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Abstract. The paper presents an approach to providing advice on health
related quality of life to patients with congestive heart failure, using
predictive models built from telemonitoring data. First, by combining
machine learning algorithms, feature construction, feature selection and
expert knowledge, we built a set of predictive models. We then identi-
fied which of the features present in the models can be changed by the
patients themselves with an appropriate intervention and modelled the
association between them and all the other features using linear mod-
els. At the end, by using multi-objective optimization, we found the
minimum necessary changes of the modifiable features that improve the
patients’ feeling of health. This way we can provide a set of appropri-
ate advices for patients. The findings mostly correspond to the current
medical knowledge, although some may represent new insights.
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1 Introduction

Congestive heart failure (CHF) is a chronic disease in which the heart cannot
adequately supply the organs and tissues with oxygen and nutrients. It can have
various causes, including damaged heart tissue (e.g., due to a heart attack),
atherosclerosis, hypertension etc. 1-2% of people in the developed world suffer
from CHF [7], and it is the most frequent cause of hospitalization in people
aged over 65. CHF cannot be cured, so the management of the disease aims
to prolong the lifespan and to increase the quality of life. The latter is often
expressed through the so-called patient-reported outcomes (PROs), which are
becoming increasingly accepted as one of the measures for the evaluation of
medical treatments [1].

In this paper we work on data collected during the Chiron telemonitoring
study performed among CHF patients in Italy and UK [10]. In these patients a
large number of physiological and ambient parameters were collected by wearable
and other devices, together with PROs describing how they felt. We have already
built models that predict the patients’ feeling of health based on the values of the
telemonitored parameters, achieving accuracies around 80% [3]. We used these



models to study the relations contained in them, finding some previously known
as well as some new ones.

In this paper, we have taken a step further and used similar predictive models
to generate advice for the patients on how to improve their feeling of health.
To do so, we first selected the features that can be directly modified by the
patients with an appropriate intervention or behaviour adaptation. Afterwards,
we modelled the relations between these and other features, so that we could
propagate the changes in the directly modifiable features to all the affected
features. Finally, we used multi-objective optimization to find minimal changes
of the directly modifiable features that improve the patients’ feeling of health.

It has long been the promise of predictive models in medicine to aid the
selection and adjustment of treatments by predicting their outcomes, similarly
to what we propose in this paper. However, this promise has not often been
realized, most likely becase data needed for actionable models is not readily
available. In CHF, most predictive models are long-term and concerned with
mortality - a prime example is the MAGGIC score [9], which was developed on
data of 39,372 patients to predict 3-year mortality. However, the information
contained in such models is quite general and already included in the guide-
lines for the management of CHF. There are also some medium-term models
concerned with hospitalizations - the closest example to our work uses a genetic
algorithm to construct a strategy to prevent hospital readmissions [8]. Predictive
models concerned with PROs are rare, probably because the interest in PROs is
relatively recent. A typical example is the model by Ramos et el. [12], which was
developed on data from 103 patients to predict the quality of life. We are not
aware of any work that tries to improve the patient’s feeling of health through
the use of such models.

The rest of the paper is organized as follows. In Section 2 we present the
collected dataset and the extracted features. In Section 3 and 4 we present used
methods and obtained results. We conclude with Section 5.

2 Dataset

2.1 Data gathering and description

The Chiron project carried out an observational study in which 38 congestive-
heart-failure patients from the United Kingdom and Italy were telemonitored
[10]. However, some of the data were incomplete, so only the data of 12 patients
from the UK and 13 patients from Italy were included in the analysis. These 25
patients together provided a total of 1,068 usable recording days. The patients
were aged on average 63±9.6 years. The majority were male (72%) and were cat-
egorised as NYHA class 2 (64%) or 3 (36%). The data consists of 15 parameters
carefully selected based on their relevance to CHF.

During the study, the patients were wearing vital-signs monitoring equip-
ment [5] for several hours each day. The equipment consisted of an ECG device,
two accelerometers placed on the chest and thigh, a body-temperature and a



body-humidity (sweating) sensor. The ECG recordings were subsequently ana-
lyzed with the Falcon algorithm [6] to extract the fiducial points, enabling us to
compute the heart rate as well as to describe each heart beat with additional
parameters such as PR interval, QRS duration and T-wave amplitude. The pa-
tient’s activities and energy expenditure were extracted from the accelerometer
recordings [4]. The patients were also provided with a mobile application for gen-
erating daily reports about their measurements of systolic and diastolic blood
pressure, weight, blood oxygen saturation, ambient temperature and humidity.
In addition, they reported their overall feeling of health with respect to the pre-
vious day on a daily basis (feeling much worse than yesterday, worse, the same,
better or much better).

