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ABSTRACT 

 

This paper presents the findings of a research on how to 

improve activity recognition from data captured with chest 

mounted accelerometer. Several methods were applied to 

achieve this purpose, including: simple smoothing 

technique, hidden Markov models (HMM), extraction of 

frequency domain features, principal component analysis 

(PCA) and dynamic time warping (DTW). The paper 

describes each of the methods and presents the achieved 

results of our research. The results indicate that these 

techniques, used separately or in combination, can increase 

recognition accuracy. 

 

1 INTRODUCTION 

 

Well-performing activity recognition systems have many 

potential usages. Being able to precisely determine human 

activity at a certain point in time is potentially useful in 

many domains. Such systems can help in solving the 

problem of elderly care [1, 8, 9] and are also valuable for 

other more mundane usages like: sports, gaming and 

entertainment industry [2]. Besides being effective, it is also 

very important, that activity recognition systems strive to be 

economically feasible for wide spread usage [1]. One of the 

relatively cheap and widely available technologies, that 

allow the recognition of activities, is easily accessible 

wearable accelerometers. However, the person wearing the 

sensors should also feel comfortable; therefore it is 

important to keep the number of sensors down to minimum.  

 

For these reasons, we studied different ways of improving 

the basic machine learning (ML) activity recognition, using 

data captured with a single chest mounted accelerometer. 

We tried to achieve greater accuracy by applying various 

techniques such as simple smoothing technique, hidden 

Markov models, extraction of frequency domain features, 

principal component analysis and dynamic time warping. 

Results show that some of these techniques can potentially 

improve accuracy, especially if they are combined. 

 

2 CONFIDENCE DATA SET 
 

Our initial data set was created as a part of Confidence 

project, which is aimed at creating a ubiquitous health care 

system to support independent elderly living [1]. The 

recorded activities were: sitting, sitting on the ground, on all 

fours, lying, standing, walking and transitional activities 

consisting of going up and going down. We used data 

captured with a three-axial accelerometer mounted on the 

test persons’ chest. A special test scenario, containing all 

activities, was created. The scenario was recorded by 11 

young, healthy volunteers (7 males and 4 females). It was 

repeated 5 times by each person, resulting in 55 recordings. 

Classification accuracy was determined by using leave one 

person out cross validation technique.  

 

2.1 ML Baseline approach: Random Forest 

 

In order to evaluate our improvement, we first established a 

baseline approach.  The raw sensor data was preprocessed 

with low-pass filter, which reduced the problem of noise in 

the collected data. After smoothing the raw sensor data, we 

applied an overlapping sliding window technique. Inside of 

every window frame, we computed time domain features 

such as: standard deviation, mean value and root mean 

square. The machine learning analysis was made using the 

application program interface of the software toolkit WEKA. 

Several algorithms were tested and the Random Forest (RF) 

was the algorithm that yielded the best results in preliminary 

tests. RF is an ensemble of decision trees in which the final 

decision is made by majority vote of the tree models [1]. 

Baseline classification accuracy was 72.2%. Initially we 

identified two main problems with this approach. First 

problem is spurious transitions between activities. Second 

problem is the inability to distinguish between certain groups 

of activities such as standing and sitting. Our goal was to 

address these problems. 

 

2.1 Simple modus classifier output smoothing technique 

 

We first tried to tackle the problem of spurious transitions 

between classified activities. Results of our ground level RF 

classification algorithm contained a great amount of erratic 

transitions from one class label to another. These fast, 

momentary transitions are impossible to occur in normal day 

to day activities.  

 

We tried to reduce the problem with a simple technique of 

changing the activity labels, based on the surrounding labels. 

Sliding windows of different lengths were used to correct the 



 

recognized activity of the ground level RF classifier. 

Corrected activity was the majority activity within the 

observed window. This simple technique presents a variety 

of other possibilities on how to implement this type of a 

level two pseudo meta-classifier. Different parameters, for 

instance length of surrounding window, can be considered. 

Another version of the same method was also implemented. 

RF’s probability distribution was summed up for each 

predicted activity within time window. The activity with 

maximum sum was selected as the corrected activity. 

However, this variation did not produce any noticeable 

improvement. 

 

Results of this sliding window smoothing technique showed 

a slight improvement in accuracy. Classification accuracy 

increased to 73.8%, which is 1.6 percentage points better 

than baseline accuracy (Table 1). Although there was an 

increase in accuracy, this method suffers from a problem of 

error propagation. In case of miss correcting previous 

activity labels, we can cause further errors and create 

sequences of mislabeled activities. Furthermore, it also 

cannot address the problem of confusion between activities, 

where chest is in the same vertical or horizontal position, e.g. 

sitting and standing. These two postures are characterized by 

chest being in vertical upright position. Easy way to avoid 

this problem is to combine both types of activities. However, 

we can argue that this is not a solution per se, but rather a 

mere elimination of the problem itself. 

