Î Î Î Î Î
DTLZ2 Î Î Î Î Î Î Î Î Î
DTLZ3 Î Î Î Î Î Î Î Î Î
DTLZ4 Î Î Î Î Î Î Î Î Î
DTLZ5 Î Î Î Î Î Î - Ï Î
DTLZ6 Î Î Î Î Î Î Î Î Î
DTLZ7 Î Î Î Î Î Î Î Î Î
WFG1 Î Î Î Î Î Î Î Î Î
WFG2 Î Î Î Î Î Î Î Î Î
WFG3 - Î Î Î Î Î - Ï Ï
WFG4 - Î - - Î Î Î Î Î
WFG5 Ï - Ï - - - - - Î
WFG6 Î Î Î Î Î Î - Î Î
WFG7 Î Î Î Î Î Î - Î -
WFG8 Î - Î - - - - - Ï
WFG9 - Î - - Î Î - - -
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Table 3.3: Outcomes of the Mann-Whitney rank sum test (α = 0.05, αs = 0.0125) on domi-
nance ranking for DEMOSP2 and SPEA2. The ‘Î p -value’ (‘Ï p -value’) denotes the problems,
on which DEMOSP2 is significantly better (worse) than SPEA2, while ‘-’ indicates there are no
significant differences between the two algorithms.

m = 2 m = 3 m = 4
DTLZ1 - Î 9.7×10−13 Î 3.2×10−13

DTLZ2 - - -
DTLZ3 Î 2.2×10−11 Î 2.0×10−14 Î 3.2×10−13

DTLZ4 - - -
DTLZ5 - - -
DTLZ6 Î 2.0×10−14 Î 7.9×10−15 Î 1.7×10−12

DTLZ7 - - -
WFG1 - Î 2.7×10−9 -
WFG2 - - -
WFG3 - - -
WFG4 - - -
WFG5 - - -
WFG6 Î 2.6×10−6 - -
WFG7 - - -
WFG8 - - -
WFG9 - - -

Table 3.4: Outcomes of the Fisher-independent test (α = 0.05, αs = 0.0125) on indicator
values for DEMOSP2 and SPEA2. A ‘Î’ (‘Ï’) under the indicator I means that DEMOSP2 is
significantly better (worse) than SPEA2 regarding indicator I , while ‘-’ indicates there are
no significant differences between the two algorithms regarding indicator I . The p -values
are omitted for the sake of brevity (see Tables B.4, B.5 and B.6 in Appendix B for complete
results).

m = 2 m = 3 m = 4
I 1
ǫ+ IH I 1

R2 I 1
ǫ+ IH I 1

R2 I 1
ǫ+ IH I 1

R2

DTLZ1 Î Î Î Î Î Î Î Î Î
DTLZ2 Î Î Î Î Î Î Î Î Î
DTLZ3 Î Î Î Î Î Î Î Î Î
DTLZ4 Î Î Î Î Î Î Î Î Î
DTLZ5 Î Î Î Î Î Î Ï - Î
DTLZ6 Î Î Î Î Î Î Î Î Î
DTLZ7 Î Î Î Î Î Î Î Î Î
WFG1 Î Î Î Ï - - Î Î Î
WFG2 Î Î Î Î Î Î Î Î Î
WFG3 Î Î Î - - - Ï - -
WFG4 - Î - - Î Î - Î Î
WFG5 Ï Ï Ï Î Î Î Î Î Î
WFG6 Î Î Î Î Î Î - Î Î
WFG7 Î Î Î Î Î Î Î Î Î
WFG8 Î - Î Î Î Î - Î Î
WFG9 - - - Î Î Î - Î Î
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Table 3.5: Outcomes of the Mann-Whitney rank sum test (α = 0.05, αs = 0.0125) on domi-
nance ranking for DEMOIBǫ+ and IBEAǫ+. The ‘Î p -value’ (‘Ï p -value’) denotes the prob-
lems, on which DEMOIBǫ+ is significantly better (worse) than IBEAǫ+, while ‘-’ indicates there
are no significant differences between the two algorithms.

m = 2 m = 3 m = 4
DTLZ1 - - -
DTLZ2 - - -
DTLZ3 - Î 1.9×10−7 Î 8.3×10−9

DTLZ4 - - -
DTLZ5 - - -
DTLZ6 Î 2.1×10−13 Î 1.9×10−12 -
DTLZ7 - - -
WFG1 - - -
WFG2 - - -
WFG3 - - -
WFG4 - - -
WFG5 - - -
WFG6 Î 4.2×10−7 - -
WFG7 - - -
WFG8 - - -
WFG9 - - -

Table 3.6: Outcomes of the Fisher-independent test (α = 0.05, αs = 0.0125) on indicator
values for DEMOIBǫ+ and IBEAǫ+. A ‘Î’ (‘Ï’) under the indicator I means that DEMOIBǫ+ is
significantly better (worse) than IBEAǫ+ regarding indicator I , while ‘-’ indicates there are
no significant differences between the two algorithms regarding indicator I . The p -values
are omitted for the sake of brevity (see Tables B.7, B.8 and B.9 in Appendix B for complete
results).

m = 2 m = 3 m = 4
I 1
ǫ+ IH I 1

R2 I 1
ǫ+ IH I 1

R2 I 1
ǫ+ IH I 1

R2

DTLZ1 Î Î Î Î Î Î Î Î -
DTLZ2 - - Î - Î Î - Î Î
DTLZ3 Ï Ï Ï Î Î Î Î Î Î
DTLZ4 - - Î - Î Î Î Î Î
DTLZ5 - - Î - - Î - Ï Î
DTLZ6 Î Î Î Î Î Î Î Î Î
DTLZ7 - - Î Ï - Î - - -
WFG1 Î Î Î Î Î Î Î Î Î
WFG2 Î Î Î Î Î Î Î Î Î
WFG3 Î Î Î - Î Î Ï Î Ï
WFG4 Ï Ï Ï - Î Î - Î Î
WFG5 Ï Ï Ï - - - - Î Î
WFG6 Î Î Î Î Î Î Î Î Î
WFG7 Î Î Î - Î Î - Î Î
WFG8 - - - - - Î - - Î
WFG9 - Î - Î - Î - Î Î
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Table 3.7: Outcomes of the Mann-Whitney rank sum test (α = 0.05, αs = 0.0125) on domi-
nance ranking for DEMOIBHD and IBEAHD. The ‘Î p -value’ (‘Ï p -value’) denotes the prob-
lems, on which DEMOIBHD is significantly better (worse) than IBEAHD, while ‘-’ indicates there
are no significant differences between the two algorithms.

m = 2 m = 3 m = 4

DTLZ1 - - -
DTLZ2 - - -
DTLZ3 - Î 3.0×10−12 Î 9.7×10−12

DTLZ4 Î 0.0013 Î 0.0104 -
DTLZ5 - - -
DTLZ6 Î 1.2×10−13 Î 2.4×10−11 -
DTLZ7 Ï 0.0023 Ï 1.3×10−7 Ï 1.8×10−7

WFG1 - Ï 0.0058 -
WFG2 - - -
WFG3 - - -
WFG4 - - -
WFG5 - - -
WFG6 Î 6.1×10−6 - -
WFG7 - - -
WFG8 - - -
WFG9 - - -

Table 3.8: Outcomes of the Fisher-independent test (α = 0.05, αs = 0.0125) on indicator
values for DEMOIBHD and IBEAHD. A ‘Î’ (‘Ï’) under the indicator I means that DEMOIBHD is
significantly better (worse) than IBEAHD regarding indicator I , while ‘-’ indicates there are
no significant differences between the two algorithms regarding indicator I . The p -values
are omitted for the sake of brevity (see Tables B.10, B.11 and B.12 in Appendix B for complete
results).

m = 2 m = 3 m = 4
I 1
ǫ+ IH I 1

R2 I 1
ǫ+ IH I 1

R2 I 1
ǫ+ IH I 1

R2

DTLZ1 Î Î Î Î Î Î Î Î -
DTLZ2 - - Î - Î Î - - Î
DTLZ3 - Ï Ï Î Î Î Î Î Î
DTLZ4 Î Î Î Î Î Î Î Î Î
DTLZ5 - - Î Ï Ï Î Î Î Î
DTLZ6 Î Î Î Î Î Î Î Î Î
DTLZ7 Ï Ï Ï Ï Ï Ï Ï Ï -
WFG1 Î Î Î Î Î Î Î Î Î
WFG2 Î Î Î Î Î Î - Î Î
WFG3 - Î Î - Î Î Ï Ï Ï
WFG4 - Ï Ï - Î Î - Î Î
WFG5 Ï Ï Ï - - Î - Ï Î
WFG6 Î Î Î Î Î Î Î Î Î
WFG7 Î Î Î - Î Î - Î Î
WFG8 - - - - - Ï - - Ï
WFG9 Î Î - - Î Î - - Î
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culty of this problem reflects in poor convergence of certain algorithms to the Pareto opti-

mal front. Figure 3.2 shows that DEMONS-II reaches the Pareto optimal front for m = 2 and

m = 3, while NSGA-II does not. The most probable cause for such behavior is the repair

method used by DEMO, since in this problem, the Pareto optimal set lies on the bounds of

the decision space and boundary points are likely to be found after applying DEMO’s repair

method.
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Figure 3.2: Plots of normalized attainment surfaces and approximation sets of algorithms
DEMONS-II and NSGA-II on the DTLZ6 problem: (a) the best, worst and 50%-attainment sur-
faces for each algorithm on the problem with two objectives; (b) 30 approximation sets for
each algorithm on the problem with three objectives.

It is interesting to note, however, that on the only other problem (DTLZ7) where the

Pareto optimal set lies on the bounds of the decision space no big differences between ap-

proximation sets could be noticed. This is probably because on this problem, none of the

algorithms has difficulties in reaching the Pareto optimal front.

DEMOSP2 vs. SPEA2. Using the strength Pareto approach to environmental selection yields

very similar results in the comparison between DEMO and the basic GA as the use of non-

dominated sorting. The findings from the previous paragraph (on the DTLZ6 and DTLZ7

problems) also hold for DEMOSP2 and SPEA2. Similarly, some of the characteristics of the

comparison between DEMOSP2 and SPEA2 on the WFG1 problem, which will be discussed

in more detail shortly, are true also when comparing DEMONS-II and NSGA-II.

Consider now the WFG1 problem for m = 2. From the plot of attainment surfaces (Fig-

ure 3.3) we can see that DEMOSP2 covers a wider portion of the Pareto optimal front than
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Figure 3.3: Plots of normalized attainment surfaces and approximation sets of algorithms
DEMOSP2 and SPEA2 on the WFG1 problem: (a) the best, worst and 50%-attainment surfaces
for each algorithm on the problem with two objectives; (b) 30 approximation sets for each
algorithm on the problem with three objectives.