2.2 Feature construction

For every parameter that was measured continuously or multiple times per day
we calculated the average value and the standard deviation during the whole day
and during three different types of activities (lying, sitting and moving). From
some of the parameters, we further calculated various additional features such
as ratios and differences. For more details see [3].

For every feature described above we then calculated a personalized version
as the ratio between the daily value of the parameter and its average value for
the patient over the whole study period. At last we calculated the change of the
feature value in comparison with the previous day.

For the purpose of predictive modelling, we had to select the class to be
predicted. If each of the five distinct feelings of health corresponds to one class,
the differences between them are too small. Therefore we decided to have only
two classes. In the paper [3] we analyzed several class definitions and concluded
that the best definitions (also used in this study) is: “Feeling much worse or worse
three out of last four days (Class bad) vs. Feeling much better or better three out
of last four days (Class good)”. Note that for most class definitions, the accuracy
of the prediction is only slightly lower, so the selection of the class does not affect
the results greatly, as long as only two classes are used and the instances where
the patients are feeling the same as yesterday are omitted. However, since the
majority of the data instances have the class “feeling the same as yesterday”,
such a class definition leaves us with only 118 useful instances.

2.3 Feature selection

We constructed several features (309) while the amount of instances is very
small (118). Therefore we applied three feature selection methods and as a result
obtained three subsets of features:

– The first method was the Correlation-based Feature Subset Selection (CFS)
as implemented in the R statistical suite [11]. It is a statistical method which
evaluates subsets of features on the basis of the hypothesis that good feature
subsets contain features highly correlated with the class value.



– Another subset was chosen manually based on expert medical knowledge and
previous experience from the Chiron project.

– Many of the features had a lot of missing values. In the last subset we
included only the features with at least 87% values (this threshold was ex-
perimentally chosen), because features with a lot of missing values can add
noise to the predictions.

These subsets of data were then used for building predictive models described
in the next section.

3 Methods

The main purpose of the study in this paper was to construct advice to help
CHF patients improve their feeling of health. This was done in the following
three steps, which are described in detail in Subsections 3.1–3.3:

– Construction of machine-learning models that predict the patients’ feeling
of health.

– Selection of features from these models that can be easily changed by the
patients themselves with an appropriate intervention or behaviour adapta-
tion (named modifiable features), and modelling the relations between them
and other features.

– Construction of advice on how to change the modifiable features, by using
multi-objective optimization and models from the previous two steps.

3.1 Predictive models

In our previous work [3] we compared several machine learning algorithms. We
obtained the best performance using the Random Forest algorithm with the ac-
curacy of 79.3%. Because of that we decided to use the Random Forest algorithm
for building the predictive models in this study as well. The class was defined
in Subsection 2.2 and the features were selected as described in Subsection 2.3.
The algorithm was implemented in the Weka [2] machine-learning suite and run
with the default hyper-parameter values.

Since most of the features in the predictive models cannot be easily changed,
we identified – based on our judgement – which of them can be changed by the
patients themselves with an appropriate intervention or behaviour adaptation.
These modifiable features are suitable subject for advice to the patients.

3.2 Correlation between features

Some modifiable features are highly correlated with other features, so if we want
to consider the impact of changing one of the modifiable features, the corre-
lated features must also be changed. Because of that we had to model these
correlations. The first step was to recognize which of the modifiable features



were correlated within other modifiable features, since they cannot be modified
independently. We iteratively removed the most correlated modifiable feature ac-
cording to the coefficient of multiple correlation, until the highest correlation fell
below 0.5 as this value represents the standard threshold to distinguish between
high correlation and moderate correlation. The removed features were included
in a set named correlated features.

The second step was to recognize other features correlated with the modifi-
able ones. We again used the coefficient of multiple correlation (as before we set
the threshold to 0.5) to identify them, and we again included the resulting fea-
tures in the set of correlated features. For the remaining features, we concluded
that they are not associated (at least linearly) with the modifiable features, and
the set of these features was named uncorrelated features. In other words, these
features remain the same no matter how we change the modifiable features, and
are mostly features that do not change much day to day anyway.

The final step was to model the association between the modifiable features
and correlated features. We used linear models as implemented in the R statis-
tical suite [11] and run with the default hyper-parameter values.

3.3 Optimization and advice generation

We represented the task of generating advice to improve the patients’ feeling
of health as an optimization problem. The optimization algorithm will suggest
which modifiable features should be changed and for how much. The desired
solutions would be the ones that would change minimum number of features by
as small an amount as possible. In this way the patient would need minimal
effort to improve his felling of health.

