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Abstract. Context recognition (CR) systems infer the user’s context,
such as their physical activity, from sensor data obtained, for example,
with smartphone sensors. Designing an energy-efficient CR system, how-
ever, is a complex optimization problem involving conflicting objectives
and several constraints arising from real-world limitations and designers’
preferences. To address this task, we propose a constrained multiobjec-
tive formulation of the CR design problem. Unlike most studies in this
domain, we use a true multiobjective approach in solving it. Specifically,
we apply a multiobjective evolutionary algorithm equipped with two
different constraint handling techniques. Their performance is demon-
strated in optimizing six CR systems of various complexity. The pro-
posed problem formulation and the optimization results make it possible
to better understand the CR systems operation and provide valuable
information to the designers.

Keywords: Multiobjective optimization · Constraint handling ·
Context recognition · Energy efficiency

1 Introduction

Context recognition (CR) is a vague term encompassing a wide array of tasks
where (usually wearable) sensors are used to detect something about the per-
son wearing them. Possible applications range from counting steps, localization,
detecting activities such as walking or running, to monitoring someone’s physical
and mental health.

CR is an already mature research area [13] and many applications using
CR systems come pre-installed on average smartphones. However, a common
problem that occurs when designing such systems is the energy consumption of
the device that is collecting and processing the sensor data. It is easy to imagine
that a smartphone application that uses all its sensors (e.g., GPS, Bluetooth,
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Wi-Fi, accelerometer, etc.) can detect much about its user, but also quickly
drains the phone’s battery, making it useless in practice.

There are many ways of preserving the battery life of a CR system. One
of the most effective ways is the choice of the right sensors for the task (as
different sensors can be used for the same CR task) and duty-cycling them,
e.g., periodically turning them on and off again. Energy savings can be further
increased if the sensors used and the duty-cycle durations adapt to the current
context. For example, one might want to use GPS when the user is driving, but
accelerometer when walking.

The issue with creating such adaptive CR systems is that doing so requires
either a lot of expert knowledge of the domain or manual experimentation. Thus,
any process that could at least partially automate the task of searching for
energy-efficient solutions would be greatly beneficial.

Janko et al. [8] were the first to show that this problem can be formulated as a
multiobjective optimization problem (MOP) with the objectives being the accu-
racy and energy consumption of the CR system. Their work, however, lacked
a thorough experimentation in solving the resulting MOP and did not con-
sider constraints in its formulation. The constraints naturally arise from real-
world limitations of some sensors and from additional desires from the system
designers.

In this work we expand on both of these aspects by performing a more com-
prehensive experimental evaluation, and more importantly, adding real-world
constraints to the proposed MOP. The resulting constrained MOP is solved using
the well-known Nondominated Sorting Genetic Algorithm II (NSGA-II) [2]. Two
constraint handling techniques (CHTs) are applied: the original constrained-
domination principle (CDP) [2] and a more recent approach based on an ensem-
ble (ENS) of multiple CHTs proposed in our previous work [12]. Their perfor-
mance in solving the CR optimization problem is assessed on six progressively
harder CR systems.

We first present two different datasets—Commodity12 and Opportunity—
that represent two different CR problems (Sect. 2). In Sect. 3, we then elaborate
on how to represent the semantics of these datasets as a MOP. Special consider-
ation is given to the constraint formulation (Sect. 3.1), and for each dataset we
prepare three different, progressively harder, sets of these constraints. In Sect.
4, we test the difficulty of the proposed CR optimization problems and evaluate
the quality of the found energy-efficient solutions, and finally conclude in Sect. 5.

2 Datasets

In this section, we present two datasets from two CR problems. They both
contain streams of sensor data, which are then split into windows and can be
used to calculate features. These features are then fed into machine-learning
classifiers whose goal is to classify each window into one of the predetermined
contexts as accurately as possible and with as little sensor data as possible.
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2.1 Commodity12

The aim of the Commodity12 project was to create a system that can be used by
diabetics to monitor their activities and help them manage their lifestyle more
easily. All details can be found in the previous work on the domain [1].

For data collection, a smartphone and a chest-worn heart-rate monitor were
used to monitor ten participants. Each participant continuously collected data
for two weeks and manually labeled the following contexts: sleep, work, home,
eating, transport, exercise, out (out of house, but not in any of the previous
contexts). The data was collected from ten sensors: accelerometer, barometer,
light sensor, GPS location, a list of visible Wi-Fi networks, a description of
location by the Foursquare web service, sound, time, heart rate and respiration
rate. The first eight were measured with the smartphone, and the last two with
the heart rate monitor connected to the smartphone via Bluetooth.

