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Abstract. Large real-time search problems, such as pathfinding
in computer games and robotics, limit the applicability of complete
search methods, such as A*. Real-time heuristic search methods are
better suited to these problems. They typically conduct a limited-
depth lookahead search and evaluate the states at the frontier us-
ing a heuristic. Actions selected by such methods can be subopti-
mal due to the incompleteness of their search and inaccuracies in the
heuristic. Lookahead pathology occurs when deeper search results in
worse actions. Over the last three decades the research on the pathol-
ogy has focused on minimax search and small synthetic examples in
single-agent search. This paper conducts a large-scale investigation
of the pathology in real-time pathfinding on maps from commercial
computer games, finding it quite common. Four explanations for the
pathology are provided and supported empirically.

1 INTRODUCTION

Pathfinding tasks commonly require real-time response, which on
large problems precludes the use of complete search methods, such
as A*. Imagine a real-time strategy computer game. The player com-
mands dozens or even hundreds of units to move towards a distant
goal. If each of the units were to compute the whole path before
moving, this could easily incur a noticeable delay. Incomplete single-
agent search methods [10, 20, 8, 5, 7] work similarly to minimax-
based methods used in two-player games. They conduct a limited-
depth lookahead search, i.e., expand a part of the space centered on
the agent, and heuristically evaluate the distances from the frontier of
the expanded space to the goal. By interleaving planning and plan ex-
ecution, they can guarantee a constant upper bound on the amount of
planning per move and compare favorably to complete methods [9].

Actions selected based on heuristic lookahead search are not nec-
essarily optimal, but it is generally believed that deeper lookahead
increases the quality of decisions. However, in two-player games it
has long been known that this is not always the case [15, 1]. The
phenomenon has been termed minimax pathology. It has attracted
considerable interest over the years and turned out to be rather dif-
ficult to explain. Pathological behavior in single-agent search was
discovered much later [6, 3] and very little has been known about it
so far. This paper endeavors to remedy the situation.

In the paper we investigate lookahead pathology in real-time
pathfinding on maps from commercial computer games. Computer
games are a domain where the pathology is particularly undesirable:
they require fast response, so it is crucial that more expensive, deeper
lookahead is not conducted when it is not beneficial or, worse yet,
when it is harmful. Game company Bioware Corp., for example, lim-
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its planning time to 1–3 ms for all pathfinding units (many units can
be planning simultaneously) [7]. Our paper makes two main con-
tributions. First, it presents an empirical study of the pathology in
pathfinding. In this study, a degree of pathology was found in over
90% of the problems considered. Second, it explains how both learn-
ing and planning are responsible for such wide-spread pathological
behavior. Finally, it discusses how the pathology can be prevented.

2 RELATED WORK

Most game-playing programs successfully use minimax to back-up
the heuristic values from the leaves of the game tree to the root.
Early attempts to explain why backed-up values are more reliable
than static values, however, led to a surprising discovery: minimax-
ing amplifies the error of the heuristic evaluations [15, 1]. Several
explanations for such pathological behavior were proposed, the most
common being that the dependence between nearby positions is what
eliminates the pathology in real games [2, 16, 19, 14]. It was recently
shown that modeling the error realistically might be enough to elim-
inate it [12]. Common to all the work on the minimax pathology is
that it tries to explain why the pathology appears in theoretical anal-
yses but not in practice, whereas in pathfinding, the pathology is a
practical problem.

The pathology in single-agent search was discovered by Bulitko et
al. [6] and was demonstrated on a three-level synthetic search tree.
It was also observed in solving the eight-puzzle [3]. Luštrek [11]
used small synthetic search trees to explain how certain properties
of the trees affect the pathology. He also showed that consistent and
admissible heuristics prevent the pathology. In contrast, Sadikov and
Bratko [17] observed in eight-puzzle that the pathology is prevented
by pessimistic heuristics (i.e., the opposite of admissible). None of
this research translates well to pathfinding, though. The only study
of lookahead pathology in pathfinding that we are aware of is our
earlier workshop paper [13]. This paper offers several new insights
into the problem.

