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Abstract. In buildings, classical heating controllers are based on user-preferred settings of the indoor temperature 

at particular times of day. The controllers alter the heating or cooling to achieve a desired temperature. Since comfort 

also relates to other factors, such as human activity rate and indoor air humidity, we developed a novel comfort 

regulator that computes the value of indoor set-point temperature to achieve the desired comfort dynamically. In this 

way, finding the best control strategies corresponds to identifying the most user-preferred balances between energy 

consumption and comfort experience. The second novelty is introduced through a new occupancy-prediction algorithm 

that improves the comfort experience when a home becomes occupied, and the expert rules that efficiently reduce 

unnecessary energy consumption during periods when the home is not occupied. Experimental results for a specific 

building are presented in a comfort/energy consumption space to demonstrate how the Pareto frontier is influenced by 

(i) different versions of control strategies and (ii) different comfort threshold values. The experiments show that the 

proposed control system achieved a better comfort experience with small increases in energy consumption compared to 

a reference approach – that is, a reactive control system that triggers based on occupancy events only. 

Keywords: consumption; comfort; smart building; multi-agent architecture. 

 

1. Introduction 

Heating represents 70 percent of household en-

ergy consumption in European countries, and is the 

largest consumer of energy in residential spaces [1]. It 

is targeted in the directive accepted by the Euro-pean 

Parliament to promote the reduction of energy 

consumption and global gas emissions by 2020, by at 

least 20 percent below 1990 levels. In relation to this, 

installation of active control systems that aim to save 

energy is encouraged [2]. 

Regular domestic heating, ventilation and air 

conditioning (HVAC) systems perform temperature 

control, where schedules for heating operation are 

normally given during installation and are very sel-

dom refined. There are several reasons why occu-

pants do not refine the settings in order to achieve 

more cost-effective operation of domestic HVAC sys-

tems [3, 4], including the following: 

 Some people do not want to deal with the set-tings 

of the HVAC controllers, since they are afraid to 

cause malfunction, or because setting optimal 

schedules is too demanding for the aver-age user 

due to a lack of knowledge and experi-ence, or is 

too time-demanding for occupants.  

 The indoor temperature that is denoted as com-

fortable is highly dependent on additional fac-tors, 
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such as humidity, occupant’s activity level, 

occupant’s clothing insulation, etc., and the de-

sired temperature may change frequently in or-der 

to achieve satisfactory comfort experience.  

 The home occupancy schedule is rarely refined to 

reduce energy consumption, especially in un-

predicted absent periods since users do not want to 

modify the present schedule too often.  

As a consequence, there is a room for intelligent 

control. 

The heating process is slow, dynamic and coupled 

with the environmental variables, such as out-door 

temperature and humidity. The time to heat a room to 

the desired temperature ranges from a few minutes to 

a number of hours. This highlights the importance of 

being able to create an occupancy schedule in 

advance. For example, if the occupancy schedule is 

known ahead of time, the desired room temperature 

can be prepared right before the person returns home. 

The novelty of our approach relies on finding the 

best balances between energy consumption and com-

fort experience for domestic HVAC systems. The de-

sired balance can be specified in advance, along with 

the choice of control strategy and the comfort thresh-

old. The control strategy exploits a novel control sys-

tem, which is composed of reactive, anticipative and 

rule-based components. The reactive component uses 

simple rule that triggers HVAC operation based on the 

current home occupancy state. The anticipative 

component improves the reactive strategy by means of 

the near-future occupancy prediction, and in case of 

correct prediction prepares the appropriate 

temperature within the home environment. The rule-

based component uses a set of rules that define the 

dynamic time periods during which the home will not 

be occupied. This component is used to reduce energy 

consumption during such time periods, and also to 

reduce heating due to false occupancy predictions 

generated by the anticipative strategy. Furthermore, 

we implemented a novel comfort regulator that 

ensures the occupant’s comfort, as directly specified 

as a comfort range by maintaining the indoor 

temperature through dynamic adaptation of the indoor 

temperature set-point value. As a consequence, the 

proposed system allows the occupant to: 

 Control their comfort directly, and the temperature 

indirectly via this comfort, thereby making it user-

centered.  

 Choose a control algorithm whose operation 

results in the desired trade-off between energy 

consumption and comfort experience.  

 Transmit the burden of dynamically setting the 

semi-optimal heating or cooling to the agent sys-

tem performing the comfort balance on its own.  

Section 2 presents the background and definition 

of comfort, and related work for unobtrusive occupant 

monitoring in a smart building, and for the 

management of comfort and energy consumption. 

Section 3 presents our approach to comfort regulation. 

Section 4 describes the control system architecture, 

which is composed of various types of agents and the 

implemented control strategies. Section 5 presents the 

experimental set-up, the simulation model, and 

datasets used to evaluate the proposed control sys-tem 

and control strategies. The results are discussed in 

Section 6, including a demonstration of how the trade-

off between energy consumption and comfort 

experience in a conditioned environment depends on 

the selected control strategy and parameters. Finally, 

Section 7 concludes the paper. 

2. Background and related work 

Smart control of a conditioned environment should 

achieve robust and economical operation, where the 

occupant’s comfort experience (the term “com-fort 

experience” will be denoted as “comfort” in the rest of 

the paper) is not violated. The first challenge is how to 

define the set-point temperature at which the occupant 

feels comfortable, or how to express the comfort. The 

second challenge is how to monitor the occupant and 

environment, in order to obtain real values that 

express the comfort. The final challenge is how to 

maintain the comfort in order to achieve an 

appropriate balance between the energy consumption 

and comfort in residential buildings. 