To find such solutions, we defined two-objective optimization problem. Both
objectives were to be minimized. The first objective was the number of features
that were changed and the second was the overall absolute sum of all changes.
Additionally, every obtained solution was determined feasible if the feeling of
health improved, otherwise the solution was considered infeasible - this was
checked by first calculating the correlated features from the modifiable ones as
described in Subsection 3.2, and then feeding all the features into a predictive
model described in Subsection 3.1. The experiment runs on average about 1 hour
on a computer with specifications: CPU - i7 3.4 GHz and RAM - 8GB.

We used the well-known multi-objective optimization NSGA-II with follow-
ing settings: a hundred-sized population, simulated binary crossover, polynomial
mutation, tournament selection and 10,000 evaluations.

One of the objective values was how many parameters changed in comparison
to the current patient’s parameter values. Since it would be nearly impossible for
the optimization algorithm to find solutions that would have the same real values
as the initial ones, we needed to construct an initial population of solutions as
the combination of the randomly created solutions and the copies of the current
patients parameters. This combination enables the optimization algorithm to
combine different parameter values to find combinations that result in better
feel of heath, but at the same time it enables the algorithm to keep the number



of changed parameters low. The initial population consisted of 60% of randomly
generated solutions and 40% of copies of the initial parameter values.

4 Results

In this section we are going to present the results of the evaluation of the three
steps described in the previous section.

4.1 Predictive models

To build the predictive models, we analyzed their accuracy on the three different
feature subsets described in Subsection 2.3. For every subset, we performed 10-
fold cross-validation, which was repeated 30 times with different splits into folds.
The average accuracies for different feature subsets are shown in Table 1.

From the table we can see that the best result was obtained by using the set
of all features with small amount of missing values. However, because it does
not contain all the modifiable features, and because the accuracies for the other
subsets are close, we decided to use the union of the three subsets. This union
contained both regular and personalized features. Since these are highly corre-
lated, and since the personalized versions proved more robust in the next step,
we settled on the personalized features only. On one hand, this set of features
contains all the modifiable features, and on the other hand, models built from
personalized features are more likely to work for previously unseen patients. We
believe these properties outweigh the 3-percentage-point lower accuracy com-
pared to the set of features with small amount of missing values.

Table 1. Comparison of different features selection approaches (the number of features
per set and the accuracy obtained using Random Forest classificator)

Features No. of features [n] Accuracy [%]

Small amount of NA 13 86.6

Union 97 84.7

Only personalized 40 83.2

CFS selection 11 83.1

Expert selection 92 80.2

The set of all personalized features contains 43 features, where we identified
13 modifiable features listed below (organized by the timing of the measurement):

– Once per day: ambient temperature, ambient humidity, systolic and diastolic
blood pressure, weight

– Average over the whole day: heart rate, energy expenditure
– Activity-specific: duration of lying, sitting, moving; average heart rate during

lying, sitting, moving



4.2 Correlation between features

Using the method we described in the Subsection 3.2, the duration of lying
and the average heart rate during sitting were recognized as correlated with
the other modifiable fatures, and were thus moved to the correlated feature set.
From the remaining personalized features, the following six were also recognized
as correlated:

– Change from the previous day: oxygen saturation, systolic blood pressure
– Average over the whole day: skin humidity, QT interval at average heart rate,

ambient temperature/skin temperature, ambient humidity/skin humidity

We then used linear models to describe the associations between the mod-
ifiable and the correlated features. The results are shown in the Table 2. The
“Linear” column represents the average of the absolute residuals for every corre-
lated feature when predicted with a linear model. The “Mean” column represents
the average of the absolute residuals using the patient’s average feature value as
the prediction. The “Prev. day” column represents the average of the absolute
residuals using the previous day’s feature value as the prediction. From Table 2
we can see that for every correlated feature, linear models obtained better results
comparing to the two baseline approaches.

Table 2. Comparison of different methodes (the average of residulas per method and
feature, for simplicity the residuals are multiplied by 100)

Feature\Prediction method Linear Mean Prev. day

Duration of lying 27 65 63

QT interval at average HR 1 3 4

Average of skin humidity 8 14 14

Temperature ratio 4 11 6

Humidity ratio 9 22 17

Average HR during sitting 1 3 3

Change in systolic BP 3 5 7

Change in oxygen saturation 0 0 0

4.3 Optimization and advice generation

We defined four optimization problem based on which features were included in
the predictive models.