Random Forest was identified as the best-performing classifier and was there-
fore selected for the present work on this dataset. While the classification accu-
racy was reasonably high (between 73% and 88%, depending on the user), the
energy consumption made the application impractical to use—and thus the need
for energy optimization.

To use energy consumption as one of the optimization objectives, it needs to
be estimated for each sensor combination (as the energy consumption of differ-
ent sensors do not add up linearly). This was done empirically by attaching a
multimeter device directly to the smartphone battery [8].

2.2 Opportunity

Opportunity [9] is a popular publicly available dataset designed to evaluate algo-
rithms for detecting human activity. Data on four users were recorded while they
were performing various tasks in an apartment.

There were 30 sensor clusters in this apartment, some on the user’s body and
some on the objects the user interacted with. The complete list of sensor locations
is as follows: user’s left knee, left and right upper arm, left and right forearm,
user’s hips, left and right shoe, left and right wrist, left and right hand, as well as
a cup, salami, water bottle, cheese, bread, knife, sugar, plate, and drinking glass.
Each cluster contained some of the following sensors: accelerometer, gyroscope
and magnetometer.

The dataset provides various sets of labels, out of which we decided to test
the case where the problem was to recognize which object the user is currently
holding in their right hand. There were 18 classes: bottle, bread, chair, cheese, cup,
dishwasher, door, drawer, fridge, glass, knife, milk, plate, salami, spoon, sugar,
switch, table, none), each representing an object held, except for the none class
that represented no object in hand. The class distribution was highly unbalanced
with the none class having a representation of 57%.

The classification process was made relatively simple in order to conform
to the introductory paper [10] of the dataset. The data from each sensor was
divided into 500-ms non-overlapping windows on which we calculated the mean
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and standard deviation. The k-nearest neighbors classifier (k = 3) was then used
for the classification.

This problem domain has an unusually high number of sensors (30 sensor
clusters), which creates an enormous space for possible sensor subsets. Therefore
we decided to use only some sensor subsets (not all, as with Commodity12) as
the search-space for multiobjective optimization. These subsets were selected
in the following way. We started with an empty set. Then we added the sensor
cluster that increased the F-score the most to the set. This was repeated until no
single sensor cluster could increase the F-score. Each resulting subset was added
as a sensor setting (each subset had one more sensor than the previous one). The
procedure was then repeated for each context, this time adding sensors only if
it increased the F-score for recognizing this context. All generated subsets were
added again as sensor settings. The justification for this greedy procedure is that
most sensor subsets are redundantly large, both inflating the energy consumption
and unnecessarily increasing the search space of different system configurations.

For the sake of simplicity (and since we did not have access to the details
about the sensors) we assumed that all existing sensors had similar energy con-
sumption. To model their combined consumption, we simply added up the indi-
vidual energy consumptions.

3 Problem Formulation

Suppose the CR system can detect c different contexts. It can do so by using
different settings—the setting being which sensors to use and with which duty-
cycle schedules (sensors can work for a time periods, then sleep for s time periods,
and repeat). Whenever a context is detected, the setting used changes to the one
assigned for the current context (e.g., whenever transport is detected, the GPS
gets turned on). This opens up the problem of finding the ideal assignment
of each context to the one of the possible settings. Each such assignment will
result in a different CR system that will generally have a different trade-off
between its accuracy and its energy consumption. We can assume that both
of these objectives can be accurately estimated using either a simulation or a
mathematical model [6–8].

The problem can be naturally formulated as a multiobjective optimization
problem with the accuracy of the system, f1, and its energy consumption, f2,
being two conflicting objectives. A setting-to-context assignment can be repre-
sented with an integer (decision) vector,

x = (x1, . . . , xD)T ∈ S ⊂ N
D

where S denotes the decision space of dimension D = 2c+1. The first c entries of
x dictate which sensor subset to use when the corresponding context is detected
(possible sensors subsets are enumerated). Similarly, the second c entries dictate
for how long the system sleeps in each duty cycle (no sensor is working). Finally,
the last component indicates how long the sensors are active between the sleeping
periods. It is of note that the length of a duty cycle is not fixed, therefore the
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lengths of the sleeping and active periods do not necessarily sum into a given
total. Two duty cycles of different lengths may have different performance, even
with the same ratio of active and sleeping periods.

The number of possible sensor subsets was roughly 200 for both datasets,
while the lengths of both the sleeping and active periods were capped at 30. The
ranges of these parameters were chosen to be semantically sensible and, in the
case of no constraints, all parameter values have the potential to be part of a
Pareto-optimal solution. The fitness of these integer vectors was calculated using
the mathematical model from [7,8].

