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Energy demand in a smart grid is directly related to energy consumption, as
defined by user needs and comfort experience. This article presents a multi-
agent architecture for smart control of space heating and cooling processes, in an
attempt to enable flexible ways of monitoring and adjusting energy supply and
demand. In this proposed system, control agents are implemented in order to
perform temperature set-point delegation for heating and cooling systems in a
building, offering a means to observe and learn from both the environment and
the occupant. Operation of the proposed algorithms is compared to traditional
algorithms utilised for room heating, using a simulated model of a residential
building and real data about user behaviour. The results show (i) the performance
of machine learning for the occupancy forecasting problem and for the problem
of calculating the time to heat or cool a room; and (ii) the performance of the
control algorithms, with respect to energy consumption and occupant comfort.
The proposed control agents make it possible to significantly improve an occupant
comfort with a relatively small increase in energy consumption, compared to
simple control strategies that always maintain predefined temperatures. The

findings enable the smart grid to anticipate the energy needs of the building.
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1. INTRODUCTION

Heating is the largest consumer of energy in buildings.
In 2010, 41 percent of energy consumed by buildings
was spent on heating (27 percent for households and 14
percent for the tertiary sector). In buildings, more than
65 percent of this energy was used for space heating, 12
percent for domestic hot water (DHW), and 15 percent
for electric appliances [1, 2].

The energy consumption of a household is closely
related to occupant comfort. Therefore, the efficacy of
a control system should be evaluated in terms of both
energy consumption and occupant comfort. Control
and management of building automation systems
(BAS) is a complex problem, because it requires
mathematical and physical background of building
operations as well as knowledge about occupant
behaviour and interaction with the building. Occupant
comfort is evaluated only during their occupancy,
making it possible to significantly reduce energy costs
and energy consumption for HVAC or lighting during
periods when the building or rooms are unoccupied.

Therefore, a systematic approach to efficiently control
the energy consumers in buildings should consider when
to give more weight in the evaluation to occupant
comfort, and when give more weight to energy and
energy cost savings. Further, accurate forecasting of
near-future building occupancy and a thermal dynamic
building model together form the basis for an effective
optimization of energy costs and occupant comfort. If
a building that employs such a prediction method is
connected to a smart grid, these methods can also
enable the grid to anticipate the power demand and
energy consumption of the building.

The control architectures for BAS, building manage-
ment systems (BMS) and building energy management
systems (BEMS) are used to manage the operation of
each entity in a system and provide feedback about
system states and analysis of operation. Control ar-
chitectures are either centralised, decentralised, or dis-
tributed. Moroşan et al. [3] compared the computa-
tional efficiency of these architectures and concluded
that the distributed architecture is less computation-
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ally demanding than the centralised architecture, while
achieving the same effect.

This article presents the multi-agent control architec-
ture for smart buildings, taking into account knowledge
about human behaviour when scheduling the heating
and cooling processes. The research is based on our
previous work implementing the multi-agent architec-
ture for a DHW system, which incorporated knowledge
about user behaviour into water heater operations in
order to reduce energy consumption and energy costs,
while increasing comfort experience [4]. Under this sys-
tem, energy consumption should be low compared to
consumption in the “always on” strategy, and comfort
should increase compared to the “on-presence on” strat-
egy. In addition, the multi-agent architecture is consid-
ered the most appropriate for grids, because agents and
grids are highly dynamic in nature. The related work is
presented in Section 2. Section 3 presents the proposed
multi-agent architecture and the operation of the pro-
posed types of agents. The machine learning methods
that identify the heating dynamics and forecast occu-
pant behaviour are presented in Section 4. Section 5
presents the algorithms used to control the operation
of an individual process. Experimental set-up is pre-
sented in Section 6, followed by results and discussions
in Section 7. Section 8 concludes the paper and offers
an overview of possible directions for further investiga-
tion.

2. RELATED WORK

There are several available approaches to reducing
the energy consumption required for heating and
cooling. One important approach in modern building
construction is related to low-energy buildings that
require minimal energy for space heating and cooling.
In both new and existing buildings, methods exist
for encouraging occupants to reduce heating or
cooling energy consumption by decreasing set-point
temperatures for heating, or increasing set-point
temperatures for cooling, using a visual representation
of the energy consumed [5, 6, 7, 8]. Methods also
exist to encourage occupants or to apply management
policy to control systems, drawing on self-reported data
about occupant interactions with environment. Cho et
al. proposed an appliance aware activity recognition
mechanism for home, which notify users what unused
appliance is or turn them off automatically [9]. Zhun
et al. analysed the influence of occupant behaviour on
building energy consumption and developed a technique
for identifying energy-saving potential by changing user
behaviour to reduce energy consumption; this is the
opposite of the approach described in this paper, in
which the building adapts to user behaviour [10].

Several recent studies - including the one described in
this paper - have included data about occupants in the
control schema for the thermostat set-point delegation.
Mozer et al. implemented a neural network algorithm

to predict occupancy, and expressed the comfort as a
misery unit in dollars [11]. Scott et al. implemented
an occupancy prediction algorithm, in which the
occupancy was predicted for a 15-minute interval. The
improvement of the new algorithm was compared with
the predefined schedule, regarding energy consumption
and comfort experience for individual rooms in an
apartment [12]. Lu et al. [13] used occupancy sensors
to obtain data regarding the behaviours patterns of
the occupant, and also evaluated energy consumption
and comfort experience where the comfort experience
was evaluated as a miss time in minutes - that is,
the total time during which the indoor temperature
had not reached the set-point temperature within the
tolerance of 1◦C. Bapat et al. [14] used data about user
occupancy to optimise the operation scheduling of home
appliances, such as dishwashers and washing machines,
in order to minimise the energy costs. Krumm et al. [15]
used GPS data to predict human occupancy, but did
not evaluate the effect of the algorithm results with any
method for evaluating energy or comfort. Bayir et al.
[16] developed a web-based service which, based on cell
registration data, cell location changing patterns and
training data, predicts location of the cell phone owner.
Vrečko et al. [17] implemented the model predictive
approach for calculating temperature rise time by
heating, which is similar to the approach applied in
the present study. In their approach, the data about
occupancy is known in advance. These studies show
that the energy consumption for heating, ventilation,
and air-conditioning (HVAC) systems, DHW systems,
and electric appliances can be significantly reduced by
including data about occupant interaction with the
environment into the control system architecture, such
that the inhabitants’ comfort experience improves or
stays the same.