Some work [13, 4] was done on dynamic selection of optimal
lookahead depth, which is a mechanism that – if successful – elimi-
nates the pathology. The best performance was achieved by precom-
puting the optimal depths for pairs of (start, goal) states. Such an
approach is not always practical, though, and if the pathology were
better understood, alternatives might be found.

3 PROBLEM FORMULATION

In this paper we study the problem of an agent trying to find a path
from a start state to a goal state in a two-dimensional grid world. The
agent’s state is defined by its location in one of the grid’s squares.
Some squares are blocked by obstacles and cannot be traversed. The
traversable squares form the set of states S the agent can occupy;



sg ∈ S is the goal state. From each square the agent can move to the
eight immediate neighbor squares. The travel cost of each of the four
straight moves (north, west, south and east) is 1 and the travel cost of
the diagonal moves is

√
2. A search problem is defined by a map, a

start state and a goal state.
The agent plans its path using the Learning Real-Time Search

(LRTS) algorithm [5] configured as straightforwardly as possible
(heuristic weight of 1, no backtracking). LRTS conducts a looka-
head search centered on the current state sc ∈ S and generates all
the states within its lookahead area (i.e., up to d moves away from
sc; d is called the lookahead depth). The term generate refers to
‘looking at’ a state, as opposed to physically visiting it. Next, LRTS
evaluates the states at the frontier of the lookahead area using the
heuristic function h, which estimates the length of the shortest path
from the frontier states to sg. The agent then moves along the short-
est path to the most promising frontier state sf opt ∈ S. State sf opt

is the state on the path to sg with the lowest projected travel cost
f(sf opt) = g(sf opt) + h(sf opt), where g(sf opt) is the travel cost from
sc to sf opt and h(sf opt) the estimated travel cost from sf opt to sg.
When the agent reaches sf opt, another lookahead search is performed.
This process continues until sg is reached. The initial heuristic is the
octile distance to sg, i.e., the actual shortest distance assuming a map
without obstacles (the term octile refers to the eight squares or tiles
the agent can move to). After each lookahead search, h(sc) is up-
dated to f(sf opt) if the latter is higher, which raises the heuristic in
the areas where it was initially too optimistic, making it possible for
the agent to eventually find the way around the obstacles even when
the lookahead area is too small to see the way directly. This consti-
tutes the process of learning. The updated heuristic is still guaranteed
to be admissible (i.e., optimistic), although unlike the initial one, it
may not be consistent (i.e., the difference in the heuristic values of
two states may exceed the shortest distance between them).

The LRTS algorithm is similar to the classic LRTA* [10]. The
main difference is that LRTS conducts a lookahead search only after
reaching the frontier of the previous lookahead area, whereas LRTA*
searches after every move. LRTS typically finds longer solutions than
LRTA*, but generates fewer states to do so. LRTA* was selected be-
cause it is more prone to the pathology and as such more interesting
for our research. The two algorithms will be further compared in
Sections 5 and 6.

Definition 1 For a state s ∈ S, the length of the solution (i.e., the
travel cost of the path from s to sg) produced by LRTS with looka-
head depth d is denoted by l(s, d).

Definition 2 For a state s ∈ S, the solution-length vector ~l(s) is
(l(s, 1), l(s, 2), . . . , l(s, dmax)), where dmax is the maximum looka-
head depth.

Definition 3 The degree of solution-length pathology of a problem
with the start state s0 is k iff ~l(s0) has exactly k increases in it, i.e.,
l(s0, i+ 1) > l(s0, i) for k different i.

The length of the solution is the most natural way to measure the
performance of a search algorithm. It can be used in on-policy ex-
periments, where the agent follows a path from the start state to the
goal state as directed by the algorithm. However, we also conducted
off-policy experiments, in which the agent spontaneously appears in
(randomly selected) states and selects the first move towards the goal
state. Such experiments require a different measure of performance.

Definition 4 In a state s ∈ S′, where S′ ⊆ S is the set of states
visited by the agent, the agent can take an optimal or a suboptimal

action. An optimal action moves the agent into a state lying on a
lowest-cost path from s to sg. The error e(S′, d) is the fraction of
suboptimal actions taken in the set of states S′ using lookahead depth
d.

Definition 5 S = (S1, S2, . . . Sdmax), where Si ⊆ S for all i and
dmax is the maximum lookahead depth, is the sequence of sets of
states visited by the agent using successive lookahead depths. The
error vector ~e(S) is (e(S1, 1), e(S2, 2), . . . , e(Sdmax , dmax)).