 

2.2 Hidden Markov models (HMM) 

 

The problem characterized by spurious class label 

transitions, lies in the fact, that machine learning algorithms 

like RF, fail to take into account the continuity of the 

processes such as human activity. They discretely classify 

each instance in isolation and assume there is no connection 

between previous and following instance.  

 

A common way to address this problem, and consequently 

reduce spurious activity transitions, is to add temporal 

dependence component by using hidden Markov models 

(HMM) [3]. HMM observes Markov property, which states 

that current system state is dependent only on the previous 

state of the system. The model consists of a number of 

hidden states and associated transition probabilities between 

these hidden states. The hidden states emit events with 

certain emission probability, and these events are observed 

by the outside observer [4]. Our hidden system states were 

the true class label sequences, which were unknown. 

Observed states were RF’s predicted class labels. We 

generated test sequences on our training data. After 

generating the sequences, we used Viterbi dynamic 

programming algorithm, which is used to generate the most 

likely sequence of hidden states given an observation 

sequence of events [4]. Output of Viterbi algorithm was used 

to correct the initial RF’s erratic predictions. 

 

Using HMM to solve practical problems brings many 

questions.  First question is how to build the initial model.  

One way is to use Baum-Welch algorithm. Using this 

approach the obtained classification accuracy slightly 

increased from 72.2% to 73.9%. We also tried building the 

Markov model manually, by learning the emission and 

transition probabilities directly from our training sets. Latter 

option seems to perform slightly better. As seen in Table 1, 

classification accuracy increased to 75 %, which is 2.8 

percentage points better than our ground classifier. Possible 

reason, why this later option outperformed the first, is that 

we were actually learning the distribution of activities in our 

test scenarios. Building model directly on the training data 

also brings another potential problem of possible 

deterioration in performance on new data, since the ratio of 

our daily life activities and likelihood of transitions between 

them is not the same. Another question is the selection of the 

length of training sequences.  

 

To a large degree, we can contribute the improvement in 

classification accuracy, to the elimination of spurious 

transitions. Results show slight improvement in accuracy, but 

the problems of error propagation and inability to distinguish 

between upright positions like sitting and standing, remain. 

Next step was an attempt to solve these problems, by 

improving the classifier on the first level. This effort was 

based on the notion that, if we get better results with our 

ground classifier, second level classifier and other 

techniques, have a bigger chance of performing in a better 

manner. To achieve this, our next step was to try to improve 

our feature set. 
 Accuracy 

Only Random Forest 72.2% 

Simple modus smoothing technique 73.8% 

Hidden Markov Model 75.0% 

 

Table 1: Comparison of classification accuracy achieved 

using different techniques. 

 

3 CHIRON DATA SET 
 

Second part of the research was conducted on Chiron 

project dataset. Chiron project is an European project 

whose final goal is to develop reference architecture for 

personal elderly care [6]. The data set, among other data 

sources, also contains inertial force measurements captured 

with three-axial accelerometers. In this section new 

attributes are derived from the data in order to improve the 

classification accuracy on the first level. 

 

3.1 Baseline accuracy: Time domain feature set 

 

As in our first experiment, baseline accuracy is evaluated. 

Raw accelerometer data was preprocessed with low-pass 

filter. RF was used as a classification algorithm. For the 

purpose of signal segmentation and time domain feature 

computation, several lengths of overlapping sliding 



 

windows were used. Feature set contained same time 

domain features as the ones used in previous section. Due to 

the fact, that data consists of several different scenarios, we 

preselected some of them. Selected data contained our 

target activities: sitting, running, walking, standing, lying, 

on all fours, standing up and going down. With the 

exception of adding running activity and removing sitting 

on the ground activity, target activities are same as in the 

previous section. Accuracy of ground level classifier, using 

time domain features, is presented in the first row of the 

Table 2. Using only information extracted in the time 

domain, classification accuracy varies from 69.0% up to 

72.2%, depending on the length of time window. 

 

3.2 Frequency domain features 

 

In the next step, we tried to enhance the attribute set in the 

feature vector, consequently increasing accuracy and 

improving distinction between upright activities. The feature 

vector includes important cues for distinguishing various 

activities [2]. Our goal was not to rely solely on time domain 

features, but to also try to gather addition information from 

features in the frequency domain. To compute meaningful 

features in frequency domain over a time window, algorithm 

needs higher data sampling frequency dataset. This is the 

reason we used Chiron dataset with 20 Hz sampling 

frequency. Features focusing on periodic structure of the 

signal in the frequency domain are also commonly used in 

other activity recognition studies [2]. 

 

We used coefficients derived from Fast Fourier Transforms. 

Features such as magnitude, spectral energy and maximum 

magnitude index, were computed for all three accelerometer 

axis. First we measured accuracy using only frequency 

domain features. Results are shown in Table 2. Measured 

accuracy in accordance to our expectations, depends of the 

length of the overlapping sliding window and ranges from 

68.0% up to 76.7%. This time the lower bound is one 

percentage point less than in the case of using time domain 

features, but the upper bound is four percentage points 

better. We also experimented with different combinations of 

frequency domain feature subsets, but they did not yield 

significantly better results 

 

 

3.3 Principal component analysis (PCA) 

 

Principal component analysis (PCA) is a well known and 

widely used statistical analysis method to transform high 

dimensional data into a lower dimensional space [2]. It is 

popular in number of areas ranging from neuroscience to 

graphics and image compression [5].  