2.1. The notion of thermal comfort – predicted 

mean vote and predicted percentage dissatisfied 

indices  

Thermal comfort denotes the thermal sensation of 

an occupant in a conditioned environment. The 

mathematical model for evaluating comfort – that is, 

the predicted mean vote (PMV) – was derived by 

Fanger et al. [5]. Thermal sensation is related to the 

thermal balance of the human body, which is 

influenced by physical activity and clothing, as well as 

by environmental parameters such as air temperature, 

mean radiant temperature, air velocity and air 

humidity. PMV can be calculated according to these 

factors, although comfort cannot be measured directly 

[6]. In related work on the control of comfort 

according to PMV, the computation of PMV is mostly 

conducted using assumptions of personal parameters, 

such as the occupant’s metabolic rate and clothing 

rate, as fixed values or fixed ranges of values, such as 

in [7, 8, 9]. PMV expresses the thermal sensation on a 

seven-point scale ranging from 3 to +3, where 

negative values denote colder sensation and positive 

values de-note warmer sensation. The value 0 denotes 

neutral sensation, which is the target value for indoor 

air conditioning (if the control objective is to achieve 

the best comfort). The greater the distance of PMV 

from 0, the colder (when negative) or hotter (when 

positive) the sensation. 
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The predicted percentage dissatisfied (PPD) index 

provides information on thermal comfort by predicting 

what percentage of people are likely to feel too warm 

or too cool in a given environment. The PPD is 

obtained from the PMV. Both indexes are specified 

and interpreted in international standard ISO 7730 

[10], European standard CEN CR 1752, and other 

standards involved with ergonomics of the thermal 

environment [11]. A review paper on thermal comfort 

can be found in [12], where the model of heat 

exchange between the body and environment is 

described for different human activities, which are 

often simplified – such as sleeping or being awake – 

whereas the PMV model for sleeping environments 

was derived in [13]. The difference in comfort 

notation between genders was taken into account in 

[14], who stated that females are more critical of their 

ther-mal environments and that males use thermostats 

in households more often. The PPD index assumes 

that at least 5 percent of people in a group will never 

be satisfied with the thermal environment. 

Figure 1 shows the relation between the PMV and 

PPD indices. We can observe that the PPD index rises 

slowly for PMV values until it is close to 0, has almost 

linear growth for PMV values between += 1 and += 2, 

and stabilizes towards PPD value 100% at PMV close 

to += 3. The long-term evaluation of comfort 

according to the PPD is proposed in standard ISO 

15251 [15]; this will be used in our long-term 

evaluation of comfort. 

 

Figure 1. PPD as a function of PMV. 

2.2. Monitoring of the occupant in a smart 

environment  

In order to reduce energy consumption when the 
home is not occupied, and to prepare the appropriate 

indoor temperature right before occupancy begins, a 

robust and unobtrusive approach should be used for 

home occupancy detection. Nguyen et al. [16] 

conducted a survey of control systems for intelligent 

buildings and used sensor systems to detect 

occupant’s behaviour. A review of a wide range of 

systems was conducted based on radio-frequency 

identification tags, motion sensors, passive infrared 

sensors, etc., which were implemented to detect room 

or per-room occupancy, and to obtain feedback 

information from users. Several studies have exploited 

agent-based systems, in which agents are able to 

communicate in order to extract valuable information 

and thus achieve better results. Aswani et al. [17] used 

the, so called, “Berkeley Retrofitted and Inexpensive 

HVAC Testbed for Energy Efficiency“ platform, 

which is able to monitor occupancy profiles and 

predict future occupancy based on historical data. 

Martani et al. [18] implemented a system that detects 

occupancy based on established wireless local area 

network connections. Our previous work exploited 

smartphone sensors to estimate the activity levels of 

an occupant; these were then used to estimate the 

clothing insulation, and finally for comfort evaluation 

(PMV and PPD) and control [19]. 

2.3. The balance between energy consumption and 

comfort  

Traditionally, the set-point temperature is 

designated once every several weeks or months. It is 

included into the HVAC operation schedule. There are 

several approaches with respect to obtaining com-fort 

by defining the fixed indoor temperature set-point 

value, or range of values, at which the person feels 

comfortable, such as those in [17] and [20]. Klein et 

al. [21] developed a distributed agent system that is 

able to identify an appropriate temperature setting 

with agent negotiations according to number of 

occupants, and coordinate the occupants’ behaviour in 

a way that agents perform scheduling meetings and 

offices according to the number of occupants and the 

size of the offices. Vrecko et al. [22] and Yang et al. 

[23] developed an algorithm that calculates the 

optimal set-point temperature in buildings, where the 

time to start heating is computed based on a model 

predictive control (MPC), so that the correlation be-

tween the time-to-heat, the current indoor temperature 

and the desired indoor temperature is created and 

adapted automatically based on historical data, thereby 

expressing the thermal dynamics of a conditioned 

environment. Other research has focused on regulating 

comfort in terms of PMV, where the indoor 

temperature and/or humidity are typical variables that 

can be con-trolled in order to achieve the desired 

comfort, and reduce energy consumption where 

possible. Various HVAC control systems have been 

developed to regulate comfort; these include systems 

based on a fuzzy controller [7] or PID-fuzzy controller 

[8], which were compared with simple on-off 

controllers. Liang et al. designed an intelligent control 

system that is able to create home occupancy profiles 

based on historic data about occupancy using an 

artificial neural network, and uses this as an MPC to 

remove power demand [9]. Morosan et al. [20] 

developed a system that reduces energy consumption 

based on occupancy schedule, which is assumed to be 

known in advance. Examples of achieving the 

appropriate trade-off between the energy consumption 

and comfort in a thermal environment were shown in 



Finding Good Trade-offs Between Energy Consumption and Occupant’s Comfort in Smart Buildings 

423 

[8, 9, 24], where comfort was denoted as a PMV 

index, and in [17, 25, 26], where other methods were 

used to evaluate comfort, such as static set-point value 

of indoor temperature and the summation of time 

periods that temperature was not achieved (often 

denoted as miss-time). 

3. Comfort regulation 

Comfort regulation maintains the indoor air 

temperature in such a way as to achieve the desired 

value of PMV, or a range of values. Other personal 

and environmental variables that influence the value 

of PMV (such as physical activity and clothing, mean 

radiant temperature, air velocity and air humidity) are 

assumed to be disturbances that must be compensated 

for with the change in indoor temperature. 

A set-point delegation module (SDM) computes 

the value of Ts; that is, the indoor temperature set-

point to reach the comfort range, specified by PMV ref. 