Definition 6 The degree of error pathology of a sequence of sets of
states S = (S1, S2, . . . Sdmax) is k iff ~e(S) has exactly k increases
in it, i.e., e(Si+1, i + 1) > e(Si, i) for k different i. We can also
speak of the ‘pathologicalness’ of a single state, but in this case the
notion of the degree of pathology makes little sense. A state s ∈ S is
pathological iff there are lookahead depths i and i + 1 such that the
action selected in s using lookahead depth i is optimal and the action
selected using depth i+ 1 is not.

Finally, we will need ways to measure the amount of work done
by the LRTS algorithm.

Definition 7 α(d) is the average number of states generated per sin-
gle move during lookahead search with depth d. α′(d) is the average
number of states generated per problem.

Definition 8 β(d) is the average volume of updates to the heuristic
encountered per state generated during lookahead search with depth
d. The volume of updates is the difference between the updated and
the initial heuristic.

4 PATHOLOGY EXPERIMENTALLY
OBSERVED

We experimented on five maps from a commercial role-playing
game. The maps were loaded into Hierarchical Open Graph [7], an
open-source research testbed. Their sizes ranged from 214 × 192
(2,765 states) to 235 × 204 (16,142 states). On these maps, we ran-
domly generated 1,000 problems. In order for the problems to be
sufficiently and uniformly difficult, the true distance between the
start and the goal state was always between 90 and 100. The looka-
head depth ranged from 1 to 10. The start state was only used in
on-policy experiments. In off-policy experiments, the states to visit
were selected randomly and were the same for all depths. The effect
of learning in off-policy experiments depends on the order of visita-
tion and since no meaningful order is apparent, learning was omitted.
Since it is not possible to measure solution-length pathology in off-
policy experiments, the experiments are compared with respect to
error pathology. It is in all cases similar to solution-length pathology.
In order to measure the error, all the problems were solved optimally.

First we conducted the basic on-policy experiment: the agent
solved the 1,000 problems, we measured the degree of solution-
length and error pathology for each problem and counted the number
of problems with each of the possible degrees (from 0, which means
no pathology, to 9, which means that deeper lookahead is always
worse). The results in Table 1 show that over 90% of the problems
are pathological. Even though the degree of pathology is in many
cases low, this still means that one cannot simply rely on the conven-
tional wisdom that deeper search is better.

The first possible explanation of the results in Table 1 is that the
maps contain a lot of states where deeper lookaheads lead to subopti-
mal decisions, whereas shallower ones do not. This turned out not to
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Table 1. Percentages of pathological problems with respect to
solution-length and error pathology in the basic on-policy experiment.

Degree 0 1 2 3 4 ≥ 5
Length pathology [%] 7.2 15.6 32.3 26.9 13.8 4.2
Error pathology [%] 6.3 13.1 24.8 29.0 18.1 8.7

be the case: for each of the problems we measured the ‘pathological-
ness’ of every state on that map in the off-policy mode. Surprisingly,
only 3.9% of the states turned out to be pathological. This is discon-
certing: if the nature of the pathfinding problems is not pathological,
yet there is a lot of pathology in our solutions, then perhaps the search
algorithm is to blame.

Comparing the percentage of pathological states to the results in
Table 1 is not entirely fair, because in the first case the pathology
is considered per state and in the second case it is computed from
the error averaged over all the states visited per problem. The aver-
age number of states visited per problem during the basic on-policy
experiment is 485. To make the comparison fairer, we randomly se-
lected the same number of states per problem in the off-policy mode
and computed the average error over them. Pathology measurements
from the resulting error vector are shown in Table 2. We will call this
experiment the basic off-policy experiment.

Table 2. Percentages of pathological problems in the basic off-policy
experiment.

Degree 0 1 2 ≥ 3
Error pathology [%] 83.1 14.9 2.0 0.0

Measuring the off-policy pathology per problem reduces the dis-
crepancy between on-policy and off-policy experiments from 92.8%
vs. 3.9% to 92.8% vs. 16.9%, which is still a lot. This suggests that
pathological states are not the main reason for on-policy pathology,
because if they were, their effect in on-policy and off-policy experi-
ments should be comparable. In the rest of the paper, we will investi-
gate why there is so much more pathology on-policy than off-policy.