SPEA2, while having comparable convergence properties in the best and average case (50%-

attainment surface) and a little worse in the worst case. When this problem is tackled in three

objectives, DEMOSP2 loses some of its convergence power while keeping the good coverage.

SPEA2, on the other hand, still covers only a small part of the whole front, while achieving

much better convergence than DEMOSP2. Although this is not visible from the plots, we wish

to point out that neither of the algorithms reached the Pareto optimal front for this problem.

There is an additional interesting aspect of the results on this problem, which is re-

lated to the performance assessment using dominance ranking and quality indicators. Note

that Tables 3.3 and 3.4 show that DEMOSP2 is significantly better than SPEA2 on WFG1 for

m = 3 with regard to the dominance ranking, and significantly worse than SPEA2 with regard

to the I 1
ǫ+

indicator. This happens because the approximation sets of DEMOSP2 are never

completely dominated by other approximation sets, while the approximation sets of SPEA2

sometimes dominate each other. As a result, the dominance ranking prefers DEMOSP2 to

SPEA2 although approximation sets of SPEA2 are closer to the Pareto optimal front than ap-

proximation sets of DEMOSP2.

DEMOIBǫ+ vs. IBEAǫ+. From Tables 3.5 and 3.6 (and also Tables 3.7 and 3.8) it is obvious

that using indicator-based environmental selection brought DEMO less improvement over

the basic GA than using the first two approaches. Most of the findings from the comparison
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between DEMOIBǫ+ and IBEAǫ+hold also for the comparison between DEMOIBHD and IBEAHD.

Consider the DTLZ1 problem for m = 2 (Figure 3.4). The vectors from the approxima-

tion set found by IBEAǫ+are unevenly spread along the Pareto optimal front. Most of them

are gathered around the extremities of the Pareto optimal front and only a few of them are

located in the central part of the front. This yields interestingly shaped attainment surfaces

by IBEAǫ+, which show that DEMOIBǫ+ outperformed IBEAǫ+on this problem. Similar results

can be seen also for m = 3, where DEMOIBǫ+ again achieves good convergence and spread,

while IBEAǫ+has good convergence but poor spread of vectors in the objective space.
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Figure 3.4: Plots of normalized attainment surfaces and approximation sets of algorithms
DEMOIBǫ+ and IBEAǫ+on the DTLZ1 problem: (a) the best, worst and 50%-attainment sur-
faces for each algorithm on the problem with two objectives; (b) 30 approximation sets for
each algorithm on the problem with three objectives.

DEMOIBHD vs. IBEAHD. Using IHD indicator-based selection, DEMO was for the first time

outperformed by the basic GA with regard to dominance ranking. The DTLZ7 problem with

2m−1 disconnected Pareto optimal regions proved to be very hard for DEMOIBHD . While the

convergence to the Pareto optimal front was not difficult, maintaining diverse solutions was

hard for DEMOIBHD . Out of 30 runs for each objective space dimensionality, DEMO con-

verged to a single point 29 times for m = 2, 26 times for m = 3 and 25 times for m = 4.

Note, however, that in combination with all other approaches to environmental selection

(including using I 1
ǫ+

instead of IHD in indicator-based selection), DEMO could always main-

tain diverse solutions.
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Let us analyze in more detail also the DTLZ3 problem whose main difficulty rises from

its 310− 1 local Pareto optimal fronts. As shown in the plots in Figure 3.5, IBEAHD has more

difficulties in reaching the Pareto optimal front than DEMOIBHD . In the case of two objec-

tives, DEMOIBHD performs worse than IBEAHD in the worst case while achieving a much bet-

ter spread in the best case. On the three-objective problem, DEMOIBHD achieves good results

in all 30 runs, while IBEAHD gets stuck in local optima and has a poor spread of solutions.
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Figure 3.5: Plots of normalized approximation sets of DEMOIBHD and IBEAHD on the DTLZ3
problem: (a) 30 approximation sets for each algorithm on the problem with two objectives;
(b) 30 approximation sets for each algorithm on the problem with three objectives.

3.5.5 Summary

In this study, we compared the performance of the well-known multiobjective evolutionary

algorithms NSGA-II, SPEA2, IBEAǫ+and IBEAHD to their DE-based counterparts DEMONS-II,

DEMOSP2, DEMOIBǫ+ and DEMOIBHD on 16 state-of-the-art benchmark problems (each with

2, 3 and 4 objectives). The results show that on 17% of the problems, DEMO achieved sig-

nificantly better dominance ranks than the basic GA, while significantly worse dominance

ranks were obtained on only 2% of problems. Furthermore, DEMO outperformed the basic

GA with regard to the quality indicators on the majority (81%) of problems and was outper-

formed by the basic GA on only 9% of the problems.

On the basis of this results we can conclude that, in general, DE explores the decision

space more efficiently than a GA (regardless of the chosen environmental selection proce-
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dure). A further comparison, showing the differences among DEMO variants, is presented

in the next section.

3.6 Comparison of DEMO variants

While the previous section showed that DEMO often achieves better results than the basic

GA, this section focuses on the specific properties of DEMO variants to help choose among

them. To this end, we use the results obtained in the experiments presented before. First,

the variants are compared according to dominance ranking of their approximation sets and

then, the configuration of these sets is explored in more detail.

3.6.1 Dominance ranking

This time, the bounds of approximation sets of all four DEMO variants were calculated and

the approximation sets were accordingly normalized to the [1, 2] interval. The dominance

ranks were calculated for each pair of variants separately (four variants yield six pairwise

comparisons) and the Mann-Whitney rank sum test was used to check if there are significant

differences between these dominance ranks. Because we made six comparisons among the

variants, the significance level αs for each significance test was set to 0.05/6 =̇ 0.008 using

the Bonferroni correction.

Significantly different dominance ranks were achieved only on three problems—see Ta-

ble 3.9 for a list of all significant differences. On the DTLZ3 problem with two objectives,

DEMONS-II and DEMOSP2 significantly outperform the two DEMOIB variants. The reason for

this is that DEMOIBHD and especially DEMOIBǫ+ achieve some bad results, while the good

results of DEMONS-II and DEMOSP2 are consistent in all 30 runs. Moreover, DEMONS-II and

DEMOSP2 achieve better dominance ranks than DEMOIBǫ+ also in the three-objective case.

As explained in the previous section, DEMOIBHD converges to a single point in the major-

ity of the runs on DTLZ7 for m = 2, 3 and 4. This is the reason why the other three variants

significantly outperform DEMOIBHD on this problem.

WFG1 skews the relative significance of different parameters thus representing a diffi-

cult problem to solve. Huband et al. (2006) have shown that NSGA-II fails to reach the Pareto

optimal front on this problem even after more than 25 000 generations. Although the param-

eter settings of both NSGA-II and WFG1 were different from the ones used in this work, our

results lead to similar conclusions: nondominated sorting and the strength Pareto approach
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Table 3.9: Problems on which DEMO variants achieved significantly different dominance
ranks according to the Mann-Whitney rank sum test (α = 0.05, αs =̇ 0.008). With ‘DEMOX

◭DEMOY’ we denote that DEMOX is significantly better than DEMOY.

DTLZ3 (m = 2): DEMONS-II ◭DEMOIBǫ+

DEMONS-II ◭DEMOIBHD

DEMOSP2 ◭DEMOIBǫ+

DEMOSP2 ◭DEMOIBHD

DEMOIBHD ◭DEMOIBǫ+

DTLZ3 (m = 3): DEMONS-II ◭DEMOIBǫ+

DEMOSP2 ◭DEMOIBǫ+

DTLZ7 (m = 2, 3, 4): DEMONS-II ◭DEMOIBHD

DEMOSP2 ◭DEMOIBHD

DEMOIBǫ+◭DEMOIBHD

WFG1 (m = 3, 4): DEMOIBǫ+◭DEMONS-II

DEMOIBǫ+◭DEMOSP2

DEMOIBHD ◭DEMONS-II

DEMOIBHD ◭DEMOSP2

are limited on this problem for m = 3 and 4, while both indicator-based DEMO variants were

able to achieve significantly better results.

3.6.2 Configuration of approximation sets

Deb et al. (2005) have shown that on the DTLZ problems with 3 objectives, the algorithms

NSGA-II and SPEA2 achieve similar convergence, but a different distribution of objective

vectors. On most problems, the objective vectors found by SPEA2 were distributed more

uniformly than the objective vectors found by NSGA-II. Here, we wish to verify if the same

holds for DEMONS-II and DEMOSP2 , and compare the configurations of approximation sets

of all DEMO variants.

First, we calculated the IH indicator for each normalized approximation set (all parame-

ters of IH were set the same as in the previous section). For each variant and each problem

for m = 2 and 3, we plotted the approximation set with the best IH. Here, we present only the

plots for the DTLZ5 (m = 2) and DTLZ2 (m = 3) problems, as they are the most representa-

tive (see Figures 3.6 and 3.7).

Like Deb et al. (2005), we found that DEMOSP2 in general distributes the objective vec-

tors more evenly than DEMONS-II. This is better visible on the three objective problems and
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Figure 3.6: Plots of the best approximation sets (according to IH) found by DEMONS-II,
DEMOSP2, DEMOIBǫ+ and DEMOIBHD on the DTLZ5 problem with two objectives.

is due to the strength Pareto approach, which works better than nondominated sorting, al-

though at a higher computational cost. The approximation sets found by DEMOIBǫ+ and

DEMOIBHD are similar to each other and very different from the ones found by DEMONS-II and

DEMOSP2. It seems that the indicator-based selection prefers objective vectors that lie on

the extremities of the Pareto-optimal front (see Figure 3.7). In addition, on three objec-

tive problems DEMOIBHD keeps only few vectors near the center of the Pareto optimal front.

Note also that while the extremities of the Pareto optimal front are well-represented in both

DEMOIB variants, there is a gap between the most extreme objective vectors and the objec-

tive vectors that are closest to them. This gap appears only in problems with concave Pareto

optimal fronts.

The properties of approximation sets explained on the example of DTLZ5 and DTLZ2 are

in general true also for other problems. In particular, very similar approximation sets (also
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Figure 3.7: Plots of the best approximation sets (according to IH) found by DEMONS-II,
DEMOSP2, DEMOIBǫ+ and DEMOIBHD on the DTLZ2 problem with three objectives.

because of the similar geometry of the Pareto optimal front) are achieved on the DTLZ3,

DTLZ4, DTLZ6 (for m = 2) and WFG4 to WFG9 problems. On DTLZ1 and WFG3, there are

only minor differences among the variants. The DTLZ5 and DTLZ6 problems have degen-

erated Pareto optimal fronts for m = 3. In this case not all mentioned differences among

the variants can be seen. DTLZ7 is a problem with discontinuous Pareto optimal front.