The occupant’s comfort experience in an environment
is an expression of how the occupant feels in
the environment. The full comfort experience is
composed of several aspects: visual comfort, acoustic
comfort, indoor air quality, and thermal comfort [18].
In the present paper, the term comfort refers to
thermal comfort. International definitions of thermal
comfort are described in standards-defined by the
International Organization for Standardization (ISO),
the European Committee for Standardization (CEN),
and the American Society of Heating, Refrigerating,
and Air Conditioning Engineers (ASHRAE)-such as
ISO EN 7730, CR 1752, or ASHRAE 55. The
environmental parameters that constitute the thermal
comfort are temperature (for example, outdoor air,
indoor air, radiant), humidity, air velocity, and personal
parameters (for example, clothing level, activity level)
[19]. It is often assumed that environmental parameters
are easier to obtain than parameters, that express
human activities and behaviours. However, Lustrek
et al. [20] and Kozina et al. [21], for example,
presented a system that, based on recognised activities
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of a person using a smart phone, can estimate the
energy expenditure expressed in Metabolic Equivalent
of Task (MET) that can be transformed into activity
level. However, the goal of our work was not to
determine the appropriate values of environment set-
point parameters, such as temperature, but rather to
achieve a given set-point value at the appropriate time.
For the evaluation of thermal comfort, we used the
penalty approach, similar to that described in [3], where
the differences between desired and actual temperatures
were summarised over the simulation period, but only
for the times at which the building was occupied.

For the study and analysis of system long-term
behaviour, which requires between one month and one
year of runtime data, the real-time experiment with
real occupants in the real environment is desirable.
For practical reasons, research scientists in the fields
of BAS and BEMS sciences commonly use simulation
techniques to evaluate the performance of control
algorithms using a thermal dynamic model of a building
- for example, [11, 22]. System simulation offers
the following advantages in development compared to
real tests: It is faster; it allows comparison between
several control algorithms with the same weather
situation and occupant behaviour; and the price of
experiment is incomparably lower, which means that
failed experiments have less negative impact on research
budgets.

It is known from the control of dynamics systems
theory that HVAC and DHW processes are (i) slow
and (ii) time-delayed, which means that the system
response is not achievable in the moment immediately
after following actuation. Furthermore, these real
systems are also non-linear, which affects the control
system with additional uncertainties [23]. Therefore, a
Model Predictive Control (MPC) approach is commonly
used to predict the operation of the dynamic process.
Our approach implements the approximation of rise
time as a black box model, as defined in [24],
where the black box model is a regression model
used to predict the indoor temperature rise/fall time
according to indoor temperature, outdoor temperature
and difference between desired (set-point) temperature
and indoor temperature.

Intelligent control of systems in smart buildings
requires the collection and processing of large sets
of heterogeneous data about sensor states, actuator
actions, and occupant actions. The demand for
HVAC and DHW systems varies between residential
buildings and commercial or office buildings. Energy
savings are easier to achieve in office buildings than in
residential buildings due to higher predictability, and
the violation of the thermal comfort experience is easier
to determine. The proposed multi-agent architecture
enables the simulation and prediction of occupant
behaviour (for example, occupancy prediction) and of
system behaviour (for example, time to achieve the
desired room temperature). The obtained knowledge

is used to create adaptive set-point schedules for
heating in residential buildings. Further, the intelligent
autonomous operation of individual agents and their
ability to communicate with other agents enables
automatic creation, optimization, and reconfiguration
of the control schema for an individual device in a
building, as well as for the whole building.

Control and regulation of individual subsystems, such
as a single heating device, represent a matured research
area with a wide range of scientific literature on con-
trol system design, and on several methods for imple-
menting a particular controller for a specific individual
subsystem. These methods often propose centralised
approaches, resulting in complex and expensive com-
putation methods for controller set-points delegation,
especially for multiple-input/multiple-output (MIMO)
systems. Operations such as algorithm implementation,
complex behaviour model creation to be used by con-
trol, system organisation, user interfaces, data fusion,
and other computationally expensive operations can be
performed on spatially distributed computational enti-
ties, resulting in faster and more fault-tolerant oper-
ation. In a review of advanced methods for manage-
ment of energy and comfort in the building environ-
ment, Dounis et al. [25] stated that the future control
systems for building management will be intelligent and
have a human-centric approach. Advanced control sys-
tems are composed of (i) a low-level feedback control
part of each building’s zone; and (ii) a high-level super-
vision and planning part, where the set-point schedules
are generated and passed to the low-level part.

3. THE PROPOSED MACS ARCHITEC-
TURE

The control architecture is implemented as a multi-
agent control system (MACS), with several types of
agents: sensor agents, control agents, routing agents,
machine learning agents, and housekeeper agents.
Layers in building automation and management are
shown in Figure 1. The environment layer is located at
the bottom and is composed of a building, representing
the consumer in a smart grid; occupants, which interact
with the building; and weather, which has an influence
on the building dynamics. The physical layer is located
above the environmental layer and is composed of
physical entities, such as sensors and actuators, which
are used to perceive the environmental states and to
affect some of these states. The automation layer
includes the physical controllers linking the physical
layer and management layer. Controllers are used
for closed-loop control, according to the algorithms,
which are created and adapted by control agents in
the management layer. When a simulation is used
instead of a real environment, the environmental,
physical, and automation layers are integrated in a
simulation environment. The management layer is
the top layer and represents a multi-agent system,
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composed of several types of agents. Each agent
type must carry out appropriate tasks, and agent
operations are specified as agent behaviours. During
the runtime, each agent waits for the message and
responds to it, meaning that the agent operation is
data-driven or event-driven. Messages received by an
agent can include information or a command. Routing
agents are used to transform environmental states into
a cloud of agent states. Routing agents are also
denoted as interfaces between simulation environment
and a control system. Sensor agents are used to
obtain the sensor values denoted as simple states from
physical sensors through routing agents and inferred
values from various simple sensor states, denoted as
complex states as a result of data fusion process,
performed among several simple sensor states. Control
agents represent virtual control entities that schedule
actuator operation for controlled subsystems, such as
room temperature. Control output is an input to the
regulation feedback loop and delegates set-point values.
Machine learning (ML) agents are used to create ML
models when requested, using data prepared by sensor
agents. Control agents use the ML models for control
operations. A housekeeper agent, which is the top-
level agent in a smart building, monitors and manages
subordinate agents. The operation of each agent is
explained in the following sub-sections.