Ts is passed to a heat pump regulator, which regulates 

operation of the heat pump in order to equalise the Tin 

with Ts. The heat pump regulator is integrated within 

the simulation model, and is not part of our control 

architecture. Each control agent uses SDM to 

continuously compute the desired indoor temperature 

set-point variable Ts. As a consequence, the desired 

comfort of the occupant is achieved. 

Each time the step k control agent obtains the 

value PMV (k), which is computed according to the 

ISO-PMV model defined in Chapter 4 of the standard 

ISO 7730 [10]. The comfort range is defined as an 

interval [-PMVref; +PMVref], where PMVref ≥ 0 is the 

maximum permitted deviation of PMV from the ideal 

value of 0. In practical terms, when PMVref 6 ≠ 0, the 

controller will maintain the value of PMV at 

approximately ─PMVref when heating and 

approximately PMVref when cooling. PMVref enables 

manipulation of the trade-off between energy 

consumption and comfort, as will be demonstrated in 

the following sections. 

When the control agent performs a control strat-

egy that includes comfort regulation, each time step k 

occurs during operation, selected sensor agents 

provide state variables si (k) to the control agents. 

These state variables are indoor temperature Tin (k) 

and comfort PMV (k). The indoor set-point tempera-

ture Ts for the next time-step k + 1 is computed in or-

der to achieve the comfort range, defined by PMVref 

according to Eq. (1): Ts (k) is increased/decreased for 

the value Tinc (k). 

Ts (k + 1) = Ts (k) ─ Tinc(k) (1) 

The value of Tinc (k) corresponds to the following 

conditions: if PMV (k) is close to the comfort range, 

the Ts should not change much. If PMV (k) is distant 

from the comfort range, the Ts could change more. In 

order to prevent fluctuations of Ts, the following 

conditions must be met: If the difference between Tin 

(k) and Ts (k) is small, the Ts can change more; if the 

difference between Tin (k) and Ts (k) is large, the Ts 

should not change greatly. In other words, the 

increment/decrement value Tinc (k) is (i) proportional 

to the difference between the PMV (k) and comfort 

range, and (ii) inverse-proportional to the difference 

between Tin (k) and Ts (k). We want Tin to catch up 

with Ts, so that Ts does not significantly over- or 

undershoot the temperature at which the comfort range 

is achieved. Therefore, we derive the following 

equation: 

 

where 

 
is the distance between the range of desired comfort 

values and the current value of comfort, 

Tdiff (k) = Ts (k) – Tin (k)  (4) 

is the difference between the current set-point 

temperature and the current indoor temperature. The 

constant values A=0.1, B=4, C=0.18 and D=1 were 

obtained iteratively by means of several simulation 

runs in order to achieve a quick response and to 

prevent oscillations of indoor temperature. 

We rewrite Eq. (2) as: Tinc(k) = K1 + K2 · K3, 

where K1 = A · PMVdiff(k)5 + D · PMVdiff(k) 

represents the proportion of Eq. (2) to PMVdiff 

(represented in Figure 2 left), and 

𝐾
2 = 

1

𝐶 ∙ 𝑇𝑑𝑖𝑓𝑓 (𝑘)+1

represents the inverse- proportion of 

Eq. (2) to Tdiff (represented in Figure 2 right). The 

multiplication of K2 with K3 = B · PMVdiff(k) and the 

sum of K1 + K2 · K3 gives the final shape of our 

comfort regulator function as presented in Figure 3. 

The comfort regulator function that computes the 

increment of indoor set-point temperature 𝑇𝑖𝑛𝑐  (z axis) 

is based on the difference 𝑃𝑀𝑉𝑑𝑖𝑓𝑓between the desired 

comfort and current comfort. 

 

 

Figure 2. The constitutive parts of the comfort regulator 

function K1, left, and K2, right 
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Figure 3. The comfort regulator function Tinc (k) = K1 + K2 

·K3 that computes the increment of indoor set-point 

temperature Tinc (z axis) 

The time series of the 𝑃𝑀𝑉𝑟𝑒𝑓 and the 

corresponding 𝑇𝑖𝑛 is presented in Figure 4 for one day 

of simulation in winter on a test building. 

In the middle of the day, when the temperature 

drops to 15°C, the building was not occupied. Figure 4 

demonstrates the effect of comfort range: the higher 

the 𝑃𝑀𝑉𝑟𝑒𝑓 , the lower the comfort but also the less 

energy consumed for heating. The difference in 

𝑃𝑀𝑉𝑟𝑒𝑓 for 0.2 results in a difference of indoor 

temperature of roughly 2°C.  

 

Figure 4. The comparison of PMV time series for different 

𝑃𝑀𝑉𝑟𝑒𝑓, and the corresponding 𝑇𝑖𝑛 during one day of 

simulation 

4. Control system 

Our control system is realised as a multi-agent 

control system (MACS), because agents enable a 

dynamic and flexible performance that is suitable for 

our approach. Upgrades of our previous work [27] 

include advanced perception and regulation of 

comfort, and an added rule-based component. There 

are several types of agents. Sensor agents represent 

sensors in an environment; these obtain the 

environmental state composed of state variables such 

as air temperature, humidity, activity level, etc., and 

collect sensor readings from spatially distributed 

sensing devices, which also include the occupant’s 

smartphone to estimate their activity rate, as presented 

in [19]. Control agents perform indoor temperature 

set-point delegation using a comfort regulator, where 

algorithms for defining indoor temperature set-point 

values are implemented as control strategies and 

include an occupancy prediction component that is 

used to predict near-future occupancy, a rule-based 

component to reduce false occupancy predictions, and 

a reactive component that triggers based on home-

occupancy-state events. Machine learning (ML) 

agents perform historic data processing and generate 

machine learning models. The environment represents 

the controlled system, which takes set-point variable 

values as inputs and outputs the environment variable 

values. Routing agents are used to link the control 

system (sensor and control agents) with the 

environment. 