Nevertheless, we could see the specific properties of the approximation sets for each sep-

arate portion of the Pareto optimal front. The WFG2 problem has a discontinuous Pareto

optimal front, where both DEMOIB achieve lower coverage of the front than DEMONS-II and

DEMOSP2.
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3.6.3 Summary

The comparison of DEMO variants showed that all variants achieve comparable conver-

gence to the Pareto optimal front on all but three out of 16 problems (see Table 3.9), where

some variants faced difficulties because of the specific properties of these problems. The vi-

sual presentation of the approximation sets helped us compare the configurations obtained

by the different environmental selection procedures. It seems that the strength Pareto ap-

proach used by DEMOSP2 generates approximation sets that are the most similar to our ‘grid-

like’ perception of how should well-distributed objective vectors look like. This encouraged

us to use the DEMOSP2 variant in the case study presented in the next chapter.
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4
Optimizing Accuracy and Size of Decision

Trees

While the previous chapter presented in detail the DEMO algorithm and its performance on

artificial benchmark problems, in this chapter, DEMO is applied to the real-world optimiza-

tion problem of finding accurate and small decision trees. We start with Section 4.1, which

introduces decision trees—popular machine learning models for classification and regres-

sion tasks. Section 4.2 shows how DEMO is employed for finding tradeoffs between accurate

and small decision trees and presents the results of the experiments performed on some real

domains. The chapter concludes with the discussion in Section 4.3.

4.1 Introduction

4.1.1 Decision trees for classification

Let us first introduce some basic terms used in machine learning. Consider a set of instances,

described by some attributes and classified into classes (see Table 4.1). Classification is the

task of determining the class for each possible instance; or in other words, of finding the

function, which maps the space of attributes into classes. One of the most popular ways of

classifying data is using decision trees (Breiman et al., 1984). One of their main advantages is

comprehensibility—they are easy to understand and use.

53
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Table 4.1: The weather dataset (Witten and Frank, 2005), with attributes outlook, tempera-

ture, humidity and windy, where each instance is classified either in the ‘yes’ or ‘no’ class of
play.

outlook temperature humidity windy play
sunny 85 85 false no
sunny 80 90 true no

overcast 83 86 false yes
rainy 70 96 false yes
rainy 68 80 false yes
rainy 65 70 true no

overcast 64 65 true yes
sunny 72 95 false no
sunny 69 70 false yes
rainy 75 80 false yes

sunny 75 70 true yes
overcast 72 90 true yes
overcast 81 75 false yes

rainy 71 91 true no

Example 4.1. The weather dataset presented in Table 4.1 contains a set of weather conditions,

which are suitable (or not) for playing an outdoor game. This dataset is characterized by four

attributes (outlook, temperature, humidity and windy) which describe the instances, while

the outcome (play) can be either ‘yes’ or ‘no’. The decision tree constructed from these instances

(see Figure 4.1) describes the weather data set and at the same time defines the outcomes for

each possible combination of attribute values.

outlook

humidity windy

sunny overcast rainy

true false

yes

yesyes nono

≤ 75 > 75

Figure 4.1: A decision tree for the weather dataset. The value in each leaf defines the class
for all the instances that satisfy the conditions on the path between the root of the tree and
the leaf in question.
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Decision trees for classification are usually evaluated with respect to two objectives: ac-

curacy and size. Accuracy can be estimated by the portion of instances that are correctly

classified by the decision tree T :

acc1(T,Y) =
|{y ∈Y | y correctly classified by T }|

|Y |
, (4.1)

where Y is the set of all instances, while size can be simply defined as:

size (T ) = |{nodes in T }|. (4.2)

The principal task of a decision tree is to predict the classes for previously unseen in-

stances. If the tree is constructed using all available instances, the accuracy calculated on

the same instances is not representative. Therefore, as a rule, the decision tree is constructed

using only a portion of the data Ytrain called training set, while the rest of the data Ytest, called

test set, is used for estimating its accuracy:

acc2(Ttrain,Ytest) =
|{y ∈Ytest | y correctly classified by Ttrain}|

|Ytest|
.

This kind of accuracy estimation fits our requirements better than the previous one, but

it is nevertheless highly dependent on the split of data into the training and test sets. It is

therefore advisable to repeat this procedure k times—each time reserving a different 1/k

proportion of instances for the test set and using the remaining instances as the training set.

In this way, every instance is used exactly once for testing and k −1 times for training:

acc3(T,Y , k ) =
1

k

k
∑

j=1

|{y ∈Y
j
test | y correctly classified by T

j

train}|

|Y
j
test|

, (4.3)

where Y
j

train ∪Y
j
test = Y for each j = 1, . . . , k and

⋃k

j=1Y
j
test = Y . This method is called k -fold

cross validation.

While accuracy assesses the prediction capabilities of a decision tree, its size is closely

related to its complexity and can be used to estimate its comprehensibility—smaller trees are

usually easier to understand than larger trees. A large tree can be made smaller by pruning.

Using prepruning, the tree stops developing subtrees during the tree-building process, while

postpruning prunes the subtrees of an already constructed tree. If the decision tree is meant

for extracting information from the dataset rather than for prediction, it is very important

that the tree is of a controllable size—small enough for people to understand. Moreover,

smaller trees are often preferred to larger ones as they do not overfit the training set and are

less sensitive to noise. On the other hand, trees that are too small can underfit the data by

not describing the dataset well enough. Consequently, it is very important to be able to find

a good tradeoff between accuracy and size of decision trees.
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4.1.2 Optimization problem

Our optimization problem consists of finding the parameter settings of machine learning

algorithms in order to construct accurate and small trees for a given domain. Accuracy is

estimated using the cross validation procedure (4.3), while the size of the tree is calculated

with (4.2). Accuracy must be maximized and size minimized. We tackle this problem for

the special case of decision trees induced by the C4.5 algorithm (Quinlan, 1993), or more

precisely, its Java implementation in the Weka environment (Witten and Frank, 2005) called

J48.

When building J48 trees, several parameters need to be set (see Table 4.2 for the param-

eters considered in this study and (Witten and Frank, 2005) for more details on their mean-

ing). For example, the minimum number of instances per leaf must be defined. The user

can choose whether to build exclusively binary trees. In addition, the constructed tree can

be either pruned or unpruned. If pruned, the confidence factor used for pruning must be set

and the choice must be made whether to use subtree raising in postpruning or not. The large

amount of possible parameter settings calls for a heuristic method for solving this problem.

Table 4.2: Parameters for building J48 trees.

Possible Default
Name values value Description

M – number of instances 1, 2, . . . 2 The minimum number of instances in any leaf (higher
values result in smaller trees).

U – unpruned trees yes/no no Use unpruned tree (the default value ‘no’ means that
the tree is pruned).

C – confidence factor [10−7, 0.5] 0.25 The confidence factor used in postpruning (smaller
values incur more pruning).

S – subtree raising yes/no yes Whether to consider the subtree raising operation in
postpruning.

B – use binary splits yes/no no Whether to use binary splits on nominal attributes
when building the tree.

4.1.3 Related work

Kohavi and John (1995) searched for parameter settings of C4.5 decision trees that would re-

sult in optimal performance on a particular dataset. They considered four parameters: M, C

and S with the same meaning as described in Table 4.2, and G—a binary parameter that de-

termined if the splitting criterion would be information gain or gain ratio. The optimization

objective was ‘optimal performance’ of the tree, i.e., the accuracy measured using 10-fold
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cross validation. The problem was tackled as a discrete optimization problem and the best-

first search was chosen to explore the parameter space. The trees found by best-first search

were compared to the C4.5 trees built with default parameter values on 33 datasets. At a

90% confidence level, best-first search found better parameter settings than the default on

nine domains, while on one dataset, default parameter values yielded better trees than the

heuristic search.

Similar experiments were performed by Mladenić (1995), who searched for the optimal

setting of the m -value in m -estimate postpruning of decision trees (Cestnik and Bratko,

1991). Again, the optimization objective was the accuracy of the decision tree estimated with

cross validation. She explored the decision space using several different algorithms: mod-

ified greedy search, modified beam search, simulated annealing, a genetic algorithm and

enumerative search. The tests on eight datasets showed that the problem is rather simple

and that all tested algorithms achieved comparable results.

Both mentioned approaches optimized only the accuracy of the decision trees. To our

best knowledge, no work has been done on searching for parameter settings of decision tree

building algorithms that would consider accuracy and size of the trees as two optimization

objectives.

Bohanec and Bratko (1994) searched for good tradeoffs between accuracy and size of

decision trees in a different way. They presented the OPT algorithm which explores the space

of all trees that can be derived from a complete ID3 tree (Quinlan, 1986) by pruning, using

dynamic programming. The result is an optimal sequence of pruned trees, decreasing in

size, such that each tree has the highest accuracy among all possible pruned trees of the

same size. While OPT works perfectly for its purpose, it has two serious drawbacks if it was

to be applied to serve our needs. The first difficulty is its time complexity, which is quadratic

with respect to the number of leaves of the original ID3 tree. The second disadvantage is

that the accuracy of the trees is measured on the dataset that was used for constructing these

trees by simply counting the additional classification errors made with pruning. If a separate

test set would be used for estimating the accuracy, the time needed for building such trees

would increase considerably.

A different optimization problem, which still aims at finding accurate and small C4.5

trees was tackled by Pappa et al. (2004). They used a multiobjective evolutionary algorithm

for selecting subsets of attributes that would yield C4.5 decision trees of optimal accuracy

and size. Their tests on 18 real-world datasets showed that trees constructed on the resulting

subsets of attributes often dominated the tree that was built using all attributes and were
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dominated by this tree on only two datasets.

4.2 Optimization with DEMO

Since we want to help the users of machine learning algorithms to find good trees without

having to search for the right parameter settings manually, we must be careful not to demand

from them to set the parameters of DEMO instead. This is why we chose a single parameter

setting of DEMO for all the experiments performed on this problem. This setting was in no

way fitted to the domains used and should therefore be appropriate for any classification

domain.

In this section we present two sets of experiments performed on the optimization prob-

lem of finding accurate and small decision trees. The first experiments were made to esti-

mate if DEMO approximates well to the Pareto optimal front on a modified version of this

problem, while the second experiments present how DEMO solves the original problem. The

results of the original problem are further inspected to see which parameter settings produce

the best trees. The section concludes with an additional practical example of optimization

with DEMO in an engineering domain.

4.2.1 Experiments on the modified problem

The tackled optimization problem must be simplified in order to enable the comparison be-

tween the trees found by DEMO and the trees from the Pareto optimal front, which can be

obtained by exhaustively searching the decision space. We also want to see how the Pareto

optimal trees compare to the trees found using OPT, since OPT explores a different decision

space than DEMO and exhaustive search. Therefore, the accuracy of the induced trees is cal-

culated on the training instances as in (4.1). The decision space contains only three (instead

of five) variables:

– number of instances M with possible values 1, 2, . . . ,
 

|Y |+1
2

£

, where |Y | is the number of

instances in the dataset;

– unpruned trees U that can take the values yes and no;

– the confidence factor C , which is discretized to the values 0.01, 0.02, . . . , 0.50.