– Problem M: Only modifiable feature subset was included
– Problem M + C: Only modifiable and correlated feature subsets were in-

cluded
– Problem M + U: Only modifiable and uncorrelated feature subsets were

included
– Problem M + C + U: All feature subsets were included



For every the solution to each of these four problems, we computed several
statistics and measures. In some cases the optimization found more than one
solutions for the given patient. For the purpose of the statistics and measures
in this section we included all the solutions and regarded them as solutions for
different patients. However, this has to be further investigated in our feature
work. In Figure 1 we can see the number of solutions consisting of n = 1, 2, 3 or
more changed modifiable features (pieces of advice that concern n = 1, 2, 3 or
more features). In addition, over every bar we show the average change as the
percentage of the feature’s original value. For example, in the graph “Modifiable”
we see that around 40% of the pieces of advice were concerned with only one
feature, which should on average be changed by 9%; around 39% of the pieces of
advice were concerned with two features, which should on average be changed
by 3%; and so on. From the figure and the table one can see that the best results
were obtained using only modifiable features and using modifiable + correlated
features. In both problems more than 90% of the solutions required changing
only of 1, 2 or 3 modifiable features, and the changes were relatively small (from
3% to 9%).

Fig. 1. Comparison of different optimization problems (the number of solutions con-
sisting of n = 1, 2, 3 or more changed modifiable features and the average change as
the percentage of the feature’s original value)
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In addition, for every problem and every modifiable feature we calculated the
number of solutions which include that feature, and the average and standard
deviation of the changes. Those measures are shown in Table 3. The table shows
that many solutions required changing the heart rate, the ambient temperature,
the ambient humidity, the blood pressures and the weight. The energy and ac-
tivity durations seem to be less important. If we concentrate only on the first



two problems (which we consider to generate the best advice), we see that the
advice suggest to increase the duration of moving and to reduce the duration of
sitting. This can be interpreted that the patients would feel better if they were
more active, which seems reasonable. The advice also suggests to increase the
difference between the systolic and diastolic blood pressure, which makes sense
as it is a sign of an adequately functioning heart. Even though the blood pres-
sure is modifiable to some degree, though, such a change may not be possible to
achieve in CHF patients. The advice to increase the weight is problematic and
probably arose from noise in our relatively small dataset. The advice to increase
the temperature is reasonable as CHF patients often complains of cold due to
poor circulation in their limbs. We believe that advice concerning environment
management is safe and can be used by the patient without any warning. The
advice concerning physical activity may have to be reviewed and evaluated by
medical practitioners before being relayed to the patients.

Table 3. Comparison of different optimization problems (the number of solutions which
include a certain feature, and the average and standard deviation of the changes)

Problem M M + C M + C + U M + U

Feature n% avg ± sd n% avg ± sd n% avg ± sd n% avg ± sd

Energy expenditure 8 -6 ± 12 5 -11 ± 6 4 0 ± 0 43 28 ± 91

Duration of sitting 4 -1 ± 1 4 -1 ± 2 4 0 ± 0 31 -4 ± 15

Duration of moving 2 0 ± 0 4 2 ± 3 2 0 ± 0 31 47 ± 80

Avg. HR over the day 15 2 ± 2 18 5 ± 10 18 -7 ± 8 40 3 ± 9

Avg. HR during lying 17 0 ± 0 12 -1 ± 1 9 0 ± 0 45 0 ± 1

Avg. HR during moving 8 0 ± 0 11 -1 ± 3 53 -8 ± 6 38 -1 ± 4

Ambient temperature 46 6 ± 13 43 6 ± 10 18 5 ± 22 52 14 ± 17

Ambient humidity 23 7 ± 8 21 1 ± 6 2 0 ± 0 79 19 ± 25

Systolic BP 19 6 ± 9 14 1 ± 5 4 -5 ± 7 38 0 ± 2

Diastolic BP 23 1 ± 6 20 -3 ± 13 11 0 ± 0 38 2 ± 8

Weight 38 0 ± 2 18 1 ± 3 9 -3 ± 8 33 1 ± 4

5 Conclusions

This paper shows a preliminary idea on how to identify advice for CHF patients
to improve their feeling of health. By using described methods we were able to
provide a set of advice for patients. Most results seem reasonable and most of
them correspond to the current medical knowledge, although some may represent
new insights.

Since the dataset is not very large, the obtained results cannot be considered
highly reliable. In the future, we will integrate the presented approach in the
HeartMan system, which will provide guidance on disease management to CHF



patients. Once the system is finished, it will be piloted on 80 CHF patients. This
will provide real-life validation of our advice, as well as new data to improve it.
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