3.1. Housekeeper agents

Housekeeper agents represent the highest instance in a
building automation system. The housekeeper agent,
which is used as an interface for the administration of
the controlled system, is able to serve the information
about the states of the environment and to manage
the operation of individual control systems in the
environment. The housekeeper agent also interacts
with smart grid suppliers, such as a power plant or
photovoltaic power plant, in order to provide data
about current and future power demand. In this paper,
the smart grid suppliers are denoted as a single city
coordinator (CC) agent in the rest of the paper. We
denote the ith environment as Hi from a set of I
environments Hi ∈ {H1, H2, ...,HI}. For example,
in the experimental set-up instantiation described in
Section 6, H1 is home and H2 is workplace. Each
environment has a corresponding housekeeper agent.

Definition 1. Housekeeper agent Hi is a tuple
〈Si, Ci,Ri,CC〉 where

• Si is a set of all sensor agents in environment i
• Ci is a set of controller agents in environment i
• Ri is a set of routing agents in environment i
(there is one routing agent only if an environment
behaviour is simulated)
• CC is a city coordinator agent, which coordinates
the negotiation for energy price between energy
suppliers and consumers

3.2. Sensor agents

Knowledge about the operation of sensors and sensor
systems is crucial for integration of sensing entities into
a control system. Sensor agents represent the physical
entity - that is, the sensor in an environment. The
sensor state is the state of the environment variable
(temperature, occupancy, power, etc.), which sensor
agents can perceive and serve. There are roughly
two types of sensor states: simple sensor states and
complex sensor states. Simple sensor states are states
that can be measured using standardised sensors and
sensor systems with detailed information about sensing
accuracy, drift, unit of sensed output, conversion
factors, sampling frequency, and quantization for the
digitalization process and other relevant information.
Complex sensor states are inferred from simple sensor
states, using expert knowledge for the sensing domain
and machine learning methods used for estimation
of sensor states, and consequently using additional
processing and memory capabilities. The process by
which information is extracted from several data sources
is referred to as data fusion or multisensor data fusion
[26]. We denote the complex sensor state as a sink of
fusion process on simple sensor states. In addition to
simple sensor states, the complex sensor states have
meta-data about the accuracy of sensing algorithms
and a set of sensor agents, which provide simple states
available for data fusion. Sensor agents perform several
tasks. First, they always maintain the most recent value
of the sensor state. Second, they keep the history log of
sensor states and generate data for machine learning.
Finally, sensor agents are able to receive and process
messages from other agents wishing to subscribe or
stop receiving information about sensor states from
routing agents, which provide the environmental data
from physical sensors and can request that the sensor
agent stop working.

Each sensor in an environment i is represented as a
Sij , where the first index i represents ith environment
and the index j represents the unique sensor number in
that environment. Thus, an environment i has a set of
J sensor agents Sij ∈ {Si1, Si2, ..., SiJ}.

Definition 2. Sensor agent Sij is a tuple
〈s, sm, C, R〉 where

• s is a state variable
• sm is meta-data, parsed from configuration file of
that sensor agent
• C is a set of control agents, sensor agents and/or
other agents, engaged with an agent Sij for state
variable value delivery, where a set C can include
agents from any environment i
• R is a routing agent from set Ri, which delivers
the state variable from automation layer
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FIGURE 1. Layers in building automation and management

3.3. Control agents

Control agents represent software entities (threads),
where the algorithms for defining set-point values
are implemented as control behaviours. Control
agents have a predefined set of control behaviours.
There are simple behaviours, such as On and
Off behaviours (where the set-point temperature is
always set to a predefined high and low temperature
respectively); Schedule behaviours (acts according to
schedule instructions); Sense behaviours (acts according
to sensed occupancy state, so that high set point
temperature is applied if the building is occupied,
low temperature is applied when the building is not
occupied, and sleep temperature is applied when the
occupant is sleeping); and complex behaviours, which
exploit machine learning models to define the set-point
values according to MPC method, such as control
based on occupancy prediction in buildings and control
based on identified behavioural patterns of heating
dynamics of a building. Control behaviour can be
a combination of predefined set of behaviours, such
as Schedule behaviour in combination with MPC for
predicting the time needed to heat a room.

The notation for control agents is similar to the
notation of sensor agents; each control agent in an
environment i is denoted as Cik from a set of K control
agents Cik ∈ {Ci1, Ci2, ..., CiK}.

When a control agent implements control behaviour,
it first subscribes to the appropriate sensor agents
for information delivery about the desired sensor
states. If a control algorithm needs data about
the outdoor temperature, indoor temperature, and
occupancy, it engages with the appropriate sensor
agents for information delivery. The control agent
creates a control organization, which is composed of
itself and appropriate sensor agents. If a control agent
performs MPC, it will periodically activate a ML agent
that, based on historic data, creates a ML model. Until
the ML agent returns the new model, the old ML model
is used. The control agent will use Sense behaviour if no
model is available yet. The control agent passes the set-
point values to the appropriate physical control entities
in an automation layer through the routing agent, and
saves set-point value in a control agent history file.

Definition 3. Control agent Cik is a tuple
〈c, cm, R,B〉 where
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• c is a set-point variable
• cm is meta-data, parsed from configuration file of
that control agent
• R is a routing agent, which delivers the set-point
value to the automation layer
• B is a tuple, which defines the type of control
behaviour and sensor agents, which are needed for
operation of that behaviour, defined according to
Definition 4

Definition 4. Behaviour B is a tuple 〈b,S,ML〉
where

• b is a control behaviour from a set of control
behaviours, explained in Section 5
• S is a set of sensor agents from any environment i,
which are needed for state variable values delivery
for control behaviour implementation
• ML is a machine learning agent, used for machine
learning model creation

3.4. ML agents

Machine learning agents are instantiated by control
agents. When a control agent implements a
model-predictive control, it employs a ML agent to
perform machine learning and create a classification
or regression model. There are two types of learning
in the proposed architecture: (i) learning human
behaviour and (ii) learning system dynamics (that is,
identification). Data used for learning human behaviour
is generated by sensor agents for occupancy at home
or at work. Data used for learning system dynamics is
created by control agents (such as temperature set-point
values) and appropriate sensor agents (for example,
temperatures achieved by changing set-point values)
and are finally merged into a training dataset by the
ML agent.