Subtree raising S and binary splits B are both set to no, since otherwise J48 could find trees

that cannot be obtained with OPT.
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On this modified problem, DEMO is compared to the OPT, exhaustive search and random

search algorithms. For each domain we also present the tree that was obtained using slightly

modified default parameter values of J48—the subtree raising, which is used by default, is

not allowed here to enable a fair comparison between the algorithms.

Experimental setup

The OPT algorithm finds the optimal sequence of pruned trees for any tree. While Bohanec

and Bratko (1994) used the ID3 algorithm for inducing the original unpruned tree, we use

the J48 algorithm instead. If the minimum number of instances in leaves M is greater than

1, the J48 tree is subject to prepruning—this means that for different values of M we can

get different trees even if the postpruning is disabled. Therefore, to make a fair comparison

between the methods we ran the OPT algorithm several times—once for each possible value

of M . The trees found in all runs were combined and only the nondominated ones are shown

in the results.

Although OPT finds the best trees possible, they do not form the Pareto optimal front for

our problem. In fact, it is possible for OPT to find additional pruned trees that cannot be

built using pruning from J48. To obtain the Pareto optimal trees, exhaustive search of the

decision space is used. Note that exhaustive search can be very time-consuming1 and was

possible only because we discretized the parameter C .

The modified problem involves two discrete variables, whose values need to be repaired

in DEMO in order to be able to evaluate the solutions correctly. We used the Lamarckian

repair procedure to round the values of the variable M to the first nearest integer and the

Baldwinian repair procedure for the binary variable C , since Lamarckian repair can be too

destructive for binary variables. The other parameters of DEMO were set as follows:

– population size = 20,

– number of generations = 25,

– DE selection scheme =DE/rand/1/bin,

– scaling factor F = 0.6,

– probability in binomial crossover CR= 0.6,

– environmental selection procedure = the strength Pareto approach (as in SPEA2).

1Exhaustive search took more than 8 hours on a domain with 8 attributes and 12960 instances using an
Intel® Pentium® 4 (3.2 GHz) computer.
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Because some datasets are very large and consequently the time to build a single J48 tree very

long, we limited the number of all generated trees to 500. While this was often not enough

for DEMO to converge, we had to persist in the low number of evaluations to provide the

final solutions in a reasonable time. The scaling factor was changed from the ‘usual’ 0.5 to

0.6 because of the discrete decision variables (for example, if we sum the values 1 and 2 and

scale the result with F = 0.5, the outcome can depend on the rounding). The probability in

binomial crossover was increased to 0.6 (instead of 0.3, which was used in the experiments

in Sections 3.5 and 3.6) because the number of variables is small. In the presentation of the

results we show all nondominated trees found by DEMO in one run.

Random search built 500 trees in one run (to match the 500 trees by DEMO). Out of all

trees, only the nondominated ones are presented in the results. Because DEMO and random

search are stochastic algorithms, they were run 10 times on each dataset.

All algorithms were run on six datasets. The first (EDM) refers to process parameter

selection in electrical discharge machining (Valentinčič and Junkar, 2006), while the other

five (dermatology, nursery, splice, vehicle and vowel) were obtained from the UCI reposi-

tory (Newman et al., 1998). See Table 4.3 for some basic information on these datasets.

Table 4.3: Properties of the datasets used in the experiments.

Number of Number of Number of
Dataset attributes classes instances

EDM 11 2 467
dermatology 34 6 366

nursery 8 5 12960
splice 61 3 3190

vehicle 18 4 846
vowel 12 11 990

Performance assessment

Performance assessment of the considered algorithms was performed in three ways:

• The trees of the deterministic algorithms and those from the best runs of the stochastic

algorithms (according to the IH indicator) were plotted in the objective space.

• The best, worst and 50%-attainment surfaces were plotted for DEMO and random

search.
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• For an additional comparison between DEMO and random search, we assessed these

algorithms in the same way as in the experiments presented in Section 3.5. We per-

formed dominance ranking and calculated the I 1
ǫ+

, IH and I 1
R2 quality indicators. The

outcomes of these performance metrics were tested for significance. The dominance

ranks were subject to the Mann-Whitney rank sum test, while the quality indicators

were inspected with Fisher’s independent permutation test. Because of multiple test-

ing on the same data, the significance level αs for each significance test was set to

0.05/4= 0.0125 using the Bonferroni correction.

Results

The results of the experiments are presented in Table 4.4 and Figures 4.2 and B.1 (see Ap-

pendix B). First, we can see that OPT (which explores a different decision space than the

remaining algorithms) finds many trees that cannot be built using pruning from the J48 al-

gorithm. On some datasets, the gap between OPT and exhaustive search is pretty high. For

example, on the nursery dataset OPT finds 403 optimal trees, from which only 34 are at-

tained by exhaustive search. This happens for two reasons: (1) the confidence factor used

for pruning J48 trees is discretized, and (2) while OPT can prune subtree A and leave sub-

tree B unpruned, the pruning of J48 sometimes causes either the pruning of both subtrees

or none of them.

The comparison between exhaustive search and DEMO shows that DEMO attains the

Pareto optimal front very well. This holds in part also for random search, which is able to

converge close to the Pareto optimal front but has difficulties with covering some parts of

the Pareto optimal front, like for example, larger trees on nursery and splice datasets. Nev-

Table 4.4: Outcomes of the statistical tests (α = 0.05, αs = 0.0125) on different performance
measures for DEMO and random search on the modified problem. The ‘Î p -value’ under
a performance measure means that DEMO is significantly better than random search on
this problem regarding the pertinent performance measure, while ‘-’ indicates there are no
significant differences between the two algorithms.

dom_rank I 1
ǫ+ IH I 1

R2

EDM Î 3.2×10−56 Î < 5.4×10−6 Î < 5.4×10−6 Î < 5.4×10−6

dermatology - - Î 0.0113 Î < 5.4×10−6

nursery Î 1.3×10−4 Î < 5.4×10−6 Î < 5.4×10−6 Î < 5.4×10−6

splice Î 0.0026 Î 4×10−5 Î 0.0105 Î < 5.4×10−6

vehicle - Î < 5.4×10−5 Î < 5.4×10−6 Î 0.0062
vowel - Î 4×10−5 Î < 5.4×10−6 Î < 5.4×10−6
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Figure 4.2: Objective values of trees found by the five algorithms on the modified optimiza-
tion problem for the six datasets. The size of trees is placed on the abscissa, while classifica-
tion accuracy estimated on the training instances is represented on the ordinate.
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ertheless, it seems that many good tradeoffs can be achieved already by randomly searching

the decision space.

The trees built using default parameter values of J48 are situated on the Pareto optimal

front in all domains. They were found by DEMO in all runs on the EDM, nursery, vehicle and

vowel datasets and in more than half of the runs on dermatology and splice datasets.

Statistical tests of the comparison between DEMO and random search show that DEMO

outperforms random search on three datasets with regard to dominance ranking. With re-

gard to the other three performance indicators, the differences are significant in all cases but

one (I 1
ǫ+

on the dermatology dataset).

4.2.2 Experiments on the original problem

While the modified problem was needed for showing how close to the Pareto optimal front

DEMO can get, what we are interested in is the original problem of finding the parameter

settings of the J48 algorithm that would result in the best trees. Here, we explore the original

decision space, presented in Table 4.2, and estimate the accuracy of trees using 10-fold cross

validation. In these experiments, DEMO is compared only to random search and the J48

algorithm with default parameter values as exhaustive search of the space would be too time-

consuming, even if the decision space was discretized.

Experimental setup and performance assessment

DEMO and random search used the same parameter settings as in the experiments on the

modified problem. They were both ran 10 times on each of the datasets from Table 4.3. Their

approximation sets were again assessed by plotting the best approximation sets; best, worst

and 50%-attainment surfaces and by applying dominance ranking and the I 1
ǫ+

, IH and I 1
R2

quality indicators to these approximation sets.

Results

Figure 4.3 shows the results of the best run of DEMO and random search (according to the

IH indicator) on the original optimization problem and the tree built using the default pa-

rameter values of J48. The best, worst and 50%-attainment surfaces for DEMO and random

search can be found in Figure B.2 in Appendix B, while Table 4.5 presents the results of the

statistical tests performed on dominance ranks and indicator values of approximation sets

by DEMO and random search.



64 Optimizing Accuracy and Size of Decision Trees

EDM

DEMO
random search

default

0 5 10 15 20 25 30 35 40
0.6

0.7

0.8

0.9

1
dermatology

DEMO
random search

default

0 5 10 15 20 25 30 35 40
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

nursery

DEMO
random search

default

0 100 200 300 400 500 600
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
splice

DEMO
random search

default

0 50 100 150 200 250
0.5

0.6

0.7

0.8

0.9

1

vehicle

DEMO
random search

default

0 20 40 60 80 100 120 140 160 180 200
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
vowel

DEMO
random search

default

0
0

50 100 150 200 250 300 350

0.2

0.4

0.6

0.8

1

Figure 4.3: Objective values of trees found by the three algorithms on the original optimiza-
tion problem for the six datasets. The size of trees is placed on the abscissa, while classifica-
tion accuracy estimated using 10-fold cross validation is represented on the ordinate.
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Table 4.5: Outcomes of the statistical tests (α = 0.05, αs = 0.0125) on different performance
measures for DEMO and random search on the original problem. The ‘Î p -value’ under
a performance measure means that DEMO is significantly better than random search on
this problem regarding the pertinent performance measure, while ‘-’ indicates there are no
significant differences between the two algorithms.

dom_rank I 1
ǫ+ IH I 1

R2

EDM - - - -
dermatology Î 0.0027 Î 0.0017 Î 0.0007 -

nursery Î 0.0026 Î < 5.4×10−6 Î < 5.4×10−6 Î < 5.4×10−6

splice Î 0.0008 Î 0.0025 Î 0.0025 Î 0.0017
vehicle - Î 4×10−5 Î < 5.4×10−6 -
vowel - Î < 5.4×10−6 Î 0.0106 -

Our first observation is that the approximation sets on this problem contain less solu-

tions than the approximation sets on the modified problem. This is a logic consequence

of using cross validation for accuracy estimation instead of evaluating accuracy on learning

data. Namely, cross validation is able to penalize slightly pruned or unpruned trees for over-

fitting the data, which is visible as the absence of large trees in approximation sets for the

original problem.

The comparison between the trees found by the two heuristic methods and the default

tree shows that the default tree is often larger and less accurate than the other trees. On the

dermatology, nursery, splice and vehicle datasets DEMO always finds trees that weakly dom-

inate the default tree, while this happens in at least half of the runs on the EDM and vowel

datasets. In some of the runs, even trees found by random search dominate the default tree.

While DEMO outperforms random search with regard to some performance indicator on

the dermatology, nursery, splice, vehicle and vowel datasets, there is no significant differ-

ence between the algorithms on the EDM dataset. This proves that it is indeed important

for the users of the J48 algorithm to try some other parameter setting beside the default one

when building a decision tree model.