 

Our idea was to extract the information available from the 

raw signal. By using PCA, we were hoping to utilize the 

characteristics of the signal. Accelerometer signal consists of 

x, y and z axis inertial force measurement. If one, for 

example takes a 64 sample window, this result in 192 

attributes, which is a rather big amount of features. 

Furthermore one can perform PCA on different things. We 

can take raw signal values, acceleration angles, differences 

between current acceleration angle and previous angle and 

other signal characteristics. In order to reduce the number of 

features we used PCA. Results in terms of classification 

accuracy of our experiment using PCA are shown in Table 2. 

We used 3 eigenvectors computed on raw acceleration data. 

PCA by itself seems to perform worse, than using either only 

time domain or only frequency domain attributes. 

 
 Sliding 

window 

size 16 

Sliding 

window 

size 24 

Sliding 

window 

size 32 

Sliding 

window 

size 64 

Time domain 

features 
69.0% 67.6% 72.7% 70.6% 

Frequency domain 

features 
68.0% 71.9% 73.0% 76.7% 

PCA features 62.8% 63.7% 63.8% 63.0% 

Time and frequency 

domain features 
73.4% 73.2% 76.6% 71.8% 

PCA, time and 

frequency domain 

features 

76.8% 78.1% 75.6% 77.6% 

 

Table 2: Table of accuracy of different feature sets and 

different overlapping sliding window sizes. 

 

3.4 Comparison of different feature sets 

 

By examining Figure 1, one could draw a conclusion, that 

using only baseline time domain features (blue line), 

performs worse than using additional features (red and 

green line). 

 
Figure 1: Comparison of classification accuracy of different 

feature sets. 

 

Using all of the available features including frequency, time 

domain and principal components (green line), at first sight 

appears to perform better than other feature set 

combinations, because it achieves greater accuracy for the 

most of the considered sliding window sizes. It is hard say, 

if that is really the case, due to the dependence on 

preprocessing window size and limited number of test 



 

subjects. In an event that this approach would prove to work 

better, there is still a problem of computational complexity, 

which increases in accordance to growing number of 

features. Furthermore, there is also another important thing 

to consider, since certain other classification algorithms 

tend to show greater sensitivity to excessive usage of 

redundant features. 

 

3.4 Dynamic time warping (DTW) 

 

Our basic inspiration for using dynamic time warping 

(DTW) was to find similarities in the shapes of the 

accelerometer signal. DTW is a much more robust distance 

measure for time series, than Euclidean distance measure. It 

allows similar shapes to match, even if they are out of phase 

in time axis [7]. This distance measure is widely used in 

many areas like medicine, science and finance [7].  

 

We implemented an activity recognition system that matched 

every single test instance, which we would like to classify, 

against all other instances in our training set and classified 

the unknown activity to the majority class of the closest n 

activities. We evaluated our implementation on a small 

subset of test instances, but it did not perform as well as 

other previously mentioned techniques and achieved a rather 

poor classification accuracy of 51.2%. Small subset of 

instances was chosen, because we stumbled against the 

problem of high computational time complexity. Issue was 

mainly caused, because our activity recognition system was 

designed to match every single test instance, against all other 

instances in our training set and classified the unknown 

activity to the majority class of the closest n activities. This 

implementation also suffers from a similar problem as the 

lazy k nearest neighbors’ (KNN) classifier, since it is always 

difficult to know how many closest instances one should use 

in the classification process. Potentially better idea would be 

to select a subset of exemplary activity of certain target class 

and compare our unknown activity only against this smaller 

subset. By implementing our system in this way, the DTW 

classifier could work faster. The question of how to actually 

select this smaller subset could present one of the starting 

points for further research. 

 

6 CONCLUSIONS 

 

It is hard to say with some convincing degree of confidence, 

which of the used techniques works best. In spite of our 

endeavors to improve activity recognition, we did not 

manage to achieve all the expected improvements. One of 

the problems is the side effect of using different data sets. 

For this reason results cannot be rightfully compared. 

Furthermore, research was conducted only on two different 

data sets. As a consequence of this small verification scale, 

our findings cannot be generalized to other datasets and it is 

impossible to say, how well they could perform outside the 

experiment setting, i.e. in real-time activity recognition 

setting. It is also very difficult to compare our results with 

other research findings, since different researches examine 

different sets of target activities. Furthermore target activities 

can be defined differently. For instance, the sitting activity 

can be defined in many different ways e.g.: sitting on the 

ground, sitting on a chair, sitting with legs crossed etc. This 

problem of transparency and lack of standard definitions is 

unfortunately widely present in the field of activity 

recognition research. However, we can conclude with an 

optimistic notion that talking small steps is required in order 

to make a big leap forward. Same principle of gradual 

progress also applies to making better research and improved 

activity recognition systems. 
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