Each ML agent in environment i is denoted
as MLil from a set of L ML agents MLil ∈
{MLi1,MLi2, ...,MLiL}.

Definition 5. ML agent MLil is a tuple 〈C,S,ml, tp〉
where

• C is a control agent, which activated the ML agent
• S is a set of sensor agents, which store relevant
data for the machine learning procedure
• ml is a machine learning algorithm, used for ML
model creation
• tp is a machine learning model template,
consisting of the list of attributes and a class value

3.5. Routing agents

Routing agents represent an interface between the
multi-agent control architecture and the simulation
environment or the real environment. Routing agents
accept values that are obtained from a physical
environment through the physical and automation layer

and distribute these values to the appropriate sensor
agents. On the other side, routing agents pass control
parameters, variables, and schedules - computed by
control agents - to the automation layer, where the new
values are used as set-point values to perform feedback
control in an automation layer.

Routing agents are used both for simulation purposes
and for real operation purposes. In simulation, the
routing agent creates and manages mapping from the
simulation environment to the control system and vice
versa. In real operation, the routing agent represents an
interface between the controller and the control system.
Each routing agent is denoted as Rim from a set of M
Routing agents Rim ∈ {Ri1, Ri2, ..., RiM}.

Definition 6. Routing agent Rim is a tuple
〈C,S, cfg〉 where

• C is a set of control agents, which compute set-
point values
• S is a set of sensor agents, which provide state
variable values
• cfg is a socket configuration of either the
simulation environment or the controller in a
physical environment

4. MACHINE LEARNING

Machine learning is an important procedure in MPC,
since the model created as a result of machine learning
algorithms can be used to predict the operation of
a modelled process. In the present paper, the
machine learning procedure was used to create a human
behaviour model for predicting the occupancy of a
building and creating a regression model to predict
the time required to heat the room from the current
temperature to the temperature denoted as the comfort
temperature. All the machine learning procedures were
implemented using the Weka data mining software [27].

4.1. User behaviour modelling for occupancy
prediction

User behaviour modelling was performed using machine
learning on real data about occupancy at work and at
home over longer periods of time. The data about
occupancy was transformed into a time series, with a
frequency of one minute, where the occupancy state
could have two values: 0, signifying absence; and
1, signifying presence. Based on that data, with a
corresponding date-time value, the instance for machine
learning occInst can be created using the following list
of attributes. There are two types of attribute values
used: (i) unsigned integer values; and (ii) nominal
values, which are defined in parentheses.

• Minute in a day (unsig. integer)
• Day in a week (1,2,...7)
• Weekend day (0,1): 1 for Saturday and Sunday, 0

otherwise
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• Month in a year (1,2,...,12)
• a.m./p.m. (0,1): 1 represents time before midday,

0 represents time after midday
• Number of days before Saturday (0,1,2,3,4,5)
• The elapsed time in minutes since the occupant left

home (unsig. integer)
• Number of occurrences in a day that the occupant

left home (unsig. integer)
• Occupancy at home exactly one week earlier (0,1)
• A daily sum of minutes that the person was at

home (unsig. integer)
• The elapsed time in minutes since the occupant left

work environment (unsig. integer)
• Occupancy at work exactly one week earlier (0,1)
• A daily sum of minutes that the person was at work

(unsig. integer)
• Occupancy at work (0,1): 1 represents presence

and 0 represents absence at work
• Occupancy at home(0,1): class value to be

predicted, 1 represents presence and 0 represents
absence at home.

For user behaviour modelling, the following three
agents are needed: Sensor agent S16 representing
occupancy at home; sensor agent S21 representing
occupancy at work; and a ML agent ML13. Note
that the agent identifiers used in that paragraph are
taken from experimental set-up instantiation, described
in Section 6. S16 and S21 are logging occupancy values.
When the ML13 agent receives a request to create an
occupancy model, it reads log files of sensors S16 and
S21 and merges them into a training dataset, using the
attributes listed above. After the training dataset is
created, the ML13 agent performs machine learning
using one of the following algorithms: C4.5 decision
trees, RandomForest, or K nearest neighbour algorithm
with K = 5 nearest neighbours. Algorithms C4.5 and
kNN are implemented in two variants: (i) C4.5 and
kNN, representing the classification for nominal class
value as a result, which can be either 0 or 1; and (ii) the
C4.5 dist and kNN dist, representing the distribution
for class value 1, which is a continuous value between
0 and 1. Other parameters remain at default values
as defined in Weka. When the classification model is
created, it can be used by control agents C11 and C12

in learning behaviour.
The occupancy prediction model is created upon

request by the control agent, using past occupancy
instances occInst. This study involved performing
an incremental evaluation of the occupancy prediction
model using the following approach: at the end of
each day, the classification model was created based
on historical data from previous days, and tested on
the next day. After that next day, the new training
instances were added to the set of previous training
instances, and so on. From those testing instances,
we removed the instances representing the moment
at which the person was present at home for more

than one hour, and marked these as non-interesting
instances for testing. This data was removed because,
if the occupancy happened, and the prediction model
did not forecast it early enough, the control agent
would perform the reactive component of learning
behaviour, which operates as a Sense behaviour. In
sum, near-future human occupancy forecasting in a
building is interesting only when the building is not yet
occupied. Occupancy prediction model was evaluated
for algorithms C4.5, kNN, and RandomForest, where
the output of prediction model is a nominal class value
0 or 1.

4.2. Identification of room heating and cooling
dynamics

Room heating and cooling dynamics were also identified
using machine learning on historical data trends during
simulation runtime. Each instance for machine learning
consists of the following numeric attributes, given as
rational numbers:

• Outdoor temperature (numeric) in ◦C
• Indoor temperature (numeric) in ◦C
• Set-point temperature (numeric) in ◦C
• Rise time coefficient (numeric) in minutes/◦C,

which represents class value.

Rise time coefficient (KRT ) is a linearised factor,
because we assume that the indoor temperature rises
(falls) in a linear manner when heating/cooling. KRT

is calculated using:

KRT = (TsHi − Tin)/tRT (1)

where TsHi is the desired comfort temperature, Tin is
the indoor temperature and tRT is the time needed to
heat or cool the room from Tin to Tin = TsHi. Figure
2 shows the process of attribute extraction to create an
instance from historical data trends of sensor states and
states of set-point values. Here, the instance rtInst is
created using the itemised attributes above.