 

Figure 5. Comfort regulation schema 

4.1. Control schema 

Figure 5 presents the control schema for com-fort 

regulation in a building. It consists of our MACS and 

the simulator. The dashed rectangles encapsulate 

agents of the same type; the two-way arrows 

represents communication between agents, and the 

one-way solid arrows represent feedback control. The 

bottom part of the figure presents the simulation 

environment, including a model of a building with 

integrated HVAC system and temperature regulator 

(REG). The input to the simulation environment is a 

vector of set-point variables 𝑟 ⃗⃗ (𝑘)  – that is, 𝑇𝑠(𝑘) ∈
 𝑟 ⃗⃗ (𝑘)  – obtained from control agents, and also the 

weather and occupancy dataset �⃗⃗� (𝑘)  for each time 

step (𝑘) during the simulation period. The output of 

the simulation environment is a vector that represents 

an environmental state, 𝑠 (𝑘 + 1) , at the next time 

step, (𝑘 + 1) . Routing agents are used to link the 

simulation environment with the control system so as 

to map the environment variables to appropriate 

sensor states and to map set-point variables to 

appropriate inputs in a simulation environment. The 

sensor network includes sensor agents that are used to 

obtain and serve state variables and to generate 

training data for machine learning. ML agents 

generate machine learning models (𝑜𝑐𝑐𝐶𝑙𝑠) by 

exploiting methods of artificial intelligence using the 

historic trends of environmental variables, which are 
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obtained on request from the control agent – when the 

control agent implements an anticipative mechanism. 

The control agent includes the SDM to compute the 

vector of set-point variables, 𝑟 ⃗⃗ (𝑘), using anticipative, 

rule-based and reactive components. User input 

represents the interface, which allows the occupant to 

set the comfort range specified by 𝑃𝑀𝑉𝑟𝑒𝑓 , and to 

choose the preferred control strategy implemented by 

the control agent. The following subsections describe 

the operation of each agent type. 

4.1.1. Sensor network 

The sensor network includes a set of sensor agents, 

where each sensor agent represents either a physical 

entity – that is, the sensor in an environment – or a 

virtual sensor entity. Sensor agents in a sensor network 

are used to perceive simple or complex sensor states, 

which represent the states of the 𝑖 − 𝑡ℎ environment 

variable, denoted as 𝑠𝑖 , where 𝑠𝑖 ∈  𝑠  and 𝑠  represents 

a state vector of all environment variables. Virtual 

sensor agents estimate the complex sensor state (such 

as PMV) based on simple sensor states obtained from 

physical sensors (such as temperature or humidity). 

Examples of environment variables include indoor 

temperature, occupancy state and PMV. Sensor agents 

maintain the most recent value of the sensor state, and 

also retain a history log of sensor states and generate 

data for machine learning. Sensor agents are also able 

to receive and process messages from other agents in 

the control system. The content of the state vector 

changes over time, so that at time 𝑘it is defined as 

𝑠 (𝑘) =  [𝑠1(𝑘), 𝑠2(𝑘), … , 𝑠𝑗(𝑘)] if there are 𝐽 

environment variables.  

4.1.2. Control agents 

Control agents are used to compute set-point 

variable values. Set-point variables at time 𝑘  are 

grouped into a vector of set-point variables 𝑟 (𝑘) =
 [𝑟1(𝑘), 𝑟2(𝑘), … , 𝑟𝐾(𝑘)]  if there are 𝐾  set-point 

variables. Control agents compute the set-point 

variable values in order to maintain the desired 

comfort, expressed with PMV (Section 3), according 

to their control strategies (Section 4.3). 

4.1.3. Simulation environment 

The simulation environment includes a model of a 

building with the temperature regulation module 

(REG in Figure 5). Inputs to the simulation 

environment are the vector of set-point values 

𝑟 ⃗⃗ (𝑘) and the vector of weather and personal data 

𝑤 ⃗⃗⃗⃗ (𝑘) at each time step 𝑘. Based on set-point values 

𝑟 ⃗⃗ (𝑘), current states 𝑠 ⃗⃗ (𝑘), and weather and personal 

data 𝑤 ⃗⃗⃗⃗ (𝑘), the simulation environment computes the 

output vector 𝑠 (𝑘 + 1)  according to the building 

model with the following equation: 

𝑠 (𝑘 + 1) = 𝐵𝑀(𝑠 (𝑘), 𝑟 (𝑘), �⃗⃗� (𝑘)). (5) 

The BM is a set of differential equations and 

represents the thermal dynamic model of a building 

with an integrated HVAC system. 

4.2. Home occupancy prediction 

Occupant behaviour modelling is performed using 

machine learning on real data about occupancy at 

work and at home over longer periods of time. 

Machine learning agents are used to generate machine 

learning models that are used by control agents in 

order to achieve better results regarding energy 

consumption and comfort in smart buildings. The 

machine learning procedure is used to create a 

behavior model of an occupant by which to predict 

occupancy in a building. 

Home occupancy and work occupancy are denoted 

as state variables, 𝑜𝑐𝑐(𝑘)and 𝑜𝑐𝑐𝑤(𝑘) , respectively. 

The occupancy is transformed into a time series with a 

frequency of one minute, where the occupancy state 

can leave one of two values: 0, signifying absence, 

or 1, signifying presence. Based on this data, and with 

a corresponding data-time value, the instance of 

machine learning, 𝑜𝑐𝑐𝐼𝑛𝑠𝑡 , can be created using the 

following attributes: minute in a day, day in a week, 

week/weekend day, month in a year, occupancy at 

home exactly one week earlier, a daily sum of minutes 

that the person was at home, the elapsed time in 

minutes since the occupant left the work environment, 

occupancy at work exactly one week earlier, a daily 

sum of minutes the person was at work, occupancy at 

work, and occupancy at home. The last of these 

attributes represents the class value to be predicted. 

The true value of home occupancy is denoted as 

𝑜𝑐𝑐(𝑘) , while the predicted value of occupancy is 

denoted as 𝑜𝑐𝑐∗(𝑘), and assigned using Eq. (6). 