4.2.3 Analysis of the decision space

In a single run of DEMO and random search on the original problem, 500 parameter set-

tings were inspected by each algorithm. Since all experiments were repeated 10 times, the

algorithms jointly built 10000 decision trees for each dataset. This gives us the possibility to

look at the decision space of the original problem and see if there exist specific parameter
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settings that induce good decision trees. To this end we gathered all 10000 decision trees

for each dataset and denoted which of them are dominated and which are not. Since the

decision space of the original problem is five-dimensional, it cannot be simply presented

here. Therefore, we only show its projection on the two-dimensional space, defined by the

parameters M (minimal number of instances in each leaf) and C (confidence factor used

in postpruning), where the parameter U is set to no (only trees subject to postpruning are

considered).

Inspecting the plots of dominated and nondominated trees in Figure 4.4 we can easily

see that the parameter M has a big influence on the size and accuracy of the trees, while

the effect of the parameter C seems to be much smaller. This causes the vertical ‘stripes’

of nondominated trees. When M is large, the trees are subject to heavy prepruning, which

leaves little or no room for postpruning. This is why the ‘stripes’ are so well defined for large

values of M . When M is smaller, the quality of trees depends also on the parameter C (see

the EDM, vehicle and vowel datasets in Figure 4.4). Note that the quality of trees is always

influenced also by the other three parameters (U , S and B), whose values are not shown in

these plots.

The plots indicate that nondominated trees can be found at almost any point in the de-

cision space and that their location depends very much on the dataset. Consequently, no

general rule for predicting the optimal parameter values can be found. This gives additional

evidence that searching for parameters of decision tree building algorithms has to be per-

formed for every dataset separately.

It is important to realize that the decision space was not exhaustively explored, which

means that there can exist other optimal trees that are not shown on these plots. Moreover,

such optimal trees could dominate some of the trees that were here denoted as nondomi-

nated. While this would certainly change the appearance of the plots, the main conclusion

would remain the same, i.e., the location of the optimal trees (in view of the two selected

parameters) would still differ from dataset to dataset.

4.2.4 A real-world example

Finally, let us show how DEMO can help the users of machine learning algorithms in practice.

Consider again the EDM dataset by Valentinčič and Junkar (2006), which was already used

in the experiments from Subsections 4.2.1 and 4.2.2. This dataset consists of 467 instances

described by 11 numeric attributes and two classes: ‘keep’ (175 instances) and ‘select_lower’



4.2. Optimization with DEMO 67

 200

EDM

dominated nondominated

0
0

0.1

0.2

0.3

0.4

0.5

50 100 150

dermatology

dominated nondominated

0
0

0.1

0.2

0.3

0.4

0.5

30 60 90 120 150 180

nursery

dominated nondominated

0
0

0.1

0.2

0.3

0.4

0.5

1000 2000 3000 4000 5000 6000

splice

dominated nondominated

0
0

0.1

0.2

0.3

0.4

0.5

300 600 900 1200 1500

vehicle

dominated nondominated

0
0

0.1

0.2

0.3

0.4

0.5

100 200 300 400

vowel

dominated nondominated

0
0

0.1

0.2

0.3

0.4

0.5

150 300 450

Figure 4.4: Dominated and nondominated trees found by DEMO and random search on
the original problem for various values of parameters M (on the abscissa) and C (on the
ordinate), while U is set to no.
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Figure 4.5: Decision trees found by DEMO (black points) and the default J48 tree (yellow
point) for the EDM dataset. White leaves predict the class ‘keep’ and green leaves predict the
class ‘select_lower’.

(292 instances). The EDM dataset contains the results of experiments in the electrical dis-

charge machining process, where the users need to choose from either keeping the machin-

ing parameters as they are (‘keep’) and selecting lower values (‘select_lower’). Since the goal

of the authors is to improve automation of EDM rough machining, the model describing this

parameter setting problem must be simple.

After a run of DEMO, four mutually incomparable trees were found. These trees, to-

gether with the tree constructed using the default parameter values of J48, are presented in

Figure 4.5. Each tree in the figure is additionally denoted with the parameter setting of J48

that were used to construct it.

From the set of the four best trees (we can discard the default tree since it is dominated

by the largest tree found by DEMO), the users can select the preferred tree. For example,

since in this case it is important for the tree to be small, the users might prefer to choose the

tree of size 5 instead of the tree of size 9. While the larger tree is more accurate, the loss in
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accuracy in quite small (less than 1 percentage point).

4.3 Summary

This chapter presented the problem of finding the parameter settings of algorithms for build-

ing decision trees that yield optimal trees—accurate and small. The results of the exper-

iments performed on the original and modified optimization problems have shown that

DEMO is capable of efficiently solving this problem, offering the users a wide choice of near-

optimal decision trees with different accuracies and sizes in a reasonable time. The set of

near-optimal trees helps the users to choose the tree that best suits their needs.

While this chapter was devoted exclusively to decision trees, DEMO could be employed

in a similar way also for finding other models built using different machine learning methods

with highest prediction accuracy and lowest complexity.
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Conclusion

We presented a multiobjective evolutionary algorithm called DEMO that searches the de-

cision space using DE and is able to incorporate an arbitrary environmental selection pro-

cedure. As such, it can be used to compare the performance between GA-based and DE-

based algorithms for multiobjective optimization. DEMO variants DEMONS-II, DEMOSP2,

DEMOIBǫ+ and DEMOIBHD were compared to their GA-based counterparts NSGA-II, SPEA2,

IBEAǫ+and IBEAHD. Extensive experiments on 16 state-of-the-art benchmark problems with

three different dimensions showed that on the majority of problems, DE-based algorithms

outperform their GA-based equivalents with regard to the applied quality indicators. On the

basis of these results we can conclude that DE in general explores the decision space more

efficiently than GAs also when multiple objectives need to be optimized. It is important to

note, however, that DE and DEMO are limited to vector representation of solutions and can

therefore only be used in numerical optimization.

The results of additional comparison among DEMO’s different approaches to environ-

mental selection indicate that, in general, all variants achieve comparable convergence to

the Pareto optimal front. However, the spread of solutions in the objective space varies from

variant to variant. These differences are most visible on the problems with concave parts

of Pareto optimal front, where the best distributed solutions (according to our visual per-

ception of how well-distributed solutions look like) were achieved by DEMOSP2. This result

encouraged us to use the DEMOSP2 variant in the considered case study.

The proposed real-world optimization problem consists of finding the parameter set-

71
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tings of a machine learning algorithm that result in accurate and small decision trees. The

results of the performed experiments on six real domains showed that DEMO is capable of

efficiently solving this problem, offering the users a wide choice of near-optimal decision

trees with different accuracies and sizes to choose from. Such an approach for searching

accurate and simple theories could be extended to other machine learning algorithms.

Another direction for future work is to use DEMO for optimizing more than two objec-

tives for the considered problem. In the case of decision trees, for example, the users might

want to optimize also some other objective beside accuracy and size, such as the ‘degree of

interestingness’ of the induced models, estimated in terms of presence or absence of some

attributes in the models.

Finally, the presented work could be extended by considering other existing (or possibly

new) approaches to environmental selection that were not covered by this thesis.
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A
Abbreviations

The abbreviations used in this thesis can be divided into three groups. The first one consists

of the most often used abbreviations, for which we also provide translations into Slovene:

DE Differential Evolution

Diferencialna evolucija

DEMO Differential Evolution for Multiobjective Optimization

Diferencialna evolucija za večkriterijsko optimiranje

EA Evolutionary Algorithm

Evolucijski algoritem

GA Genetic Algorithm

Genetski algoritem

MOEA Multiobjective Evolutionary Algorithm

Večkriterijski evolucijski algoritem

MOP Multiobjective Optimization Problem

Večkriterijski optimizacijski problem
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The second group relates to the applied test problems:

EDM Machine learning domain of Electrical Discharge Machining

DTLZ Test problems by Deb, Thiele, Laumanns and Zitzler

WFG Test problems by the Walking Fish Group

The last group contains the acronyms of the related algorithms:

DEMORS Differential Evolution for Multiobjective Optimization with Rough Sets

GDE Generalized Differential Evolution

IBEA Indicator Based Evolutionary Algorithm

MODE Multiobjective Differential Evolution

NSDE Non-dominated Sorting Differential Evolution

NSGA Nondominated Sorting Genetic Algorithm

OPT Algorithm for finding the optimal sequence of pruned trees

PDE Pareto-frontier Differential Evolution

PDEA Pareto Differential Evolution Approach

SPEA Strength Pareto Evolutionary Algorithm

VEDE Vector Evaluated Differential Evolution

VEGA Vector Evaluated Genetic Algorithm
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B
Complete Results

Table B.1: Outcomes of the Fisher-independent test (α = 0.05 and αs = 0.0125) for
DEMONS-II and NSGA-II on the problems with two objectives. The ‘Î p -value’ (‘Ï p -value’)
under the indicator I denotes the problems, on which DEMONS-II is significantly better
(worse) than NSGA-II regarding indicator I , while ‘-’ indicates there are no significant dif-
ferences between the two algorithms regarding indicator I .

m = 2
I 1
ǫ+ IH I 1

R2

DTLZ1 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

DTLZ2 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

DTLZ3 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

DTLZ4 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

DTLZ5 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

DTLZ6 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

DTLZ7 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

WFG1 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

WFG2 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

WFG3 - Î < 8.5×10−18 Î < 8.5×10−18

WFG4 - Î 1.2×10−4 -
WFG5 Ï < 8.5×10−18 - Ï < 8.5×10−18

WFG6 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

WFG7 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

WFG8 Î 0.0073 - Î 2.0×10−5

WFG9 - Î 0.0016 -
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Table B.2: Outcomes of the Fisher-independent test (α = 0.05 and αs = 0.0125) for
DEMONS-II and NSGA-II on the problems with three objectives. The ‘Î p -value’ (‘Ï p -
value’) under the indicator I denotes the problems, on which DEMONS-II is significantly bet-
ter (worse) than NSGA-II regarding indicator I , while ‘-’ indicates there are no significant
differences between the two algorithms regarding indicator I .

m = 3
I 1
ǫ+ IH I 1

R2

DTLZ1 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

DTLZ2 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

DTLZ3 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

DTLZ4 Î 0.0027 Î < 8.5×10−18 Î < 8.5×10−18

DTLZ5 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

DTLZ6 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

DTLZ7 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

WFG1 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

WFG2 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

WFG3 Î 0.0057 Î < 8.5×10−18 Î < 8.5×10−18

WFG4 - Î < 8.5×10−18 Î < 8.5×10−18

WFG5 - - -
WFG6 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

WFG7 Î 0.0001 Î < 8.5×10−18 Î < 8.5×10−18

WFG8 - - -
WFG9 - Î 3.2×10−4 Î < 8.5×10−18

Table B.3: Outcomes of the Fisher-independent test (α = 0.05 and αs = 0.0125) for
DEMONS-II and NSGA-II on the problems with four objectives. The ‘Î p -value’ (‘Ï p -
value’) under the indicator I denotes the problems, on which DEMONS-II is significantly bet-
ter (worse) than NSGA-II regarding indicator I , while ‘-’ indicates there are no significant
differences between the two algorithms regarding indicator I .