For rise time regression modelling, the following three
agents are needed: Sensor agent S11, representing the
indoor temperature; sensor agent S12, representing
the outdoor temperature; and control agent C11,
representing the set-point temperature value. The
process of creating the regression model is similar to
that in the previous subsection, except that the ML
agents ML11 or ML12 are employed for creating the
regression model for rise time (used by heating) and
fall time (used by cooling), respectively. Fall time
differs from rise time only by detecting the negative set-
point temperature change instead of positive set-point
temperature change, as depicted in Figure 2.

Regression models are built during runtime after
each change of set-point temperature, when the new
instance rtInst was created. From the simulation run,
we obtained M true rise time tRTT values and the
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FIGURE 2. Attribute extraction for training data for rise
time regression model creation

corresponding M predicted rise time tRTP values. We
then computed the Mean Absolute Percentage Error
(MAPE), defined as:

MAPE =
100%

M

M∑
i=1

∣∣∣∣ tRTTi − tRTPi

tRTTi

∣∣∣∣ (2)

Results of rise/fall time regression models are shown in
Section 7.1.

5. CONTROL BEHAVIOUR

Control algorithms are implemented as control be-
haviours of control agents, which affect the appropriate
control entity as defined in Definition 3 and 4. Control
agents read temperature set-point parameters, which
are TsHi, TsLo and TsSleep. TsHi represents the de-
sired indoor temperature at which the occupant feels
comfortable at home. TsLo value represents the tem-
perature that should be used when the occupant is not
present at home. TsLo value is used to reduce energy
consumption for heating or cooling. When the outdoor
temperature is low and heating is necessary, TsHi value
is higher than TsLo. When the outdoor temperature is
high and cooling is necessary, TsHi value is lower than
TsLo. TsSleep value represents the temperature at which
the occupant feels comfortable when sleeping.

We have defined five control behaviours for control
agents: On, Off, Schedule, Sense and Learning
behaviour (explained in subsections 5.1-5.4). During
the initialisation phase of a control behaviour, an agent
searches for the appropriate sensor agents, that are
needed for implementation of depicted behaviour. The
following subsections describe the operation of control

behaviours.

5.1. On and Off behaviour

On and Off behaviours are the most trivial control
behaviours, since the set-point temperatures are both
static (see Table 1). On behaviour is the most wasteful
but the most comfortable. In contrast, Off behaviour is
the most economical but the least comfortable. The two
behaviours are used to obtain extreme points in energy
consumption and in comfort experience. There is only
one set-point value in each of the two behaviours: TsHi

for On behaviour and TsLo for Off behaviour.

5.2. Schedule behaviour

Schedule behaviour represents the most widely used
control type in building automation systems. Schedule
behaviour works according to a predefined schedule for
each day in a week, where the predefined set-point value
is applied for each minute in a day. Control operation
according to schedule is often used in conventional
control systems.

Schedule is defined as Schik, which represents the
schedule used by control agent Cik for each minute
in a week. The weekly schedule is composed of daily
schedules, by which each day in a week can have a
unique schedule. Schedule behaviour was not used for
comparisons in this paper, although it is implemented
and prepared for usage within the proposed control
architecture.

5.3. Sense behaviour

Sense behaviour is an example of reactive behaviour.
Sense behaviour uses rules equipped with sensor states
to change set-point values over time. One example of
Sense behaviour by heating is a scenario in which the
heater ensures a high set-point temperature when the
home is occupied and the occupant is awake, a sleep set-
point temperature when the home is occupied and the
occupant is sleeping, and a low set-point temperature
when the home is not occupied.

Sense behaviour initialisation includes sensor agents,
which provide sensor states during runtime, and rules
that define the impact of sensor states on the set-point
calculation.

5.4. Learning behaviour

Learning behaviour represents a control algorithm
that adapts during its runtime according to historical
observations of human and system behaviour. That
behaviour is composed of anticipative and reactive
components, as proposed by Abras et al. [28]. However,
the anticipative component in the present study used
machine learning methods to extract knowledge about
human behaviour. Another anticipative component
uses machine learning methods to perform system
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dynamics identification for MPC. The anticipative
component is used to forecast occupant behaviour and
the dynamics of heating or cooling processes in a
building. The reactive component of a behaviour is
similar to either Sense or Schedule behaviour, which -
in the case of violation of some constraints - applies
one of the behaviours explained in the previous two
subsections.

Algorithm 1 presents an implementation of the be-
haviour for a room heating example, based on the fol-
lowing environmental state information: outdoor tem-
perature (Tout), indoor temperature (Tin), occupancy
at home (occhome), and occupancy at work (occwork).
These values are obtained for each simulation time-step
from appropriate sensor agents. Here the occhome and
occwork variables represent home and work occupancy
state for one person. Algorithm outputs the room set-
point temperature value Ts, which is then passed to the
controller in the automation level to achieve the desired
indoor temperature.

Algorithm 1 Control agent implementing Learning
control behaviour
occHome ←
occWork ←
Tin ←
Tout ←
if (occHome == present) then

Ts ← TsHi

else if (occHome == sleeping) then
Ts ← TsSleep

else
Create rtInst . see Section 4.2
KRT ← classify(rtInst, RtClassifier)
tRT ← (TsHi − Tin)/KRT . see eq:1
Create occInst . see Section 4.1
occAtRt← classify(occInst,OccClassifier)
Ts ← TsLo + occAtRt ∗ (TsHi − TsLo)

end if

Figure 3 shows an example in which the Ts was
scaled according to the distribution for future home
occupancy, using the Isotonic Regression model to
predict rise time and kNN dist classifier for occupancy
prediction. It is clear that the occupancy was predicted
approximately one hour earlier than it really happened.
In such examples, the system consumes more energy
than the Sense behaviour would. On the other hand,
the comfort experience is better, because the occupant
enters home with already comfortable temperature,
which is not a case with Sense behaviour. The
corresponding lower figure presents the power rates of
the chiller Pc, Ph and Psh.

