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1 INTRODUCTION
Incomplete single-agent search methods are often better suited to
real-time pathfinding tasks than complete methods (such as A*). In-
complete methods conduct a limited-depth lookahead search, i.e.,
expand a part of the space centered on the agent, and heuristically
evaluate the distances from the frontier of the expanded space to the
goal. Actions selected this way are not necessarily optimal, but it is
generally believed that deeper lookahead increases the quality of de-
cisions. However, in two-player games, where similar methods are
used, it has long been known that this is not always the case [7, 1].
This phenomenon has been termed minimax pathology. More re-
cently pathological behavior was discovered in single-agent search
as well [3]. Some attempts to explain it have been made [5, 6], but
the pathology in single-agent search is largely still not understood.

In this paper we investigate lookahead pathology in real-time
pathfinding on maps from commercial computer games. First, we
present an empirical study showing a degree of pathology in over
90% of the problems considered. Second, we give four explanations
for such wide-spread pathological behavior.

2 THE PATHOLOGY OBSERVED
We study the problem of an agent trying to find a path from a start to
a goal state in a two-dimensional grid world. The agent plans its path
using the Learning Real-Time Search (LRTS) algorithm [2]. LRTS
conducts a lookahead search centered on the current state and gen-
erates all the states up to d moves away. It heuristically estimates
the distances from the frontier states to the goal state and moves
to the most promising frontier state. Upon reaching it, it conducts
a new search. The initial heuristic is the shortest distance assuming
an empty map. After each search, the heuristic of the current state is
updated to the estimated distance through the most promising fron-
tier state, which constitutes the process of learning.

We conducted two types of experiments: on-policy and off-policy.
In the first type the agent follows a path from the start state to the
goal state as directed by the LRTS algorithm. In the second type the
agent appears in a (randomly selected) state and selects the first move
towards the goal state. If the move does not lie on the shortest path
to the goal state, it is erroneous. The error e(Sd) is the fraction of
erroneous moves taken in the set of states Sd visited using looka-
head depth d. The degree of error pathology in the sequence of sets
S1, . . . , Sdmax is k iff e(Sd+1) > e(Sd) for k different d < dmax.

We generated 1,000 problems on maps from a commercial role-
playing game. The lookahead depth ranged from 1 to 10 = dmax. First
we conducted the basic on-policy experiment: the agent solved the
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problems, we measured the degree of error pathology for each prob-
lem and counted the number of problems with each of the possible
degrees. The on-policy row in Table 1 shows that over 90% of the
problems are pathological.

Table 1. Pathology in the basic on and off-policy experiments.

Degree 0 1 2 3 ≥ 4
Pat. problems on-policy [%] 6.3 13.1 24.8 29.0 26.7
Pat. problems off-policy [%] 83.1 14.9 2.0 0.0 0.0

The first possible explanation of the on-policy results in Table 1 is
that the maps contain a lot of states where deeper lookaheads lead to
suboptimal decisions, whereas shallower ones do not. If this were the
case, the basic off-policy experiment, where the pathology is mea-
sured in randomly selected states, should yield comparable pathol-
ogy. However, the off-policy row in Table 1 shows much less pathol-
ogy. In the rest of the paper, we will investigate the reasons for this.

3 EXPLANATIONS OF THE PATHOLOGY
The first explanation is that the LRTS algorithm’s behavioral policy
steers the search to pathological states. The explanation was verified
by computing off-policy pathology from the error in the states visited
during the basic on-policy experiment instead of randomly selected
ones. The results in Table 2 do show more pathology compared to the
basic off-policy experiment in Table 1 (23.2% vs. 16.9%), but they
are still far from the basic on-policy experiment (23.2% vs. 93.7%).

Table 2. Pathology measured off-policy in the states visited on-policy.

Degree 0 1 2 3 ≥ 4
Patological problems [%] 76.8 13.8 5.7 2.3 1.4

The basic on-policy experiment involves learning, but no learning
takes place in the basic off-policy experiment. It is harder to find the
path to the goal when the lookahead depth is small. Consequently
the agent backtracks more, encountering updateted states more often
when the lookahead depth is large. This leads us to the second expla-
nation. Smaller lookahead depths benefit more from the updates to
the heuristic. This can be expected to make their decisions better than
the mere depth would suggest and thus closer to larger depths. If they
are closer to larger depths, cases where a deeper lookahead actually
performs worse than a shallower one should be more common.

The first test of the second explanation is an on-policy experiment
where the agent is directed by the LRTS algorithm that uses learn-
ing (to prevent infinite loops), but the error is measured using only
the initial, non-updated heuristic. The results in Table 3 suggest that
learning is indeed responsible for the pathology, because the pathol-
ogy in the new experiment is markedly smaller than in the basic on-
policy experiment shown in Table 1: 70.4% vs. 93.7%.