m = 4
I 1
ǫ+ IH I 1

R2

DTLZ1 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

DTLZ2 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

DTLZ3 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

DTLZ4 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

DTLZ5 - Ï < 8.5×10−18 Î < 8.5×10−18

DTLZ6 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

DTLZ7 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

WFG1 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

WFG2 Î 0.0085 Î 0.0004 Î 0.0018
WFG3 - Ï 8.2×10−4 Ï < 8.5×10−18

WFG4 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

WFG5 - - Î < 8.5×10−18

WFG6 - Î < 8.5×10−18 Î < 8.5×10−18

WFG7 - Î < 8.5×10−18 -
WFG8 - - Ï < 8.5×10−18

WFG9 - - -
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Table B.4: Outcomes of the Fisher-independent test (α = 0.05 and αs = 0.0125) for
DEMOSP2 and SPEA2 on the problems with two objectives. The ‘Î p -value’ (‘Ï p -value’) un-
der the indicator I denotes the problems, on which DEMOSP2 is significantly better (worse)
than SPEA2 regarding indicator I , while ‘-’ indicates there are no significant differences be-
tween the two algorithms regarding indicator I .

m = 2
I 1
ǫ+ IH I 1

R2

DTLZ1 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

DTLZ2 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

DTLZ3 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

DTLZ4 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

DTLZ5 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

DTLZ6 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

DTLZ7 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

WFG1 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

WFG2 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

WFG3 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

WFG4 - Î 0.0026 -
WFG5 Ï < 8.5×10−18 Ï < 8.5×10−18 Ï < 8.5×10−18

WFG6 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

WFG7 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

WFG8 Î < 8.5×10−18 - Î < 8.5×10−18

WFG9 - - -

Table B.5: Outcomes of the Fisher-independent test (α = 0.05 and αs = 0.0125) for
DEMOSP2 and SPEA2 on the problems with three objectives. The ‘Î p -value’ (‘Ï p -value’)
under the indicator I denotes the problems, on which DEMOSP2 is significantly better
(worse) than SPEA2 regarding indicator I , while ‘-’ indicates there are no significant differ-
ences between the two algorithms regarding indicator I .

m = 3
I 1
ǫ+ IH I 1

R2

DTLZ1 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

DTLZ2 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

DTLZ3 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

DTLZ4 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

DTLZ5 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

DTLZ6 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

DTLZ7 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

WFG1 Ï 0.0049 - -
WFG2 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

WFG3 - - -
WFG4 - Î < 8.5×10−18 Î < 8.5×10−18

WFG5 Î 0.0001 Î < 8.5×10−18 Î < 8.5×10−18

WFG6 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

WFG7 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

WFG8 Î 4.0×10−5 Î 2.0×10−5 Î < 8.5×10−18

WFG9 Î 0.0053 Î < 8.5×10−18 Î < 8.5×10−18
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Table B.6: Outcomes of the Fisher-independent test (α = 0.05 and αs = 0.0125) for
DEMOSP2 and SPEA2 on the problems with four objectives. The ‘Î p -value’ (‘Ï p -value’)
under the indicator I denotes the problems, on which DEMOSP2 is significantly better
(worse) than SPEA2 regarding indicator I , while ‘-’ indicates there are no significant differ-
ences between the two algorithms regarding indicator I .

m = 4
I 1
ǫ+ IH I 1

R2

DTLZ1 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

DTLZ2 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

DTLZ3 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

DTLZ4 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

DTLZ5 Ï 6.4×10−4 - Î < 8.5×10−18

DTLZ6 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

DTLZ7 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

WFG1 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

WFG2 Î 0.0007 Î < 8.5×10−18 Î < 8.5×10−18

WFG3 Ï 0.0095 - -
WFG4 - Î < 8.5×10−18 Î < 8.5×10−18

WFG5 Î 0.0022 Î < 8.5×10−18 Î < 8.5×10−18

WFG6 - Î < 8.5×10−18 Î < 8.5×10−18

WFG7 Î 0.0111 Î < 8.5×10−18 Î < 8.5×10−18

WFG8 - Î < 8.5×10−18 Î < 8.5×10−18

WFG9 - Î 1.2×10−4 Î 2.6×10−4

Table B.7: Outcomes of the Fisher-independent test (α = 0.05 and αs = 0.0125) for
DEMOIBǫ+ and IBEAǫ+on the problems with two objectives. The ‘Î p -value’ (‘Ï p -value’)
under the indicator I denotes the problems, on which DEMOIBǫ+ is significantly better
(worse) than IBEAǫ+ regarding indicator I , while ‘-’ indicates there are no significant differ-
ences between the two algorithms regarding indicator I .

m = 2
I 1
ǫ+ IH I 1

R2

DTLZ1 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

DTLZ2 - - Î < 8.5×10−18

DTLZ3 Ï < 8.5×10−18 Ï < 8.5×10−18 Ï < 8.5×10−18

DTLZ4 - - Î < 8.5×10−18

DTLZ5 - - Î < 8.5×10−18

DTLZ6 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

DTLZ7 - - Î 4.0×10−5

WFG1 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

WFG2 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

WFG3 Î 0.0010 Î < 8.5×10−18 Î < 8.5×10−18

WFG4 Ï < 8.5×10−18 Ï 0.0053 Ï 5.2×10−4

WFG5 Ï < 8.5×10−18 Ï 1.4×10−4 Ï < 8.5×10−18

WFG6 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

WFG7 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

WFG8 - - -
WFG9 - Î 0.0007 -
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Table B.8: Outcomes of the Fisher-independent test (α = 0.05 and αs = 0.0125) for
DEMOIBǫ+ and IBEAǫ+on the problems with three objectives. The ‘Î p -value’ (‘Ï p -value’)
under the indicator I denotes the problems, on which DEMOIBǫ+ is significantly better
(worse) than IBEAǫ+ regarding indicator I , while ‘-’ indicates there are no significant differ-
ences between the two algorithms regarding indicator I .

m = 3
I 1
ǫ+ IH I 1

R2

DTLZ1 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

DTLZ2 - Î < 8.5×10−18 Î < 8.5×10−18

DTLZ3 Î < 8.5×10−18 Î < 8.5×10−18 Î 0.0028
DTLZ4 - Î < 8.5×10−18 Î < 8.5×10−18

DTLZ5 - - Î < 8.5×10−18

DTLZ6 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

DTLZ7 Ï 0.0013 - Î 3.6×10−4

WFG1 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

WFG2 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

WFG3 - Î < 8.5×10−18 Î < 8.5×10−18

WFG4 - Î < 8.5×10−18 Î < 8.5×10−18

WFG5 - - -
WFG6 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

WFG7 - Î < 8.5×10−18 Î < 8.5×10−18

WFG8 - - Î < 8.5×10−18

WFG9 Î 0.0003 - Î < 8.5×10−18

Table B.9: Outcomes of the Fisher-independent test (α = 0.05 and αs = 0.0125) for
DEMOIBǫ+ and IBEAǫ+on the problems with four objectives. The ‘Î p -value’ (‘Ï p -value’)
under the indicator I denotes the problems, on which DEMOIBǫ+ is significantly better
(worse) than IBEAǫ+ regarding indicator I , while ‘-’ indicates there are no significant differ-
ences between the two algorithms regarding indicator I .

m = 4
I 1
ǫ+ IH I 1

R2

DTLZ1 Î < 8.5×10−18 Î < 8.5×10−18 -
DTLZ2 - Î < 8.5×10−18 Î < 8.5×10−18

DTLZ3 Î < 8.5×10−18 Î 0.0122 Î 0.0002
DTLZ4 Î 0.0038 Î < 8.5×10−18 Î < 8.5×10−18

DTLZ5 - Ï < 8.5×10−18 Î < 8.5×10−18

DTLZ6 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

DTLZ7 - - -
WFG1 Î < 8.5×10−18 Î 1.2×10−4 Î 0.0016
WFG2 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

WFG3 Ï 4.0×10−5 Î 0.0004 Ï 9.6×10−4

WFG4 - Î < 8.5×10−18 Î < 8.5×10−18

WFG5 - Î 4.0×10−5 Î 8.0×10−5

WFG6 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

WFG7 - Î < 8.5×10−18 Î < 8.5×10−18

WFG8 - - Î < 8.5×10−18

WFG9 - Î < 8.5×10−18 Î < 8.5×10−18
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Table B.10: Outcomes of the Fisher-independent test (α = 0.05 and αs = 0.0125) for
DEMOIBHD and IBEAHD on the problems with two objectives. The ‘Î p -value’ (‘Ï p -value’)
under the indicator I denotes the problems, on which DEMOIBHD is significantly better
(worse) than IBEAHD regarding indicator I , while ‘-’ indicates there are no significant dif-
ferences between the two algorithms regarding indicator I .

m = 2
I 1
ǫ+ IH I 1

R2

DTLZ1 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

DTLZ2 - - Î < 8.5×10−18

DTLZ3 - Ï 0.0077 Ï 0.0103
DTLZ4 Î 4.4×10−4 Î < 8.5×10−18 Î < 8.5×10−18

DTLZ5 - - Î < 8.5×10−18

DTLZ6 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

DTLZ7 Ï < 8.5×10−18 Ï < 8.5×10−18 Ï < 8.5×10−18

WFG1 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

WFG2 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

WFG3 - Î < 8.5×10−18 Î < 8.5×10−18

WFG4 - Ï 0.0107 Ï 0.0028
WFG5 Ï < 8.5×10−18 Ï < 8.5×10−18 Ï < 8.5×10−18

WFG6 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

WFG7 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

WFG8 - - -
WFG9 Î 0.0092 Î 0.0006 -

Table B.11: Outcomes of the Fisher-independent test (α = 0.05 and αs = 0.0125) for
DEMOIBHD and IBEAHD on the problems with three objectives. The ‘Î p -value’ (‘Ï p -value’)
under the indicator I denotes the problems, on which DEMOIBHD is significantly better
(worse) than IBEAHD regarding indicator I , while ‘-’ indicates there are no significant dif-
ferences between the two algorithms regarding indicator I .