5.5. Evaluation of control behaviour

To evaluate comfort, we defined a discomfort index
IC, which computes the comfort experience for the
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FIGURE 3. An example in which the Ts was scaled
according to the probability for occupancy at tRT . The
figure above shows Tin, Tout, Ts and occhome, where occhome

is transformed to set-point temperature units (25◦C for
presence, 40◦C for absence) for better representation. The
black ellipse highlights the moment at which the building
becomes occupied. The lower part of the figure shows the
corresponding power rates Pc, Ph and Psh of the chiller,
heater, and supplementing heater, respectively.

simulation run as follows:

IC =

n∑
t=0

sign(TsHi−Tin(t))∗|TsHi − Tin(t)|∗occHome(t))

(3)
where n is the total number of time steps in the
simulation (number of minutes); TsHi is high set-point
temperature, which represents comfort temperature;
and Tin(t) is the indoor temperature in time step t.
By heating, function sign(x) returns 1 for x > 0 and 0
for x ≤ 0. By cooling, function sign(x) returns 0 for
x ≥ 0 and 1 for x < 0. Function sign(x) is used to
exclude the time steps, where the indoor temperature
is at least as high as the set-point temperature used for
heating, and at least as low as the set-point temperature
used for cooling. The discomfort index represents the
sum of per-minute differences of the actual temperature
from the desired temperature - meaning the smaller the
index, the greater the comfort.

To evaluate energy consumption, the power rate
is integrated over time, according to the following
equation:

E =

n∑
t=0

P (t) ∗∆t (4)

where P (t) is the power rate of heating and cooling
appliances, and ∆t is the duration of the simulation
time step.

We used the Sense behaviour as a baseline for
evaluating the Learning behaviour. To compare
different Learning algorithms, we devise the index
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FIGURE 4. Coupling of MACS with the simulation model

DLearning:

DLearning =
ICSense − ICLearning

ELearning − ESense

ESense

ICSense
(5)

where IC and E are given according to 3 and 4,
respectively. The DLearning index represents the ratio
between the normalised decrease in discomfort (which
should be as large as possible) and the normalised
increase in energy consumption (which should be as
small as possible). So that the greater the index,
the better the algorithm implemented in Learning
behaviour.

6. EXPERIMENTAL SET-UP

The experimental set-up is shown in Figure 4. Building
Controls Virtual Test Bed (BCVTB) is a free co-
simulation software that can be used for coupling of
different simulation modules [29]. BCVTB was used to
couple a simulation model (represented as E+ block)
of a building with the Multi-Agent Control System
(represented as MACS block). The weather data, data
about occupancy at home and occupancy at work, and
set-point values - computed by agents in MACS - are
all inputs to the E+ model. The E+ model outputs
environmental states, which are forwarded to MACS.

6.1. Simulation model of a building

Experimental set-up included the selection of the model
of packaged terminal heat pump, which comes with
the installation of the EnergyPlus [30] software. The
building is represented as a single-floor, L-shaped
structure with three heating zones. Only the west zone,
representing a floor area of approximately 36m2, was
considered for indoor temperature control experiments.
The cooling coil total cooling capacity was rated
at 3700W and COP 3.00. The coil performance
was defined using total cooling capacity function of
temperature, total cooling capacity function of flow
fraction, energy input ratio function of temperature,
energy input ratio function of flow fraction and part
load fraction correlation curve. The heating coil
total heating capacity was rated at 3700W and COP
at 2.75. The coil performance was defined using

heating capacity function of temperature curve, heating
capacity function of flow fraction curve, energy input
ratio function of temperature curve, energy input ratio
function of flow fraction curve and part load fraction
correlation curve. The coefficients for both heating
and cooling functions remain default as defined in
obtained model. The power rate of each coil is
dynamic and depends on the dry-bulb temperature,
wet-bulb temperature and air flow rate. The location
of the simulation was Ljubljana, Slovenia, so the
corresponding weather file for that city was used for
the experiment.

6.2. MACS

The control system was instantiated according to
the proposed Multi-Agent Control Architecture im-
plemented in Java Agent Development Environment
(JADE) [31]. JADE is a software framework for de-
veloping agent applications for interoperable intelligent
multi-agent systems. For experimental set-up, MACS
was deployed using the following sets of agents:

• Housekeeper Agents
Hi ∈ {H1, H2}.

1. Building Home
2. Building Work

• Control Agents
C1j ∈ {C11, C12}.

1. Heater
2. Chiller

• Sensor Agents
S1j ∈ {S11, S12, S13, S14, S15, S16}

1. Indoor temperature
2. Outdoor temperature
3. Heater power rate
4. Supplementary heater power rate
5. Chiller power rate
6. Occupancy in Building 1 (Representing

occupancy sensor at home)

• Sensor Agent
S2j ∈ {S21}

1. Occupancy in Building 2 (Representing
occupancy sensor at work)

• ML Agents
ML1l ∈ {ML11,ML12,ML13}

1. ML Heater for tRT regression modelling
2. ML Heater for tFT regression modelling
3. ML Occupancy Building 1

• Routing Agent
R1m ∈ {R11}

1. Routing BCVTB-MACS
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C TsHi [◦C] TsLo [◦C] TsSleep [◦C]
C11 21.5 5 18.5
C12 25.0 40 26

TABLE 1: Controller set-point parameters

Person Period Number of days
Person 1 22.07.13 - 25.11.13 126
Person 2 02.08.13 - 20.11.13 110
Person 3 21.07.13 - 30.08.13 40
Person 4 01.08.13 - 19.10.13 79
Person 5 01.09.13 - 31.10.13 60

TABLE 2: Human behaviour datasets used for
evaluation

For the experiment, the set-point parameters for
C11 and C12 are listed in Table 1. There are three
set-point values: TsHi, TsLo, and TsSleep. TsHi and
TsSleep values are denoted as the indoor temperature
values at which the occupant feels comfortable during
presence and sleeping, respectively. Each control
agent implemented either On, Off, Sense, or Learning
control behaviour. When a control agent performed
a Learning control behaviour, the agent created
and launched the appropriate ML agent, which was
used to create classification or regression models, as
described in Section 4. Classification models for
occupancy prediction were created with C4.5dist, C4.5,
RandomForest, kNN , and kNNdist (where k = 5)
algorithms. Regression models for rise time forecasting
were created using Multilayer Perceptron, Gaussian
Processes, and Isotonic Regression. Results of the
models are presented in Section 7.