Table 3. Pathology on-policy with error measured without learning.

Degree 0 1 2 3 ≥ 4
Pathological problems [%] 29.6 20.4 19.3 18.2 12.5



The second test is to measure the volume of heuristic updates,
which reflects the benefit of learinng. This volume is the sum of the
differences between the updated and the initial heuristics in the states
generated during search. Figure 1 shows the results for the basic on-
policy experiment and for the basic off-policy experiment (where no
learning takes place). We see that in the on-policy experiment the
volume of updates decreases with lookahead depth (unlike in the off-
policy experiment), which confirms our explanation.

Figure 1. The volume of heuristic updates encountered per move with
respect to the lookahead depth in the basic on- and off-policy experiments.

The results in Table 3 still show more pathology than in the ba-
sic off-policy experiment, so there must be a third explanation.
Let αoff(d) and αon(d) be the average number of states generated
per move in the basic off-policy and on-policy experiments respec-
tively. In off-policy experiments a search is performed every move,
whereas in on-policy experiments a search is performed every d
moves. Therefore αon(d) = αoff(d)/d. This means that in the ba-
sic on-policy experiment fewer states are generated at larger looka-
head depths than in the basic off-policy experiment. Consequently
the depths in the basic on-policy experiment are closer to each other
with respect to the number of states generated. Since the number of
states generated can be expected to correspond to the quality of deci-
sions, cases where a deeper lookahead actually performs worse than
a shallower one should be more common.

The first test of the third explanation is an on-policy experiment
where a search is performed every move instead of every d moves.
The results in Table 4 confirm the explanation. The percentage of
pathological problems is considerably smaller than in the basic on-
policy experiment shown in Table 1: 34.7% vs. 93.7%. Since LRTS
that searches every move is very similar to LRTA* [4], LRTA* can
also be expected to be less pathological.

Table 4. Pathology on-policy when searching every move.

Degree 0 1 2 3 ≥ 4
Pathological problems [%] 65.3 14.6 8.6 7.1 4.4

The second test is to measure the number of states generated per
move. Figure 2 shows that in the basic off-policy experiment and in
the on-policy experiment when searching every move, the number
increases more quickly with lookahead depth than in the basic on-
policy experiment. The depths are thus less similar than in the basic
on-policy experiment, which again confirms our explanation.

Experiments with eight-puzzle [8] showed that pessimistic heuris-
tics can prevent the pathology. This inspired the fourth explanation
of the pathology. During lookahead search, states with low heuristic
values are favored. If the heuristic values are optimistic (as in our
case), the lowest heuristic value is likely to be particularly far from
the true value. With deeper lookahead, more states are considered
and the chances of selecting a state with an especially inaccurate
heuristic increase. If the heuristic values are pessimistic, the oppo-
site is true: the states with accurate heuristic values are favored and
the more states are considered, the more likely a state with a very

Figure 2. The number of states generated per move with respect to the
lookahead depth in different experiments.

accurate heuristic value will be selected.
We verified the forth explanation with an on-policy experiment

with pessimistic heuristic values. If the regular heuristic value of a
state s is h(s) = h∗(s) − e, where e is the heuristic error, then the
pessimistic heuristic value is hp(s) = h∗(s) + e. Such a heuristic
is unrealistic, but it should give us an idea of what to expect from
realistic pessimistic heuristics, should we be able to design them.
The results in Table 5 do show a decrease in pathology compared to
the basic on-policy experiment shown in Table 1: 86.1% vs. 97.7%.

Table 5. Pathology on-policy with pessimistic heuristic.

Degree 0 1 2 3 4 ≥ 5
Pat. problems [%] 13.9 4.1 8.3 22.9 27.7 23.1

4 CONCLUSION
The first two expanations of the pathology do not seem to offer prac-
tical ways for avoiding the pathology. When ivestigating the third
explanation, we learned that searching every move the way LRTA*
does brings the pathology from 93.7% to 34.7%. It also generates up
to 2.6 times shorter solutions. However, it increases the number of
states generated per move roughly by a factor of d. This means that
the number of states generated per problem when searching every
move is up to 4.5 larger (at d = 10) than with the regular LRTS. A
promising direction of research therefore seems to be a method for
dynamically selecting the point at which a new search is needed.

Finally, the fourth explanation suggests that pessimistic heuristics
may be less prone to the pathology. In addition, the solutions found
using the pessimistic heuristic were nearly optimal (3.8–7.2 times
shorter than with the regular heuristic), so pessimistic heuristics de-
serve further attention.
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