5 EXPLANATIONS OF THE PATHOLOGY
The simplest explanation for the pathology in the basic on-policy
experiment is as follows:

Explanation 1 The LRTS algorithm’s behavioral policy tends to
steer the search to pathological states.

The explanation can be verified by computing off-policy pathol-
ogy from the error in the states visited during the basic on-policy
experiment instead of randomly selected 485 states. This experiment
differs from the basic on-policy experiment in that the error is mea-
sured in the same states at all lookahead depths (in on-policy exper-
iments, different states may be visited at different depths) and there
is no learning. The results in Table 3 do show a larger percentage
of pathological problems compared to the basic off-policy experi-
ment in Table 2 (23.2% vs. 16.9%), but they are still far from the
basic on-policy experiment in Table 1 (23.2% vs. 93.7%). So while
the percentage of pathological states visited on-policy is somewhat
above average, this cannot account for the large fraction (93.7%) of
pathological problems in the basic on-policy experiment.
Table 3. Percentages of pathological problems measured off-policy in the

states visited on-policy.

Degree 0 1 2 3 4 ≥ 5
Error pathology [%] 76.8 13.8 5.7 2.3 1.0 0.4

We know that the basic on-policy experiment involves learning
(i.e., updating the heuristic function), whereas the basic off-policy

experiment does not. The agent performs a search with lookahead
depth d every dmoves. If the map were empty, the agent would move
in a straight line and would encounter exactly one updated state dur-
ing each search (the one updated during the previous search). Each
search generates (2d + 1)2 distinct states, so 1/(2d + 1)2 of them
would have been updated: a fraction that is larger for smaller d. This
leads us to:

Explanation 2 Smaller lookahead depths benefit more from the up-
dates to the heuristic. This can be expected to make their decisions
better than the mere depth would suggest and thus closer to larger
depths. If they are closer to larger depths, cases where a deeper looka-
head actually performs worse than a shallower one should be more
common.

A first test of Explanation 2 is to perform an on-policy experi-
ment where the agent is still directed by the LRTS algorithm that
uses learning (as without learning it would often get caught in an in-
finite loop), but the measurement of the error is performed using only
the initial, non-updated heuristic. To do this, two moves are selected
in each state: one that uses learning, which the agent actually takes,
and another that ignores learning, which is used for error measure-
ment. The results in Table 4 suggest that learning is indeed responsi-
ble for the pathology, because the pathology in the new experiment
is markedly smaller than in the basic on-policy experiment shown in
Table 1: 70.4% vs. 93.7%.

Table 4. Percentages of pathological problems on-policy with error
measured without learning.

Degree 0 1 2 3 4 ≥ 5
Error pathology [%] 29.6 20.4 19.3 18.2 8.5 4.0

During the basic off-policy experiment, all lookahead depths are
on an equal footing with respect to learning as there are no updates
to the heuristic. Since learning is inevitable in on-policy experiments,
the best one can do to put all the depths on an equal footing during
an on-policy experiment is to have all the states within the lookahead
area updated as uniformly as possible. We implement such uniform
learning as follows. Let sc be the current state, Si the set of all the
interior states of the lookahead area and Sf the frontier of the looka-
head area. For every interior state s ∈ Si, an LRTS search originating
in s and extending to the frontier Sf is performed. The heuristic value
of s is then updated to the travel cost of the shortest path to the goal
found during the search, just like the heuristic value of sc is with the
regular update method. The results for an on-policy experiment with
uniform learning are found in Table 5. Unfortunately they seem to
contradict Explanation 2, since they are about as pathological as the
results of the basic on-policy experiment shown in Table 1: 93.4% vs.
92.8% for solution-length pathology and 93.3% vs. 93.7% for error
pathology.

Table 5. Percentages of pathological problems on-policy with uniform
learning.