𝑜𝑐𝑐∗(𝑘) = 𝑐𝑙𝑠(𝑜𝑐𝑐𝐼𝑛𝑠𝑡(𝑘), 𝑜𝑐𝑐𝐶𝑙𝑠) (6) 

where 𝑐𝑙𝑠  is a classification method that returns the 

predicted value – for instance, 𝑜𝑐𝑐𝐼𝑛𝑠𝑡(𝑘)- based on 

the machine learning model (classifier), 𝑜𝑐𝑐𝐶𝑙𝑠 . In 

contrast to the state variable, 𝑜𝑐𝑐(𝑘), for the current 

time, 𝑘 , which can be obtained from the sensor 

network, we denote the future time for prediction as 

𝑘 + 𝑘𝑛𝑓, and the instance to be classified, assumed at 

that time as 𝑜𝑐𝑐𝐼𝑛𝑠𝑡(𝑘 + 𝑘𝑛𝑓), where 𝑘𝑛𝑓  represents 

the time, added to the current time at which the 

prediction is needed. In summary, 𝑜𝑐𝑐∗(𝑘 + 𝑘𝑛𝑓) 

represents the predicted value of the occupancy state 

variable in the near future; that is, at time (𝑘 + 𝑘𝑛𝑓). 

The machine learning procedure was implemented 

using Weka data-mining software [28]. A machine 

learning algorithm C4.5 decision tree was used for 

occupant behaviour modelling, since trees achieved 

the best results, as shown in our previous work [27]. 

4.3. Control strategies 

We implemented several control strategies that 

were applied to delegate the indoor temperature 

setpoint value: 𝑂𝑛, 𝑂𝑓𝑓, 𝑆𝑒𝑛𝑠𝑒  and 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔.  𝑂𝑛 
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denotes always meeting the desired comfort, 𝑂𝑓𝑓 

entails setting the HVAC control system to a default 

safety temperature, 𝑆𝑒𝑛𝑠𝑒 indicates that on occupancy 

the comfort regulation is performed, and 𝑂𝑓𝑓 covers 

all other scenarios. The 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 strategy integrates a 

reactive component that is similar to the 𝑆𝑒𝑛𝑠𝑒 

strategy, rule sets and machine learning procedure to 

determine the set-point value. 

In our experiments, the 𝑂𝑓𝑓 strategy maintains the 

temperature at 5°C (denoted as 𝑇𝑠𝐿𝑜 ) during the 

simulation in order to prevent the HVAC and other 

components of the building from freezing. The 𝑂𝑛 

strategy performs PMV regulation, regardless of 

whether the occupant is present. It is expected that 

the  𝑂𝑛  strategy will consume the most energy. The 

𝑆𝑒𝑛𝑠𝑒 strategy performs PMV regulation, only during 

the time periods during which the occupant is present. 

If the apartment is not occupied, the 𝑇𝑠𝐿𝑜  is 

maintained. Finally, the 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔  strategy includes 

rules and classification methods to determine the 

future occupancy of a building. Based on a 

combination of rules and classification results, the 

SDM performs PMV regulation if the building is 

occupied, or if the building will be occupied in the 

near future. In other cases, the 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔  strategy 

maintains the 𝑇𝑠𝐿𝑜 temperature. 

During the initialisation phase, each control agent 

first searches for the appropriate sensor agents that are 

needed to implement each strategy. Then subscribes 

for the states’ values delivery to appropriate sensor 

agents, and finally starts the control operation, which 

is performed for each simulation time-step. In general, 

the control operation waits for state variables from all 

sensor agents the control agent is engaged with, 

computes the 𝑇𝑠, and passes the 𝑇𝑠 to the regulator in 

the simulation environment. 

4.4. Learning strategy 

The 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 strategy performs PMV regulation 

when the building is occupied, or when occupancy in 

the near future is predicted. Near-future occupancy 

𝑜𝑐𝑐(𝑘 + 𝑘𝑛𝑓) at time 𝑘 + 𝑘𝑛𝑓 , where 𝑘𝑛𝑓  represents 

the addition of minutes to the current time 𝑘 , is 

predicted using machine learning methods that exploit 

historical data to create a machine learning model for 

occupancy prediction, and expert knowledge defined 

by a combination of different rule sets. 

We defined five rules, which can be used as a 

combination of rules by the 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔  strategy. The 

first rule is simple and performs a similar operation to 

that of the 𝑆𝑒𝑛𝑠𝑒 strategy, except that in the case of 

non-occupancy, the next rule is considered. If the 

building is occupied, the heating is on and the control 

agent performs PMV regulation: 

Rule 1 

If 𝑜𝑐𝑐(𝑘) == 1) 

then assign 𝑇𝑠(𝑘 + 1) with Eq. (2) 

Rules 2, 3 and 4 are used for lowering energy 

consumption. Rule 2 applies 𝑇𝑠𝐿𝑜  if the occupant is 

absent for more than 𝐶tAbshours. This rule is used to 

apply 𝑇𝑠𝐿𝑜  when the occupant is not at home for a 

longer time (where 𝐶tAbs is 16 hours) due to vacation, 

business trips or any other similar circumstances: 

Rule 2 

if (𝑜𝑐𝑐(𝑘 − 𝑛) == 0∀𝑛; 𝑛 ∈ [0, 𝐶tAbs ]) 

then 𝑇𝑠(𝑘 + 1) = 𝑇sLo 

Rule 3 applies 𝑇sLo if the person is absent between 

𝐶t1 and 𝐶t2, where 𝐶t1 and 𝐶t2indicate the time period 

between, for example 01:00 and 07:00. In other 

words, if the person does not return home until 𝐶t2. 
Note: if the rule is processed, occupancy equals 0. 

Rule 3 

if (𝐶𝑡1 < 𝑘 < 𝐶t2) 

then 𝑇𝑆(𝑘 + 1) = 𝑇sLo 

Rule 4 applies  𝑇sLo  if the 𝐶ND -th departure 

happened, and if time from last departure 𝑘ND is less 

than 𝐶ND, and if the current day is a weekday (𝑊𝐷 =
1). 𝑁D represents the daily departure counter; that is, 

the counter of transitions from 𝑜𝑐𝑐(𝑘) = 1 to 𝑜𝑐𝑐(𝑘 +
1) = 0 . 𝑘ND  represents the expired time since the  

person left home – the time from last departure. 

The  𝐶ND  value is normally 1, which implies the 

following: if the first departure happened, the person 

probably went to work and will not return for at least 

𝐶ND hours. 