To make it possible to compare the performance of various CR systems, we
consider normalized objective values. The values of f1 are already normalized
since they represent the achieved accuracy. On the other hand, the values of f2
are normalized by the maximum possible energy consumption. This is obtained
when all the sensors are used and they are never turned off.

3.1 Constraints

For both the Commodity12 and Opportunity datasets we derived three versions
of constraints, each progressively harder than the previous one. The difficulty
was increased either by adding additional constraints or by making the existing
ones harder to satisfy. In the latter case we used the variable z to denote the
value that was changing from one problem version to another. The used values
of z for each problem setting are summarized in Table 1.

The first category of constraints is based on the precisions and recalls of spe-
cific contexts when the system is using a particular solution. In each dataset,
we selected a subset of contexts (denoted as L) that represents contexts impor-
tant for the real-life application of the system. In the Commodity12 problem the
system has to give diabetic patients recommendations about their lifestyle, thus
the most important contexts are: eating, exercise and transport (as it includes
walking). In the Opportunity problem we wanted to detect the preparation of a
sandwich, so the crucial contexts are: bread, salami, plate, knife, fridge, drawer
and none.

For each of these contexts we wanted to ensure that their precision and
recall do not significantly deviate from their maximum possible values (Mi).
The maximum values are achieved when all the sensors are used and are never
turned off (duty-cycled).

g1,i(x) = precision(i, x) ≥ z · Mi, i ∈ L (1)

g2,i(x) = recall(i, x) ≥ z · Mi, i ∈ L (2)

Here, recall(x, i) is the recall of the i-th activity when the system is using solution
x, and z is a fraction that varies from problem to problem.

For other contexts, we still wanted that they are “balanced” and that the
system is not entirely omitting one in favor of the others. Thus, the next set
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of constraints ensures that the precisions and recalls of these contexts are in a
certain range from each other.

g3(x) = max{precision(i, x) | i /∈ L} − min{precision(i, x) | i /∈ L} ≤ 0.25 (3)

g4(x) = max{recall(i, x) | i /∈ L} − min{recall(i, x) | i /∈ L} ≤ 0.25 (4)

In many domains it has been shown [5] that the accuracy of the system can be
improved by “smoothing” the predictions, i.e., classifying a few consecutive data
windows and then taking the most frequent prediction for that time period. To
allow for this post-processing step, we try to enforce a longer active period if the
accuracy of the system is below some threshold.

g5(x) =

⎧
⎪⎨

⎪⎩

x2c+1 ≥ 5, 0.5 < f1(x) < 0.75
x2c+1 ≥ 3, f1(x) ≤ 0.5
x2c+1 ≥ 1, otherwise

(5)

Our duty-cycle scheme assumes that sensors can be switched on and off in short
intervals, and can do so without any additional energy cost. This is frequently
not the case and it creates additional constraints on the system design. For
example, if the GPS is active, the sleeping part of the duty cycle has to be
longer to account for the extra time needed for turning the GPS on and off
again. In Eq. (6) used for the Commodity12 problem, we used binary variables,
xs
i , that indicate if sensor s is active when using the sensor set xi (g stands for

GPS, b for sensors that use Bluetooth and w for Wi-Fi). For the Opportunity
problem we used a similar scheme, but made different weights based on whether
the sensor is on the body or in the environment.

g6,i(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xi+c ≥ 8 + z, xg
i

xi+c ≥ 5 + z, ¬xg
i ∧ xb

i

xi+c ≥ 3 + z, ¬xg
i ∧ ¬xb

i ∧ xw
i

xi+c ≥ 0, otherwise

i ∈ {1, . . . , c} (6)

The final constraint arises from the number of sensors being used by the system,
as ideally we would like to use as few sensors as possible. Doing so in the case of
Opportunity would mean reducing the cost of the hardware, while in Commod-
ity12 it would reduce the number of different data types that system designers
have to analyze. In the Opportunity problem we also want to limit the number
of sensors worn by the user to increase the practicality of the system.

g7(x) = |
c⋃

i=1

sens(xi)| ≤ z (7)

g8(x) = |
c⋃

i=1

bsens(xi)| ≤ z (8)
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Table 1. Values of z for each problem/constraint combination and the characteristics
of the resulting test CR systems: the number of contexts c, dimension of the decision
space D, and number of constraints N . If the parameter z is not used, the sign +/−
denotes whether the given constraint category is used (+) or not (−). In the case of
OPP3 and constraints g1,i and g2,i, all contexts have bounded precision and recall, not
only the crucial ones.