m = 3
I 1
ǫ+ IH I 1

R2

DTLZ1 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

DTLZ2 - Î 0.0107 Î < 8.5×10−18

DTLZ3 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

DTLZ4 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

DTLZ5 Ï 0.0016 Ï 0.0039 Î < 8.5×10−18

DTLZ6 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

DTLZ7 Ï < 8.5×10−18 Ï < 8.5×10−18 Ï 2.0×10−5

WFG1 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

WFG2 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

WFG3 - Î < 8.5×10−18 Î < 8.5×10−18

WFG4 - Î 2.8×10−4 Î < 8.5×10−18

WFG5 - - Î 6.6×10−4

WFG6 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

WFG7 - Î < 8.5×10−18 Î < 8.5×10−18

WFG8 - - Ï 7.4×10−4

WFG9 - Î 0.0067 Î < 8.5×10−18
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Table B.12: Outcomes of the Fisher-independent test (α = 0.05 and αs = 0.0125) for
DEMOIBHD and IBEAHD on the problems with four objectives. The ‘Î p -value’ (‘Ï p -value’)
under the indicator I denotes the problems, on which DEMOIBHD is significantly better
(worse) than IBEAHD regarding indicator I , while ‘-’ indicates there are no significant dif-
ferences between the two algorithms regarding indicator I .

m = 4
I 1
ǫ+ IH I 1

R2

DTLZ1 Î < 8.5×10−18 Î < 8.5×10−18 -
DTLZ2 - - Î < 8.5×10−18

DTLZ3 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

DTLZ4 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

DTLZ5 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

DTLZ6 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

DTLZ7 Ï 7.6×10−4 Ï 0.0032 -
WFG1 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

WFG2 - Î < 8.5×10−18 Î < 8.5×10−18

WFG3 Ï < 8.5×10−18 Ï < 8.5×10−18 Ï < 8.5×10−18

WFG4 - Î < 8.5×10−18 Î < 8.5×10−18

WFG5 - Ï 2.0×10−5 Î 2.0×10−5

WFG6 Î < 8.5×10−18 Î < 8.5×10−18 Î < 8.5×10−18

WFG7 - Î < 8.5×10−18 Î < 8.5×10−18

WFG8 - - Ï 8.6×10−4

WFG9 - - Î < 8.5×10−18
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Figure B.1: Best, worst and 50% attainment surfaces of DEMO and random search on the
modified optimization problem for the six datasets. The size of trees is placed on the ab-
scissa, while classification accuracy estimated estimated on the training instances is repre-
sented on the ordinate.
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Figure B.2: Best, worst and 50%-attainment surfaces of DEMO and random search on the
original optimization problem for the six datasets. The size of trees is placed on the abscissa,
while classification accuracy estimated using 10-fold cross validation is represented on the
ordinate.
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C
Razširjen povzetek v slovenskem jeziku

C.1 Uvod

V praksi se pogosto srečujemo z zahtevo po sočasnem optimiranju po več kriterijih. V pri-

meru, ko si kriteriji nasprotujejo, nimamo opravka samo z eno optimalno rešitvijo, temveč

z množico t. i. Pareto optimalnih rešitev, kjer vsaka rešitev predstavlja nek kompromis med

kriteriji. Brez dodatne informacije o prednosti kriterijev tako ne moremo trditi, da je katera

izmed teh rešitev boljša od druge. Zato pogosto želimo poiskati čim več Pareto optimalnih

rešitev hkrati – v enem samem zagonu algoritma. To nam omogočajo evolucijskimi algo-

ritmi, ki so populacijska preiskovalna metoda in zato lahko sočasno in po več kriterijih opti-

mirajo množico rešitev.

Pri večkriterijskem optimiranju obstaja poleg prostora spremenljivk, kjer iščemo rešitve,

še prostor kriterijev, kjer dobljene rešitve vrednotimo. Evolucijski algoritmi, ki se uporabljajo

za večkriterijsko optimiranje (t. i. večkriterijski evolucijski algoritmi), zato delujejo na dveh

nivojih: uporabljajo neko preiskovalno metodo za usmerjanje iskanja rešitev v prostoru spre-

menljivk in metodo za kriterijsko selekcijo, s katero izberejo najboljše rešitve glede na njihov

položaj v prostoru kriterijev. Čeprav je bilo v zadnjih dvajsetih letih predstavljenih mnogo

večkriterijskih evolucijskih algoritmov, večina izmed njih – tudi popularni NSGA-II (Deb in

sod., 2002), SPEA2 (Zitzler in sod., 2001) in IBEA (Zitzler in Künzli, 2004) – uporablja isto

preiskovalno metodo (genetski algoritem) in se razlikuje le v uporabljenem pristopu za kri-

91



92 Razširjen povzetek v slovenskem jeziku

terijsko selekcijo.

V magistrski nalogi predstavljamo algoritem DEMO (angl. Diferential Evolution for Mul-

tiobjective Optimization), ki lahko poljuben pristop za kriterijsko selekcijo kombinira z dife-

rencialno evolucijo (Storn in Price, 1997) – preiskovalno metodo, ki v reševanju enokriterij-

skih problemov pogosto doseže boljše rezultate kot genetski algoritmi. V pričujoči magistrski

nalogi smo želeli raziskati ali to drži tudi za večkriterijsko optimiranje. Poleg tega želimo al-

goritem DEMO uporabiti na realnem primeru optimiranja točnosti in velikosti odločitvenih

dreves.

C.2 Posebnosti večkriterijskega optimiranja

C.2.1 Osnovne definicije

Večkriterijski optimizacijski problem je definiran kot problem iskanja optimuma funkcije

f : X →Z

f : (x1, . . . ,xn ) 7→ ( f 1(x1, . . . ,xn ), . . . , f m (x1, . . . ,xn )),

kjer je X n-dimenzionalni prostor spremenljivk in Z m -dimenzionalni prostor kriterijev (za

m ≥ 2).

Definicija C.1 (Pareto dominiranost vektorjev). Vektor z 1 dominira vektor z 2 (z 1 ≺ z 2)
def

⇐⇒

z 1
j ≤ z 2

j za vse j ∈ {1, . . . , m } in z 1
k < z 2

k vsaj za en k ∈ {1, . . . , m }.

Za različna vektorja z 1 in z 2 v prostoru kriterijev lahko velja, da z 1 ⊀ z 2 in z 2 ⊀ z 1. Takrat

pravimo, da sta z 1 in z 2 neprimerljiva.

Definicija C.2 (Pareto optimalnost). Rešitev x ∗ in njej pripadajoči vektor v prostoru kriteri-

jev z ∗ = f (x ∗) sta Pareto optimalna
def

⇐⇒ ne obstaja z ∈Z , tako da z ≺ z ∗.

Vsi Pareto optimalni vektorji v prostoru kriterijev sestavljajo Pareto optimalno fronto.

Vsak vektor iz Pareto optimalne fronte predstavlja kompromis med kriteriji. Brez dodatne

informacije o pomembnosti posameznih kriterijev so vse Pareto optimalne rešitve enako-

vredne.
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C.2.2 Dva pristopa

Podobno kot v enokriterijskem optimiranju, je tudi v večkriterijskem končni cilj najti eno

samo optimalno rešitev. Dobimo jo z uporabo bodisi prednostnega bodisi idealnega pri-

stopa.

Po prednostnemu pristopu večkriterijski optimizacijski problem na začetku prevedemo

na enokriterijskega tako, da kriterijem dodelimo prednosti. To lahko dosežemo na primer z

uporabo utežene vsote kriterijev. Eno samo rešitev potem poiščemo tako, da rešimo dobljeni

enokriterijski optimizacijski problem. Uporaba prednostnega pristopa takrat, ko prednosti

kriterijev ne poznamo vnaprej, ima več slabosti. Rešitev, ki jo dobimo na ta način, je odvi-

sna od funkcije, ki je bila uporabljena za transformacijo več kriterijev v enega. Z drugačno

funkcijo lahko dobimo drugačno rešitev. Poleg tega pri nekaterih najpogosteje uporablje-

nih transformacijah (kot je na primer utežena vsota) ni mogoče najti vektorjev, ki ležijo na

konkavnih delih Pareto optimalne fronte.

Z idealnim pristopom pa najprej rešimo večkriterijski problem in šele nato uporabimo in-

formacijo o prednosti kriterijev, da izberemo eno samo rešitev iz množice optimalnih. Ide-

alni pristop od uporabnika ne zahteva poznavanja prednosti kriterijev pred optimizacijo.

Šele ko je znanih več kompromisnih rešitev, uporabnik potrebuje poznavanje prednosti kri-

terijev, da se odloči za eno izmed njih.

C.2.3 Aproksimacijske množice

Rezultat algoritma, ki rešuje večkriterijske optimizacijske probleme po idealnem pristopu, je

navadno množica nedominiranih rešitev. Kriterijski vektorji teh rešitev sestavljajo t. i. apro-

ksimacijsko množico, ki aproksimira Pareto optimalno fronto.

Da bi uporabniku omogočili čim boljšo izbiro, algoritmi za večkriterijsko optimizacijo

pogosto iščejo aproksimacijske množice, v katerih so vektorji čim bolj raznoliki in enako-

merno razporejeni vzdolž Pareto optimalne fronte. Čeprav je to v praktičnih problemih mno-

gokrat zaželena lastnost algoritmov, ni skladna z relacijo Pareto dominiranosti. To pomeni,

da je doseganje vektorjev v bližini Pareto optimalne fronte edini cilj večkriterijskega optimi-

ranja, medtem ko je enakomerna razporeditev vektorjev samo zaželena lastnost in ne more

biti formalno šteta kot enakovredni drugi cilj večkriterijskega optimiranja. To nasprotuje

konceptu dveh ciljev večkriterijskega optimiranja, ki ga lahko pogosto najdemo v literaturi

(Deb, 2001).



94 Razširjen povzetek v slovenskem jeziku

C.3 Diferencialna evolucija za večkriterijsko optimiranje

Diferencialna evolucija je evolucijski algoritem, ki uporablja vektorsko predstavitev rešitev

in nove rešitve gradi s pomočjo vektorskega seštevanja, množenja s skalarjem in križanja.

Vsaka tako dobljena nova rešitev, imenovana tudi kandidat, je sprejeta v populacijo le, če

je enakovredna ali boljša od svojega starša. Diferencialna evolucija na številnih enokriterij-

skih optimizacijskih problemih dosega boljše rezultate kot genetski algoritmi (Price in sod.,

2005). Zato so se v zadnjih letih pojavili različni algoritmi za večkriterijsko optimiranje, ki te-

meljijo na diferencialni evoluciji (Abbass in sod., 2001; Lampinen, 2001; Madavan, 2002; Xue

in sod., 2003; Parsopoulos in sod., 2004; Kukkonen in Lampinen, 2004). Vendar pa so ti algo-

ritmi bodisi zaobšli primerjanje med kandidati in starši bodisi je bila primerjava prestroga

za uspešno uporabo pri več kriterijih. Poleg tega je bil edini uporabljeni pristop za kriterijsko

selekcijo v teh algoritmih kombinacija nedominiranega sortiranja in metrike nakopičenosti

(kot pri NSGA-II).

V magistrski nalogi predstavljamo algoritem DEMO, ki preiskuje prostor spremenljivk z

diferencialno evolucijo in lahko za izbiro najboljših rešitev za naslednjo generacijo uporablja

poljuben pristop za kriterijsko selekcijo.