Rule 4: if ((𝑁D == 𝐶ND) ∧ (𝑘ND < 𝐶ND) ∧ WD ==
1) 

then 𝑇𝑠(𝑘 + 1) = 𝑇sLo 

Rule 5 is applied if none of the conditions in the 

previous rules have been met. If a person is not at 

home, the machine learning classification model 

returns the predicted occupancy for the near 

future  𝑜𝑐𝑐∗(𝑘 + 𝑘𝑛𝑓). If the occupancy is predicted, 

the PMV is controlled. Otherwise, 𝑇𝑠𝐿𝑜 is applied. 

Rule 5: if 𝑜𝑐𝑐∗(𝑘 + 𝑘𝑛𝑓)) 

then assign 𝑇𝑠(𝑘 + 1) with Eq. (2) 

else 𝑇𝑠 = 𝑇sLo 

It is possible to remove any of the rules from the 

set, or to add additional rules, but the order must be 

maintained in accordance with the order of rule 

numbers. Each combination of rules defines a 

different   𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔  strategy. If the condition of the 

first rule is not met, the next rule is checked, and so 

on. If a condition is met, then 𝑇𝑠(𝑘 + 1) is assigned 

according to the appropriate rule statement. For 

example: the 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 7  strategy includes Rule 1, 

Rule 3 and Rule 6, as shown in Figure 6. Other 

learning strategies are specified in Table 1. 
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Table 1. Rule sets and rule constants for different learning 

strategies 

 

 

5. Experimental setup 

The experimental set-up includes the simulation 

model of a single-floor L-shaped house with three 

heating zones. Each zone is conditioned using a 

packaged terminal heat pump, which consists of an 

outdoor air mixer, fan, cooling coil, heating coil and 

supplementary heater. Only the east zone, which 

represents a floor area of approximately 36 m2, is 

considered for the experiment. The heating coil 

capacity is rated at 6700 W and COP 2.75. The 

cooling coil capacity is rated at 7200 W and COP 

3.00. The supplementary heating coil is rated at 2000 

W. The simulation model of the building is taken from 

example models that came with the installation of 

EnergyPlus simulation software [29]. The power rate 

of the heating coil is dynamic and depends on the dry 

bulb temperature, the wet bulb temperature and the air 

flow rate, while the regulator is already included in a 

simulation model. 

 

Figure 6. Example of 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔7 strategy 

However, the cooling (heating) coil operation is 

controlled using the total cooling (heating) capacity 

function of temperature and flow fraction, the energy 

input ratio of flow fraction curve and the part-load 

fraction correlation curve [30]. The location of the 

simulation is Rateče, Slovenia, so the weather file for 

that city for the simulation period is used for the 

experiment1.  

The building model is included in the simulation 

environment, as shown in Figure 5. The control 

system is implemented using Java Agent Development 

Environment (JADE) [31], where (i) a control agent is 

instantiated for temperature set-point delegation in the 

east zone; (ii) sensor agents are used for occupancy, 

indoor temperature and for other states that are needed 

to estimate the PMV and PPD; (iii) one machine 

learning agent is used to create the machine learning 

model for occupancy prediction; and (iv) a routing 

agent is used for data exchange between the 

simulation environment and the control system. The 

simulations were performed with the following 

assumptions: the Metabolic Equivalent of Task for the 

                                                           
1 The data was obtained from the Slovenian environment agency 

(www.arso.gov.si) for the period between January and March 2014 

occupant is assumed to have a constant value of 1.72 

met2 and clothing is assumed to have a constant value 

of 1 clo3. The mean radiant temperature is computed 

using a simulator on the assumption that the occupant 

is in the middle of the space. Air velocity is assumed 

as a constant value of 0.15 m/s. The data about home 

and work occupancy was collected by four volunteers, 

and transformed into a time series with one-minute 

intervals. Table 2 presents the properties of the 

occupancy datasets that were used for the experiment. 

The first row shows the number of days, and the 

second shows the proportion of home occupancy. The 

last row shows the number of arrivals for each person 

during the observation period. The data for person 1 

was collected over a period of 85 days; the person has 

an approximately 48 % home occupancy rate, and 

around 1 arrival per day. The data for other people 

were collected over 30 and 41 days. Persons 2, 3 and 4 

have approximately 0.9 arrivals per day, and home-

occupancy rate ranges of between 35 % and 40 %. 

 

                                                           
2 1.72 met represents medium-light activity, such as domestic work 

[10] 
3 1 clo represents underwear, shirt, trousers, and sweater [10] 
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Table 2. Summary of occupancy datasets 

 

6. Results and discussions 

6.1. Comfort at the moment of arrival 

Table 3 shows the average value of PPD at the 

moment of arrival for the 𝑆𝑒𝑛𝑠𝑒, 𝑂𝑛, and 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 

strategies. As expected, the best results are obtained 

with the 𝑂𝑛  strategy, and the worst with the   𝑆𝑒𝑛𝑠𝑒 

strategy. The difference varies by approximately 20 

and 37 percentage points (pp). Among the learning 

strategies, 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔4  and 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔7  achieve the 

best improvements according to the results obtained  

from the dataset for each of the four people. 

𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔4  and 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔7  achieved between 4 pp 

(by person 1) and 9 pp (by persons 2 and 3) worse 

results than 𝑂𝑛, and around 15 pp (persons 1 and 3) 

and 29 pp (person 4) better results than 𝑆𝑒𝑛𝑠𝑒. Other 

strategies always achieved better results compared to 

𝑆𝑒𝑛𝑠𝑒, and worse compared to 𝑂𝑛. 
In order to demonstrate the difference in operation 

of the 𝑆𝑒𝑛𝑠𝑒 and 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 strategies, we plotted the 

time series of their PPD curves (see Figure 7). On 

each figure, the x axis presents the date and the y axis 

presents the PPD value. Solid curves indicate the 

value of PPD for time periods in which the home is 

occupied. Dashed curves represent the time periods 

during which the home is not occupied. Figure 7(a) 

represents the time series of PPD where the 𝑆𝑒𝑛𝑠𝑒 

strategy was applied, and Figure 7(b) represents the 

time series of the PPD index where the 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 

strategy with Rules 1, 2, 3 and 5 (𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔6) was 

applied. 