6.3. Human behaviour dataset

To obtain the human behaviour dataset, we chose
five volunteers to record date-time stamp of the start
and stop times of certain activities - sleeping, home
occupancy, and work occupancy - over a period of
at least one month. The data about activities at
home was logged manually using a smart phone logger,
and the data about occupancy at work was logged
utilizing the RFID system installed at our research
institute. According to Section 3.2, we consider the
occupancy state to be a complex state, because the
result of occupancy detection or activity recognition
is not necessarily the result of a single simple sensor;
rather, it requires additional processing of data from
various sources. The scope of our work did not include
processes of occupancy detection, person identification,
estimation of the number of occupants in a building,
or activity recognition to recognise sleeping activity. In
the experiment, we assumed that only one person uses
an apartment. The data was transformed into the time
series, with one-minute time stamps. Table 2 presents
the details of the dataset for each person.

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120
0

5

10

15

20

25

30

35

40

Day number

T
em

pe
ra

tu
re

 [°
C

]

 

 

Outdoor temperature 22.7.2013 − 25.11.2013

FIGURE 5. Outdoor temperature for weather station
Ljubljana, Slovenia between 22 July 2013 and 25 September,
2013.

6.4. Weather data

Weather data was obtained from the Slovenian
Environment Agency3. Figure 5 shows the outdoor
temperature for Ljubljana, Slovenia for the period
between 22 July, 2013 and 25 November, 2013.

7. RESULTS AND DISCUSSIONS

Our evaluation of the operation of the control sys-
tem was based on the quality of rise/fall time re-
gression models (using algorithms Gaussian Processes,
Multilayered Perceptron and Isotonic Regression), oc-
cupancy prediction models (using algorithms C4.5,
RandomForest, and kNN), and the evaluation of en-
ergy consumption with respect to an occupant’s com-
fort experience (using algorithms On, Off, Sense, and
all variants of the Learning algorithm). The regression
model was always conducted within one second. The
creation of the occupancy prediction models took ap-
proximately 0.1s, 2.9s, and 6.8s for kNN , C4.5, and
RandomForest, respectively, to conduct 178560 train-
ing instances representing the training data for the past
124 days. For experiments, the control agent always
waits until the ML agent create new models. For real-
time implementation, the control agent uses an old
model until the new one is created. The following sub-
sections present the results obtained for each individual
problem and a discussion about assumptions used and
limitations encountered in our experiment.

7.1. Rise time forecasting

Regression models for rise time forecasting were
evaluated using MAPE according to (2). The instances

3Slovenian Environment Agency, Web page:
http://www.arso.gov.si/en/
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Rise time Fall time
Gaussian Processes 36.0 24.7
Isotonic Regression 29.3 19.7
Multilayer Perceptron 37.0 24.5

TABLE 3: MAPE for each of the regression algorithms
for rise time and fall time. Best values are bolded.

Person No. arrivals Early forecasts (%)
C4.5 RF kNN

Person 1 126 62 (49) 59 (47) 59 (47)
Person 2 78 43 (55) 44 (56) 33 (42)
Person 3 33 17 (52) 15 (45) 14 (42)
Person 4 37 15 (40) 14 (38) 14 (38)
Person 5 45 30 (67) 26 (58) 24 (53)

TABLE 4: Occupancy prediction results. Values in bold
indicate the best result for each person.

were obtained from the simulation of Sense control
behaviour for Person 1. In 126 days, there were
64 instances for rise time and 166 instances for
fall time. Table 3 presents the MAPE for each
of the regression algorithms for rise time and fall
time. According to these evaluations, we decided to
choose the Isotonic Regression algorithm for the further
simulations, because it has the lowest MAPE for both
rise time and fall time prediction models - 29.3% and
19.7%, respectively.

7.2. Occupancy prediction

Occupancy prediction was evaluated before simulating
the heating process. Results are shown in Figure 6.
For that evaluation, we used only the C4.5, kNN ,
and RandomForest classification algorithms. The
interesting parts of each sub-figure are indicated by the
green circles, which represent the transition from absent
to present occupancy state. The best transitions are
blue→ light-blue, signifying that the classifier made an
exact prediction and that there were no misclassified
instances. Also of interest are the transitions from
blue → red → light-blue, signifying the occupancy was
predicted too early. In such cases, Learning behaviour
turns on heating or cooling before the occupant’s
arrival, thereby improving the comfort experience but
increasing energy consumption. C4.5 algorithm made
the most early forecasts, as shown in Table 4. For four of
the five people, the C4.5 algorithm predicted occupancy
accurately or slightly early.

7.3. Energy and (dis)comfort evaluation

The simulation model of a building was used to simulate
energy consumption and comfort. The data about
occupancy was used for each person, and the following
control behaviours were used to control the heating and
cooling processes:

Classification Distribution
DLearning C4.5 RF kNN C4.5 dist kNN dist

Person 1 372.42 0.99 9.15 1.93 9.15
Person 2 818.67 0.68 0.66 3.78 6.01
Person 3 136.78 1.24 0.92 0.37 3.58
Person 4 151.44 0.80 0.68 2.20 1.75
Person 5 357.97 0.79 0.75 0.95 28.85

TABLE 5: D index representing comfort vs. energy im-
provement of different versions of Learning behaviours
with respect to Sense behaviour. Values in bold indi-
cates the best result for each person.

• On
• Off
• Learning with C4.5, C4.5 dist, RandomForest,

kNN , and kNN dist where k = 5
• Sense

Results are shown in Figure 7. Each sub-figure presents
the results for simulation control behaviours. As
expected, On behaviour results in the highest energy
consumption and the best comfort experience, while Off
behaviour results in the lowest energy consumption and
the worst comfort experience. The red line indicates the
Pareto front, which links the non-dominated points on
the chart. Non-dominated points are those that are not
worse than any other point, in terms of both comfort
experience and energy consumption. For Learning
behaviour, the most promising results were obtained
using the Learning C4.5 classification algorithm for
occupancy prediction, if the user prefers to spend
less energy, or an algorithm like the kNN algorithm
(both variants) or RandomForest algorithm, if the user
prefers a higher comfort experience. Note that the
Y axis, which represents the value of the D index,
uses a logarithmic scale for better visualisation. In
practical terms, Person 5 spent 2.43 GJ of energy for
heating and cooling and achieved an ID of 577 using
Sense behaviour. When using the Learning kNN dist
algorithm, he spent 2.45 GJ (0.02 GJ more) of energy
and achieved the ID of 440 (133 less). In other words,
Person 5 spent 0.8 percent more energy and achieved
23.7 percent better comfort experience, which results
in DkNN dist=28.85.