C.3.1 Algoritem DEMO

DEMO tvori novega kandidata na enak način kot diferencialna evolucija. Primerjavo med

kandidatom in njegovim staršem izvede po naslednjem postopku. Če kandidat dominira

starša, potem ga zamenja v populaciji. Če je kandidat dominiran s strani starša, potem kan-

didata zavržemo. Če pa sta med seboj neprimerljiva, DEMO kandidata doda v populacijo.

Ko se ta postopek ponovi za vse kandidate v trenutni generaciji, se je populacija lahko pove-

čala. V takem primeru jo moramo zmanjšati na prvotno velikost, kar naredimo s pomočjo

poljubnega pristopa za kriterijsko selekcijo. V magistrski nalogi predstavljamo štiri različice

algoritma DEMO, označene z DEMONS-II, DEMOSP2, DEMOIBǫ+ in DEMOIBHD , ki uporabljajo

enake pristope za kriterijsko selekcijo kot algoritmi NSGA-II, SPEA2, IBEAǫ+ in IBEAHD.

Največja prednost diferencialne evolucije in algoritma DEMO je v njuni enostavnosti za

razumevanje in implementacijo, največja slabost pa omejenost uporabe na numerične op-

timizacijske probleme. Rešitve morajo biti zaradi vektorskih operacij namreč zapisane kot

vektorji, tega pa za kombinatorične optimizacijske probleme ne moremo narediti.
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C.3.2 Primerjava algoritma DEMO z večkriterijskimi genetskimi

algoritmi

Najprej želimo primerjati diferencialno evolucijo in genetske algoritme kot dve preiskovalni

metodi za večkriterijsko optimiranje neodvisno od uporabljenega pristopa za kriterijsko se-

lekcijo. Zato med sabo paroma primerjamo algoritme DEMONS-II in NSGA-II, DEMOSP2 in

SPEA2, DEMOIBǫ+ in IBEAǫ+ ter DEMOIBHD in IBEAHD.

Vse algoritme smo pognali 30-krat na 16 testnih problemih (uporabili smo 7 problemov

DTLZ (Deb in sod., 2005) in 9 problemov WFG (Huband in sod., 2005)) z dvema, tremi in

štirimi kriteriji. Algoritme smo po priporočilu (Knowles in sod., 2006) ocenili na podlagi šti-

rih mer: rangiranja po dominiranosti (Knowles in sod., 2006) in indikatorjev kakovosti I 1
ǫ+

(Zitzler in sod., 2003), IH (Zitzler in Thiele, 1999) ter I 1
R2 (Hansen in Jaszkiewicz, 1998). Si-

gnifikantnost dobljenih rezultatov smo preverili s statističnimi testi. Poleg tega smo apro-

ksimacijske množice algoritmov primerjali še glede na njihove površine dosega (Grunert da

Fonseca in sod., 2001).

Rezultati testov rangiranja po dominiranosti so pokazali, da je DEMO v 19% vseh prime-

rov signifikantno boljši in le v 2% primerov signifikantno slabši od pristopov, ki uporabljajo

genetske algoritme. Če opazujemo indikatorje kakovosti, pa je DEMO signifikantno boljši

kar v 81% in signifikantno slabši le v 9% vseh primerov. Iz teh rezultatov lahko sklepamo, da

diferencialna evolucija preiskuje prostor spremenljivk učinkoviteje kot genetski algoritmi.

C.3.3 Primerjava različic algoritma DEMO

Ker bi se radi odločili za različico algoritma DEMO, ki najbolj ustreza našim zahtevam, smo

naredili dodatno primerjavo med vsemi štirimi različicami algoritma. Zanjo smo uporabili

rezultate prejšnjih poskusov, tako da smo jih ponovno rangirali po dominiranosti. Posame-

zne različice algoritma DEMO so se statistično signifikantno razlikovale samo na nekaterih

primerih, kjer sta DEMOIBǫ+ in DEMOIBHD praviloma dosegla slabše rezultate kot DEMONS-II

in DEMOSP2.

Ker je edina razlika med različicami algoritma DEMO v uporabljenem pristopu za kriterij-

sko selekcijo, smo različice primerjali tudi glede dobljene razporeditve vektorjev v prostoru

kriterijev. Prikazi aproksimacijskih množic na primerih z dvema in tremi kriteriji so razkrili,

da algoritem DEMOSP2 doseže razporeditev vektorjev, ki se najbolje ujema z intuitivno pred-

stavo o dobri razporejenosti. Zato smo se odločili, da bomo različico DEMOSP2 uporabili za

reševanje praktičnega problema optimiranja točnosti in velikosti odločitvenih dreves.
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C.4 Optimiranje točnosti in velikosti odločitvenih dreves

Algoritem DEMO želimo uporabiti v strojnem učenju za iskanje parametrov učnih algorit-

mov z namenom, da bodo dobljene teorije čim bolj točne in enostavne. S tem želimo olajšati

delo uporabnikom, ki se ne spoznajo na algoritme strojnega učenja in ne vedo, kako nastaviti

parametre teh algoritmov, da bi dobili primerne teorije. Poleg tega uporabniki mnogokrat

vnaprej sploh ne vedo, kakšno teorijo iščejo. DEMO jim pri tem lahko pomaga tako, da pre-

išče prostor parametrov učnega algoritma in uporabniku vrne množico (skoraj) optimalnih

teorij, ki se razlikujejo v kompromisu med točnostjo in enostavnostjo. Na ta način uporab-

nik dobi boljši vpogled v svojo problemsko domeno in ima na voljo več teorij, med katerimi

lahko izbere najustreznejšo.

C.4.1 Opis problema

V magistrski nalogi se omejimo na algoritem za gradnjo odločitvenih dreves C4.5 (Quinlan,

1986), oz. na njegovo implementacijo v okolju Weka, imenovano J48 (Witten in Frank, 2005).

Pri optimiranju klasifikacijske točnosti in velikosti dobljenih odločitvenih dreves preisku-

jemo prostor naslednjih parametrov algoritma J48:

– najmanjše število primerov v listih (M ),

– gradnja izključno neporezanih dreves (U ),

– faktor zaupanja pri naknadnem rezanju dreves (C ),

– dvigovanje poddreves pri naknadnem rezanju (S),

– gradnja izključno dvojiških dreves (B).

C.4.2 Optimiranje z algoritmom DEMO

Ker je na velikih domenah gradnja odločitvenih dreves lahko časovno potratna, postopek

preiskovanja omejimo tako, da pregleda le 500 rešitev. Kot rečeno, smo se problema lotili z

različico DEMOSP2.

Za optimiranje točnosti in velikosti odločitvenih dreves smo opravili dve seriji posku-

sov. V prvi smo želeli videti, kako blizu Pareto optimalne fronte ležijo vektorji, ki jih do-

bimo z algoritmom DEMOSP2. V ta namen smo okrnili originalni problem tako, da smo

DEMOSP2 lahko primerjali z izčrpnim preiskovanjem, algoritmom OPT (Bohanec in Bratko,
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1994), ki iz danega drevesa dobi vsa optimalna rezana poddrevesa, in naključnim preisko-

vanjem. Vse algoritme smo preizkusili na šestih domenah strojnega učenja (domeni EDM

(Valentinčič in Junkar, 2006) in petih domenah iz zbirke UCI Machine Learning Repository

(Newman in sod., 1998)).

Na okrnjenem problemu se je DEMOSP2 izkazal zelo dobro. Podobno kot naključno prei-

skovanje je našel mnogo vektorjev na Pareto optimalni fronti, ki pa so bili veliko bolje razpo-

rejeni. Statistični testi so potrdili, da so rezultati algoritma DEMOSP2 signifikantno boljši od

rezultatov dobljenih z naključnim preiskovanjem.

Vendar smo okrnjeni problem uporabili le zato, ker nam je omogočil primerjavo s Pareto

optimalno fronto. Naš cilj je uporabiti algoritem DEMO za reševanje originalnega problema.

Zato smo DEMOSP2 in naključno preiskovanje preizkusili tudi na tem problemu. Poleg tega

nas je zanimalo, kakšna so dobljena drevesa v primerjavi z drevesom, ki ga dobimo, če za

algoritem J48 uporabimo privzeto nastavitev parametrov.

Na domeni EDM, kjer je malo optimalnih dreves, se rezultati algoritma DEMOSP2 in na-

ključnega preiskovanja ne razlikujejo signifikantno. Po drugi strani pa so razlike na ostalih

problemih med algoritmom DEMOSP2 in naključnim preiskovanjem signifikantne. Opazimo

tudi, da so drevesa, zgrajena s privzetimi parametri algoritma J48, navadno večja od dre-

ves, ki jih dobimo z algoritmom DEMOSP2 in naključnim preiskovanjem. Drevesa, dobljena

z algoritmom DEMOSP2, večinoma dominirajo privzeta drevesa.

Dodaten vpogled v prostor spremenljivk je pokazal, da ni pravila, ki bi lahko za poljubno

domeno napovedalo, kakšne nastavitve parametrov bodo dale optimalna drevesa. Te nasta-

vitve so namreč v veliki meri odvisne od izbrane domene.

C.5 Sklep

Predstavili smo algoritem DEMO, ki prostor spremenljivk preiskuje z diferencialno evolucijo

in izbira najboljše rešitve s poljubnim pristopom za kriterijsko selekcijo. DEMO smo im-

plementirali v štirih različicah (DEMONS-II, DEMOSP2, DEMOIBǫ+ in DEMOIBHD ) in jih paroma

primerjali z algoritmi z enakim pristopom za kriterijsko selekcijo, ki za preiskovanje upora-

bljajo genetske algoritme. Primerjava na 16-ih testnih večkriterijskih optimizacijskih proble-

mih je pokazala, da na obravnavanih problemih diferencialna evolucija bolje preišče prostor

spremenljivk kot genetski algoritmi. Žal pa sta tako diferencialna evolucija kot DEMO zaradi

vektorske predstavitve rešitev primerna le za reševanje numeričnih optimizacijskih proble-

mov.
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Dodatna primerjava med štirimi različicami algoritma DEMO je pokazala, da različica

DEMOSP2 doseže razporeditev vektorjev v prostoru kriterijev, ki uporabniku običajno najbolj

ustreza. Zato smo to različico uporabili za reševanje realnega problema optimizacije točnosti

in velikosti odločitvenih dreves. Na tem problemu je DEMO našel dobre kompromise med

točnimi in majhnimi drevesi, med katerimi lahko uporabnik izbira najbolj zaželenega.

Na podoben način bi DEMO lahko uporabili tudi za optimiranje teorij, grajenih z dru-

gimi algoritmi strojnega učenja. Poleg tega bi lahko h kriterijema točnosti in velikosti lahko

dodali še kakšen dodaten kriterij, na primer ‘zanimivost’ zgrajene teorije, ki bi jo lahko merili

s prisotnostjo ali odsotnostjo določenih atributov v teoriji.
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