Due to the reactive nature of the 𝑆𝑒𝑛𝑠𝑒 strategy, 

we achieved significant improvements in comfort 

upon the occupant returning home by using the 

𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔  strategies. The spikes in PPD are larger 

under the 𝑆𝑒𝑛𝑠𝑒 strategy, as indicated by the ellipses. 

This demonstrates that the comfort is often low during 

transitions of occupancy state from 𝑜𝑐𝑐(𝑘) = 0  to 

𝑜𝑐𝑐(𝑘 + 1) = 1 . The 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔  strategy predicts 

occupancy early enough in many cases, so that the 

appropriate temperature, 𝑇𝑠 = 𝑇sHi , is ensured when 

the occupancy begins in order to provide satisfactory 

PMV. In contrast to the 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 strategy, the 𝑆𝑒𝑛𝑠𝑒 

strategy consumes almost no energy when the home is 

not occupied (it maintains the 𝑇sLo  temperature). 

Consequently, the dashed curve after transition 

 

Table 3. Average PPD at the moment of arrival [%] for 

𝑆𝑒𝑛𝑠𝑒, 𝑂𝑛, and 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 strategies 

 

 

Figure 7. Comparison between PPD time series, produced by 𝑆𝑒𝑛𝑠𝑒 strategy (a) and 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔6 strategy (b); 𝑃𝑀𝑉ref = 0. The 

solid curve represents the PPD during occupancy, while the dotted curve represents the PPD during non-occupancy. Ellipses 

indicate major differences between the PPD curves of the 𝑆𝑒𝑛𝑠𝑒 and 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔6 strategies 
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𝑜𝑐𝑐(𝑘) = 1  to 𝑜𝑐𝑐(𝑘 + 1) = 0  always starts to rise 

towards the value of 100 percent. The 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 

strategy depends on the occupancy prediction 

algorithm, and sometimes also regulates PMV after 

the transition 𝑜𝑐𝑐(𝑘) = 1  to 𝑜𝑐𝑐(𝑘 + 1) = 0  since 

occupancy in the near future was predicted. To 

conclude, the comfort achieved by the 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 

strategy can only be as poor as that of the 𝑆𝑒𝑛𝑠𝑒 

strategy but never worse. On the other hand, the 

energy consumption obtained with the  𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 

strategy, can never be lower than the consumption 

obtained via the 𝑆𝑒𝑛𝑠𝑒 strategy. Therefore, the 𝑆𝑒𝑛𝑠𝑒 

strategy achieves the lowest energy consumption 

when the PMV regulation is performed. 

6.2. The objectives: energy consumption and 

comfort experience 

In order to compare the performance of control 

strategies in terms of energy consumption and 

comfort, we performed simulations with different 

control strategies for the occupancy data of the four 

volunteers. Table 1 shows the control strategies 

included in the experiment. There are two basic 

strategies (𝑂𝑛, 𝑆𝑒𝑛𝑠𝑒) for which no additional rules 

were included. Table 4 shows the simulation results in 

terms of energy consumption expressed in gigajoules 

(GJ), and average comfort expressed in percent (%) 

for those strategies that achieved the lowest and 

highest energy consumption and comfort during the 

simulation. The control strategies had a 𝑃𝑀𝑉ref value 

of 0. 

From the results in Table 4 we can observe the 

difference in energy consumption and average comfort 

of the 𝑂𝑛  and 𝑆𝑒𝑛𝑠𝑒  strategies. The 𝑆𝑒𝑛𝑠𝑒  strategy 

consumes 36 % to 49 % less energy than the 𝑂𝑛 

strategy. On the other hand, the 𝑆𝑒𝑛𝑠𝑒 strategy results 

in a worse comfort (average PPD is 14 % to 48 % 

greater). 

Then there are seven versions of 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 

strategies, where Rule 1 and Rule 5 are always 

included. Different combinations of Rules 2, 3 and 4 

and different constants - 𝐶𝑡𝐴𝑏𝑠 , 𝐶t1  and 𝐶t2  – enable 

the use of various 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 strategies.  

The occupancy data for each of the four people 

were included in the experiment. Consequently, 

Figures 8, 9, 10 and 11 – were obtained for each 

person. 

Table 4. Energy consumption and average PPD for 𝑆𝑒𝑛𝑠𝑒 

and 𝑂𝑛 strategies 

 
Each figure presents a comfort/energy-

consumption space, where the x axis represents the 

consumed energy [GJ] in a conditioned room for the 

simulation period, and the y axis represents the 

average PPD value [%] for the simulation period, but 

only during occupancy. Each marker shape represents 

the results of a different control strategy, according to 

Table 1 for different 𝑃𝑀𝑉ref. The lower marker of the 

same shape indicates the result for the depicted 

strategy with 𝑃𝑀𝑉ref = 0  and each marker above 

represents that the𝑃𝑀𝑉ref  increased to 0.05, so that 

each marker of the same shape belongs to the value 

𝑃𝑀𝑉ref 0.00, 0.05, 0.10, 0.15 and 0.20, from bottom 

to top, respectively. The solid line connects the 

nondominated values that form the Pareto frontier, 

representing the optimal solutions. This means that no 

better solutions were obtained for either the both 

comfort or energy-consumption aspects. It is worth 

noting that we did not include the results of the 𝑂𝑓𝑓 

strategy because the 𝑂𝑓𝑓  strategy does not regulate 

PMV, and is therefore not relevant for comparison. 

 

 

 

Figure 8. Simulation results for the person 1: PMV 

thresholds from 0-0.2 for strategies 𝑂𝑛, 𝑆𝑒𝑛𝑠𝑒 and 

𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 

 

Figure 9. Simulation results for the person 2: PMV 

thresholds from 0-0.2 for strategies 𝑂𝑛, 𝑆𝑒𝑛𝑠𝑒 and 

𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 
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Figure 10. Simulation results for the person 3: PMV 

thresholds from 0-0.2 for strategies 𝑂𝑛, 𝑆𝑒𝑛𝑠𝑒 and 

𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 

 

Figure 11. Simulation results for the person 4: PMV 

thresholds from 0-0.2 for strategies 𝑂𝑛, 𝑆𝑒𝑛𝑠𝑒 and 

𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 

Figures 8-11 confirm the conclusions from 

Section 6.1. – that is, that the 𝑆𝑒𝑛𝑠𝑒 strategy for each 

of the four people consumed the least energy for the 

fixed value of 𝑃𝑀𝑉ref  compared to 𝑂𝑛 or any of the 

𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 strategies at the same value of  𝑃𝑀𝑉ref. 