Degree 0 1 2 3 4 ≥ 5
Length pathology [%] 6.6 16.6 30.9 27.4 15.4 3.1
Error pathology [%] 6.7 17.9 33.9 28.7 10.5 2.3

In our next attempt to confirm Explanation 2, which was also in-
tended to clear the apparent contradiction of uniform learning, we
measured the volume of heuristic updates encountered during search.
Figure 1 shows the results for the regular and uniform learning, as
well as for the basic off-policy experiment, where no learning takes
place. We see that the volume of updates decreases with increased
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lookahead depth in both on-policy experiments (unlike in the basic
off-policy experiment). This indicates that the impact of learning is
larger at smaller depths, which is exactly what Explanation 2 claims,
even though the reasoning that led to the explanation may not be
entirely correct. Figure 1 also explains why uniform learning is no
less pathological than the regular one: the volume of updates with
uniform learning decreases more steeply than with the regular learn-
ing, so if anything, uniform learning should be more pathological.
The comparably small volume of updates with uniform learning is
probably caused by the agent finding the goal state more quickly: the
length of the solution averaged over all the problems is 2.5–4.3 times
shorter than with the regular learning (for depths > 1, since both
types of learning are the same at depth 1). Shorter solutions mean
that the agent returns to the areas already visited (where the heuristic
is updated) less often.

Figure 1. The volume of heuristic updates encountered per move with
respect to the lookahead depth in different experiments.

Unlike the regular learning, uniform learning preserves the con-
sistency of the heuristic. Experiments on synthetic search trees sug-
gested that inconsistency increases the pathology [11], but since the
consistent uniform learning is as pathological as the inconsistent reg-
ular learning, this appears not to be the case in pathfinding.

Explanation 3 Let αoff(d) and αon(d) be the average number of
states generated per move in the basic off-policy and on-policy exper-
iments respectively. In off-policy experiments a search is performed
after every move, whereas in on-policy experiments a search is per-
formed every d moves. Therefore αon(d) = αoff(d)/d (assuming the
same number of non-traversable squares). This means that in the ba-
sic on-policy experiment fewer states are generated at larger looka-
head depths than in the basic off-policy experiment. Consequently
the depths in the basic on-policy experiment are closer to each other
with respect to the number of states generated. Since the number of
states generated can be expected to correspond to the quality of deci-
sions, cases where a deeper lookahead actually performs worse than
a shallower one should be more common.

Explanation 3 can be verified by an on-policy experiment where a
search is performed after every move instead of every d moves. The
results in Table 6 confirm the explanation. The percentage of patho-
logical problems is considerably smaller than in the basic on-policy
experiment shown in Table 1: 39.8% vs. 92.8% for solution length
pathology and 34.7% vs. 93.7% for error pathology. Since LRTS that
searches every move is very similar to LRTA* [10], LRTA* can also
be expected to be less pathological. We will talk more about the rel-
ative merits of the two algorithms in Section 6.

Explanation 3 can be further tested as follows. Figure 2 shows
that in the basic off-policy experiment and in the on-policy experi-

Table 6. Percentages of pathological problems in an on-policy experiment
when searching every move.

Degree 0 1 2 3 4 ≥ 5
Length pathology [%] 60.2 18.6 11.1 5.0 3.0 2.1
Error pathology [%] 65.3 14.6 8.6 7.1 3.0 1.4

ment when searching every move, the number of states generated per
move increases more quickly with increased lookahead depth than in
the basic on-policy experiment. This means that the depths are less
similar than in the basic on-policy experiment, which again confirms
Explanation 3.

Figure 2. The number of states generated per move with respect to the
lookahead depth in different experiments.

Uniform learning already showed that consistency does not pre-
vent the pathology like it does in synthetic search trees [11]. There
are conflicting accounts regarding admissibility, though: it decreases
the pathology in synthetic search trees [11] and increases it in eight-
puzzle [17]. The latter seems to be more in line with what happens
in pathfinding:

Explanation 4 During lookahead search, states with low heuristic
values are favored. If the heuristic values are admissible (i.e., lower
than the true values), the lowest heuristic value is likely to be par-
ticularly far from the true value. With deeper lookahead, more states
are considered and the chances of selecting a state with an especially
inaccurate heuristic value are increased. If the heuristic values are
pessimistic (i.e., higher than the true values), the opposite is true: the
states with accurate heuristic values are favored and the more states
are considered, the more likely a state with a very accurate heuristic
value will be selected. So as far as the accuracy of heuristic values
is concerned, deeper lookahead is beneficial only with pessimistic
heuristics. Therefore pessimistic heuristics can be expected to de-
crease the pathology compared to optimistic ones.