System g1,i g2,i g3 g4 g5 g6,i g7 g8 c D N

COM1 0.8 0.8 − + + −2 − − 7 15 15

COM2 0.9 0.9 − + + 0 − − 7 15 15

COM3 0.8 0.9 + + + 0 5 − 7 15 17

OPP1 0.7 0.7 − − + −1 18 10 18 37 35

OPP2 0.8 0.8 − − + −1 18 10 18 37 35

OPP3 0.9 0.9 − − + 0 18 10 18 37 57

Here, sens(xi) is the set of all sensors used by xi, and bsens(xi) the set of all
body-worn sensors used.

Throughout the paper we use COM as the abbreviation for Commodity12
test CR systems and OPP for Opportunity test CR systems. The characteristics
of the test CR systems are summarized in Table 1. Additionally, we provide
the feasibility ratio (the proportion of feasible solutions) of each optimization
problem. The estimation is based on two samples of 106 solutions generated
by random sampling and Latin hypercube sampling. The feasibility ratio for
COM1 is approximately 5.3 · 10−5 according to random sampling and 6.1 · 10−5

according to Latin hypercube sampling. On the other hand, no feasible solutions
can be found for other test CR systems regardless of the sampling method used.
Therefore, their feasibility ratios are estimated to be less than 10−6. Particularly
hard constraints are g3, g7, and g8 that are each satisfied in less than 1% of the
sampled solutions.

4 Experiments and Results

Based on the multiobjective formulation of the CR optimization problem, the
experimental evaluation aimed at finding sets of trade-off solutions in the form of
Pareto front approximations. For this purpose we used the well-known NSGA-II
multiobjective optimization algorithm equipped with CDP [2] and ENS [12].

The CDP technique is the most frequently used method to solve constrained
MOPs in practice. It strictly favors feasible solutions over infeasible ones. While
feasible solutions are ranked based on Pareto dominance, the infeasible solutions
are ranked according to constraint violations.

The ENS method combines multiple CHTs into an ensemble-based method
where solutions for a new generation are selected based on a weighted voting
provided by various CHTs. This approach considers only CHTs which are applied
in the replacement phase, i.e., survivor selection, of an evolutionary algorithm.
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Table 2. Average cumulative hypervolume values obtained by both CHTs on the test
CR systems.

System CDP [μ ± σ] ENS [μ ± σ]

COM1 1.0081 ± 0.0018 1.0215 ± 0.0028

COM2 0.9497 ± 0.0095 0.9517 ± 0.0111

COM3 0.8873 ± 0.0277 0.8905 ± 0.0269

OPP1 0.8011 ± 0.0054 0.8419 ± 0.0047

OPP2 0.7111 ± 0.0189 0.7614 ± 0.0127

OPP3 0.6131 ± 0.0199 0.6705 ± 0.0141

Each CHT in the ensemble is supposed to provide a quality measure combining
individuals’ objective values and constraint violations. These quality measures
are normalized to allow for comparison of individuals’ quality among various
CHTs. The quality measure produced by the ensemble of CHTs is a weighted
average of the corresponding quality measures.

In this work, four CHTs were considered for the ensemble: normalized overall
constraint violation [11], CDP, dynamic penalty function [3], and multiple con-
straint ranking [4]. In contrast to the original work [12], we decided to change
the nondominated sorting with the normalized overall constraint violation, since
the proposed test CR systems are heavily constrained.

The experimental setup was defined in the following way. Both methods
were run with populations of 200 solutions for 1000 generations. The crossover
probability was set to 0.9 and the mutation probability to 0.1. These parameter
values were selected based on the experimental results from [6,8]. Specifically,
for ENS, uniform weights (wi = 1/4 for i ∈ {1, 2, 3, 4}) were used, while the two
parameters of the dynamic penalty function, C and α, were set to 0.5 and 2,
respectively. On each test CR system, every CHT was run 31 times, each time
with a new randomly initialized population.

Additionally, the implementation details and parameter settings concerning
data preprocessing, feature extraction, Random Forest classifier learning, and
calculation of energy consumption were defined as in [6].

The quality of the optimization algorithm runs was measured with the cumu-
lative hypervolume of the Pareto front approximation found in each run. Given
f1, f2 ∈ [0, 1], the reference point for hypervolume calculations was set to
(−0.1, 1.1)T.