Improvements of the control agent’s Learning
behaviour with respect to Sense behaviour are shown
in Table 5. If the D index is higher than 1, then
the relative decrease of IC is higher than the relative
increase of E. If the value of IC equals 1, the relative
increase of E is the same as the relative decrease of IC.
Values of D index lower than 1 show that much more
energy is required for a relatively small improvement
in comfort. We intend to achieve D values as high as
possible. In our experiments, the Learning algorithm
always provided greater comfort at the expense of an
increase in energy consumption.
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FIGURE 6. Occupancy prediction results for five people. The X axis shows the time of day with one-minute periods. The Y
axis shows the day numbers from the start of simulation. The colours orange, red, light blue, dark blue, and grey represent the
occupancy prediction results as false absent, false present, true present, true absent, and not interesting periods, respectively.
Green circles represent the transition from the real absent occupancy state to the real present occupancy state.

7.4. Assumptions and limitations

Activity recognition, occupancy detection, and person
identification constitute a wide research area, in

which the trade-offs between the unobtrusiveness,
accuracy of results, complexity of installation and
price of equipment are of central importance. In our
experiment, we assume that there is one person included
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FIGURE 7. Pareto curve for five people, where the X axis presents electric energy consumption by heat pump for heating
and cooling, for the whole simulation period in GJ. The Y axis presents the index IC for the whole simulation period. Each
blue star on a figure presents an occupancy prediction algorithm. The red line presents the Pareto front, which connects
non-dominated points on the graph.
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as a source of human behaviour data for the control
system. If we assume more people, the occupancy state
is similar to the occupancy state of one person. In
our experiment, one conditioned zone represents the
whole apartment. A problem arises if we assume two
people in the same conditioned zone, where one person
is sleeping and another person is awake, watching TV.
In such circumstances, the mean value of the TsHi and
the TsLo could be used as a set-point value. The system
assigned to recognise the activities of each person in an
apartment should be able to distinguish between people
and consider the appropriate set-point values given by
the negotiation process, as Kwak et al. [5] did for
commercial buildings.

The indoor set-point temperature parameters at
which the occupant feels comfortable are fixed values,
as shown in Table 1. The thermal comfort experience
for one simulation is expressed as a sum of minutes,
multiplied by the difference between the current
temperature and the comfortable temperature for each
time step, during which the building is occupied.
Ciegler et al. [32] performed the regulation of PMV
by adapting the indoor and radiant temperatures, but
they also made certain assumptions about variables
that are dynamic in reality, such as fixed values for
relative humidity, or fixed schedules for the occupant’s
clothing insulation and activity level. To summarise, we
assumed the TsHi as a static value for the temperature
at which one or many people in an apartment feel
comfortable while awake and TsSleep while sleeping.

Nguyen et al. [33] conducted a survey of systems
that are used to perceive the activity of the user
at home. Many approaches for detecting occupancy,
identifying the occupant, or recognizing activities
at home were already examined including a Radio
Frequency Identification (RFID) system, video camera
and/or microphone supervisory system, move detectors,
door opening sensor, pressure sensors in floor, smart
phone in relation to wireless home network, and other
systems. Before the installation of such a system, it is
worth considering the issues of privacy, the accuracy of
such system, the price, the complexity of installation,
reliability, and other aspects. Lu et al. [13] used a
combination of passive infrared motion (PIR) sensors
installed in rooms and magnetic reed switches on doors
to detect occupancy and sleeping - this system is
cheap, unobtrusive, and simple to install. The data
about occupancy at work was obtained using the RFID
system, installed at our institute. The data about home
occupancy was obtained manually; the volunteer used
a smart phone application logger to enter the data for
the occupancy and sleeping events. Presumably, we
could obtain similar results when using an installation,
as did Lu et al. [13]. It is worth mentioning, that
the set-point delegation highly depends on the data
provided by sensor agents. If the states are wrongly
perceived, the control operation will consequently result
in either excessive energy consumption or comfort loss.

The set-point values could be changed manually during
operation, because the occupant has the highest priority
in set-point delegation.

8. CONCLUSIONS AND FUTURE WORK

This paper presents the Multi-agent control architec-
ture, composed of several types of agents used to man-
age processes in a smart building. Each agent type
has its own duties and is related to other agents in
an architecture. The proposed formalization of agent
instances enables instantiation of a control system for
various types of heating systems, thereby demonstrat-
ing the modularity of our system. We present the con-
trol algorithm for heating and cooling set-point dele-
gation, which is implemented as a control behaviour
of an agent. The proposed control algorithm uses ma-
chine learning methods to identify the dynamic pro-
cesses in buildings and to learn human behaviour. The
machine learning algorithms were instantiated for heat-
ing and cooling processes and used for MPC control to
decrease energy consumption. Furthermore, the occu-
pancy prediction of an occupant was performed to min-
imise energy consumption and to increase energy sav-
ings. Both types of learning were evaluated using five
datasets, obtained from volunteers and through simu-
lation of the heating and cooling process of a building,
using a packaged terminal heat pump as the system
for heating and cooling. In many cases, the proposed
Learning behaviour of an agent decreased discomfort
(improved comfort) significantly while slightly increas-
ing the energy consumption with respect to Sense be-
haviour. The algorithm-provided prediction of the need
for heating and cooling can also be passed on to the
smart grid, allowing it to anticipate the energy needs of
the building.

Areas of further investigation include the multiple-
occupant problem, in which the set-point values differs
for each occupant. Furthermore, the multiple-zone
conditioning problem should also be explored, as it
presents the opportunity to further reduce energy
consumption by conditioning only occupied rooms. The
addition of various models representing energy suppliers
and energy storage systems in cooperation with other
heating systems - such as air-to-water or water-to-water
heat pump - is needed in order to enrich results obtained
with the learning algorithm. We already develop control
algorithms that take into account energy availability
and price provided dynamically by the smart grid.
Finally, real-time evaluation using a real building is
already being planned where the impact of our control
architecture will be evaluated using physical sensors and
actuators.
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