Furthermore, the layout of the result markers for 

the comfort/energy-consumption space is relatively 

similar for all persons. If we fix the value 𝑃𝑀𝑉ref, the 

strategies have the following order: the control 

strategy, at which the most energy is consumed, in 𝑂𝑛, 

then 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔4 , 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔7 , 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 5 , 

𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 6 , 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔1 , 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔2 , 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔3 

and 𝑆𝑒𝑛𝑠𝑒. 

6.3. The comfort-consumption trade-off 

Figure 12 shows the relations between 𝑃𝑀𝑉ref and 

the control strategy for person 1 (as per Figure 8), 

where dotted lines connect the results of different 

strategies with the same 𝑃𝑀𝑉ref , and solid lines 

connect the results of the same strategies with the 

different 𝑃𝑀𝑉ref. 

 

 

Figure 12. The influence of comfort threshold value 

(𝑃𝑀𝑉ref) control strategy on the shape and location of the 

Pareto frontier for person 1 

Based on Table 1 and Figure 12, it can be inferred 

that rule constants affect energy consumption in a 

coherent way. 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔1 and 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔2 differ only 

for variant values of  𝐶𝑡𝐴𝑏𝑠 . If  𝐶𝑡𝐴𝑏𝑠  is lower, the 

energy consumption will also be lower. A similar 

effect can be obtained by changing the value of 𝐶t1 

and 𝐶t2 . If the period expressed with [𝐶t1, 𝐶t2]  is 

larger, the energy consumption will decrease. When 

fitting the parameter values, it is important not to 

destruct the effects of other rules. For example, if the 

value of 𝐶𝑡𝐴𝑏𝑠  were to be changed to a small value 

(such as 5), then Rule 5 would never be processed. In 

such a case, the strategy would become 𝑆𝑒𝑛𝑠𝑒 

strategy with higher energy consumption. 

When comparing the results of the 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔3 and 

𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔7  strategies, it is clear that different 

combinations of rules affect both the energy 

consumption and the comfort. The 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔4 

strategy does not incorporate any rule to lower energy 

consumption. Therefore, the 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔4  strategy 

depends only on the accuracy of the machine learning 

model for occupancy prediction. Indeed, 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔4 

always consumes more energy and results in better 

comfort than the  𝑆𝑒𝑛𝑠𝑒  strategy, but is not 

significantly better than the 𝑂𝑛  strategy in either 

aspect. The addition of Rules 2 and 3 significantly 

lowers the energy consumption, as shown in Figure 12 

for 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔5  and 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔6  according to 

𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔4 , but slightly decreases comfort which 

results in higher average PPD values. 

7. Conclusion 

This paper presents the implementation of a novel 

thermal comfort regulator for conditioned 

environments. The thermal comfort regulator is 

implemented as a control strategy within a control 

agent, which is part of a multi-agent system and 

performs indoor temperature set-point delegation in a 

usercentered way. The agent approach enables the 

design of flexible control strategies. A novel 
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occupancy prediction algorithm was implemented for 

predicting home occupancy in order to provide a 

comfortable environment when the occupant returns 

home. Multiple control strategies were tested in order 

to determine the relation between energy consumption 

and comfort. The trade-off between energy 

consumption and comfort is maintained by (i) 

changing the desired comfort threshold and (ii) 

changing the combination of rules and rule constants 

within an agent’s control strategy.  

The experiments show that the  𝑆𝑒𝑛𝑠𝑒  strategy 

consumes 36 %, 48 %, 47 % and 42 % (for persons 1, 

2, 3 and 4, respectively) less energy than 𝑂𝑛  (both 

have 𝑃𝑀𝑉ref = 0 ). On the other hand, the average 

discomfort (average PPD) of 𝑆𝑒𝑛𝑠𝑒  (both have 

𝑃𝑀𝑉ref = 0) compared to 𝑂𝑛 is increased by 13 %, 37 

%, 37 % and 48 % (for persons 1, 2, 3 and 4 

respectively). 

The aim of comfort and energy management in 

smart buildings is to find a balance between the 

energy consumption limited by the 𝑆𝑒𝑛𝑠𝑒 strategy and 

the comfort limited by 𝑂𝑛 . In our experiments, the 

population of non-dominated results in the 

comfort/energy-consumption space was generated (the 

Pareto frontier). Since the location of results for 

various control strategies that define different 

comfort/energy-consumption trade-offs at fixed 

𝑃𝑀𝑉ref  are very similar in comfort/energy-

consumption spaces (see Section 6.2), one can 

conclude that the trade-off can be specified by the user 

with the choice of a control strategy, and also with the 

choice of 𝑃𝑀𝑉ref.  

To emphasize the influence of control strategy on 

comfort we analysed the PPD time series. The 

contribution of a machine learning approach for 

predicting near-future occupancy and rules for 

removing incorrect occupancy predictions 

significantly improved the comfort during periods in 

which the occupant enters the home. The PPD time 

series produced by the 𝑆𝑒𝑛𝑠𝑒  strategy are prone to 

large deviations from the lowest PPD value (that is, 5 

% when 𝑃𝑀𝑉ref = 0 ) that should be maintained 

during occupancy. The 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔  strategies reduced 

these deviations, since the prediction of occupancy 

makes it possible to prepare the indoor temperature 

before occupancy begins. Therefore, the average 

comfort at the moment of arrival increases with a 

reasonable increase of energy consumption. 

In summary, this novel approach to combining a 

comfort regulator and different learning strategies 

enables users to select their preferred control strategy 

in the comfort/energy-consumption space. It is 

expected that future smart homes will apply the 

approach presented. 
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