The means of cumulative hypervolume values are shown in Table 2. As we
can see, ENS obtains better cumulative hypervolume means than CDP on all
test CR systems. However, the differences are negligible on both COM2 and
COM3. Indeed, the independent Welch’s t-test (the normality assumption was
confirmed by the Shapiro-Wilk test, while the homoscedasticity was rejected
by the Levene’s test) shows statistically significant differences in algorithm per-
formance for COM1, OPP1, OPP2 and OPP3 (p < 0.05), while there are no
significant differences observed on COM2 and COM3 (p ≈ 0.24, 0.47).
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The results are even easier to interpret through visualization of the obtained
Pareto front approximations. Figure 1 shows Pareto front approximations for the
test CR systems resulting from typical runs. In more detail, all the runs corre-
sponding to a given test CR system are sorted based on the obtained cumulative
hypervolume, and the front obtained in the median run is shown in the figure.
We can see that the fronts obtained by ENS are superior in both convergence and
diversity. This is especially true on OPP test CR systems, where ENS obtains
significantly better Pareto-optimal solutions than CDP. It is worth noting that
the performance of CDP compared to ENS decreases with constraint complexity.

Interestingly, on COM2, a few solutions obtained by CDP dominate the solu-
tions obtained by ENS (see Fig. 1, COM2, around f2 ≈ 0.4) although its front
seems to be well converged. This observation suggests that ENS gets stuck in a
sub-optimal region and reveals the problem’s multimodal nature. Nevertheless,
further investigation is needed to explain this phenomenon. Another interesting
observation is the sharp knee appearing in the fronts for all COM test CR sys-
tems. Investigating the found solutions revealed that solutions on one side of the
knee only use sensors for one time period in every duty cycle (and thus have low
energy consumption), while the solutions on the other side have an increasingly
longer active period. Finally, in all cases the energy consumption quickly drops
(in exchange for a small accuracy loss), indicating that smaller sensor subsets
can be almost as effective as all sensors.

Figure 2 shows the progress of the mean cumulative hypervolume during opti-
mization for the test CR systems. The x-axis indicates the spent function eval-
uations and y-axis the corresponding cumulative hypervolume values. Although
the performance of CDP and ENS are comparable on COM test CR systems,
we can see that ENS is more efficient. On average ENS needs less function eval-
uations to converge than CDP, and this gap increases for more constrained CR
systems. In addition, the graphs show that both CHTs converge on all test CR
systems except on OPP3. For this reason, it is unlikely that an increase in the
computational budget would drastically improve these results (except on OPP3).

Finally, since CR optimization is a design problem, the results with respect
to efficiency (spent computational resources) are not of great importance. The
most computationally expensive task is solution evaluation. A single solution
evaluation takes around 0.016 s for COM test CR systems, and 0.217 s for OPP
test CR systems. All the experiments were run on a 3.40 GHz Intel(R) Core(TM)
i7-6700 CPU with 16 GB RAM.
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Fig. 1. Pareto front approximations for COM (left) and OPP (right) test CR systems.
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Fig. 2. Cumulative hypervolume progress for COM (left) and OPP (right) test CR
systems.
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5 Conclusions

In this paper, we expanded the work of Janko et al. [6] by proposing a con-
strained multiobjective optimization problem formulation for the design of
energy-efficient CR systems. The proposed CR optimization problem takes
into account the accuracy and overall energy consumption of the CR system
and, at the same time, considers real-world limitations and designers’ prefer-
ences. As opposed to most related work, the resulting optimization problem was
solved using a true multiobjective optimizer capable of finding approximations
of Pareto-optimal solutions. Specifically, the constraints were handled both by
a classic technique frequently used in constrained multiobjective optimization,
and our novel ensemble-based approach.

The experimental results on six progressively harder test CR systems show
that the approach based on the ensemble paradigm performs better than the
classic technique. The ensemble was superior on four test CR systems, while no
differences in performance were observed on two easier CR systems. Additionally,
an initial investigation of the produced Pareto front approximations reveals the
multimodal nature of the CR optimization problem.

The found solutions were semantically meaningful as well as energy-efficient,
especially in comparison to the base case where all the sensors were used. As an
example, the “knee” solution for the COM1 test system represents a trade-off
where, by sacrificing less than 2% of classification accuracy, the energy consump-
tion is reduced by 82%.

In the future, we plan to investigate the CR optimization problem in more
detail and assess the scalability of the applied optimization methodology. For
the first task, we will examine the landscapes of the introduced optimization
problem by investigating the produced solutions. For the second task, we will
design new test CR systems, preferably using new datasets. Finally, the test CR
systems will be made publicly available to the optimization community.
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