We verified Explanation 4 in an on-policy experiment with pes-
simistic heuristic values. If the regular heuristic value of a state s is
h(s) = h∗(s)− e, where e is the heuristic error, then the pessimistic
heuristic value is hp(s) = h∗(s) + e. Such a heuristic is of course
unrealistic, but its absolute error is the same as the absolute error of
the regular heuristic, so it is suitable for comparing the two. It should
give us an idea of what to expect from realistic pessimistic heuris-
tics, should we be able to design them. The results in Table 7 do
show a decrease in pathology compared to the basic on-policy exper-
iment shown in Table 1: 86.2% and 86.1% vs. 92.8% and 97.7% for
solution-length and error pathology respectively. The results are not
entirely conclusive, though, because the pessimistic heuristic causes
a greater amount of severe pathology (degree≥ 4) than the optimistic
one.
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Table 7. Percentages of pathological problems in an on-policy experiment
with pessimistic heuristic.

Degree 0 1 2 3 4 ≥ 5
Length pathology [%] 13.8 3.5 7.0 20.9 26.4 28.4
Error pathology [%] 13.9 4.1 8.3 22.9 27.7 23.1

6 DISCUSSION

Let us review the four explanations and consider whether they can be
used to avoid the pathology in real-time pathfinding.

Explanation 1 tells us that 23.2% of the states the LRTS algorithm
visits are pathological instead of the average 16.9%. Unfortunately
we do not know why the algorithm favors pathological states, so
we cannot propose a remedy. However, since the difference is small,
such a remedy would probably not help much.

Explanation 2 states that turning off learning reduces the pathol-
ogy from 93.7% to 70.4%, which means that learning is an important
source of the pathology. This is very difficult to avoid, though. Shal-
lower lookaheads cause the agent to revisit states more often, which
by necessity results in greater benefit of learning. Any effective at-
tempt to counter this by increasing the benefit of learning at deeper
lookaheads will result in fewer revisits. Fewer revisits will in turn re-
duce the benefit of learning. Our uniform learning is an example of
this.

Explanation 3 probably shows the most promise for practical re-
duction of the pathology. Searching every move the way LRTA*
does brings the pathology from 92.8%–93.7% to 34.7%–39.8%. It
also generates 1.5–2.6 times shorter solutions (for lookahead depths
> 1). However, it increases the number of states generated per move
roughly by a factor of d (in our on-policy experiments by a factor of
10.8 at d = 10). Figure 3 illustrates the tradeoff: it shows the number
of states generated per problem for the basic on-policy experiment
(regular LRTS) and for the on-policy experiment when searching ev-
ery move (LRTA* style). Compared to Figure 2 (which shows the
number of states generated per move), the difference between search-
ing every d moves and searching every move is smaller because of
the shorter solutions in the second case, but the regular LRTS still
generates up to 4.5 times fewer states per problem.

Figure 3. The number of states generated per problem with respect to the
lookahead depth in different experiments.

Finally, Explanation 4 suggests that pessimistic heuristics may be
less prone to the pathology. In addition, the solutions found using
the pessimistic heuristic were nearly optimal (3.8–7.2 times shorter
than with the regular heuristic). Since our pessimistic heuristic was
not realistic, we cannot draw any firm conclusions from this result,
but we can certainly say that pessimistic heuristics warrant further
investigation.

7 CONCLUSION AND FUTURE WORK
This paper made two main contributions: it demonstrated that looka-
head pathology is a common phenomenon in real-time pathfinding
and it provided four complementary empirically supported explana-
tions for it.

There are two practical conclusions to be drawn from the explana-
tions of the pathology. First, it is dangerous to commit to a segment
of path of length d after a lookahead search of depth d as the LRTS
algorithm does. But it is also wasteful to search after every move as
LRTA* does. This suggests that some kind of middle ground should
be looked for, ideally a method to determine at what point exactly
a new search is needed. And second, pessimist heuristics seem to be
well suited to real-time pathfinding, which is a confirmation of recent
results for combinatoric puzzles [17, 18].
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