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ABSTRACT 

Understanding people’s dietary habits plays a crucial role in 

interventions that promote a healthy lifestyle. For this purpose, 

a multitude of studies explored automatic eating detection with 

various sensors. Despite progress over the years, most proposed 

approaches are not suitable for implementation on embedded 

devices. The purpose of this paper is to describe a method that 

uses a wristband configuration of sensors to continuously track 

wrist motion throughout the day and detect periods of eating 

automatically. The proposed method uses an energy-efficient 

approach for activation of a machine learning model, based on a 

specific trigger. The method was evaluated on data recorded 

from 10 subjects during free-living. The results showed a 

precision of 0.84 and a recall of 0.75. Additionally, our analysis 

shows that by using the trigger, the usage of the machine 

learning model can be reduced by 80%. 
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1 INTRODUCTION 

Understanding people’s dietary habits plays a crucial role in 

interventions that promote a healthy lifestyle. Obesity, which is 

a consequence of bad nutritional habits and excessive energy 

intake, can be a major cause of cardiovascular diseases, diabetes 

or hypertension. Latest statistics indicate that obesity 

prevalence has increased substantially over the last three 

decades [1]. More than 600 million adults (13% of the total 

adult population) were classified as obese in 2014 [2]. In 

addition, the prevalence of obesity is estimated to be 23% in the 

European Region by 2025. Also, in 2017, it was reported that 

poor diet has contributed to 11 million deaths worldwide. 

Monitoring eating habits of overweight people is an essential 

step towards improving nutritional habits and weight 

management. 

 Another group of people that require monitoring of their 

eating behavior are people with mild cognitive impairment and 

dementia. They often forget whether they have already eaten 

and, as a result, eat lunch or dinner multiple times a day or not 

at all. It might cause additional health problems. Proper 

treatment of these issues requires an objective estimation of the 

time the meal takes place, the duration of the meal, and what 

the individual eats.  

Wristband devices and smartwatches are increasingly 

popular, mainly because people are accustomed to wearing 

watches, which makes the wrist placement one of the least 

intrusive body placements to wear a device. Additionally, the 

cost of these devices is relatively low, which makes them easily 

accessible to everyone. However, these devices offer limited 

computing power and battery life, which makes the 

implementation of a smart feature as eating detection on such a 

device a challenging task. 

This paper describes a method for real-time eating detection 

using a wristband. The proposed method detects periods and 

duration of eating. The output from the method can be used to 

track frequency of eating and could serve to start methods for 

counting food intakes. 

The work done in this study is important for the following 

reasons. We developed a trigger that can reduce the usage of the 

machine learning procedure, meaning that our method will not 

greatly affect the battery life of the device.  Additionally, we 

evaluated different machine learning algorithms in terms of 

accuracy and model size. The method was evaluated on data 

recorded in real-life from 10 subjects. 

2 RELATED WORK 

Recent advancements in wearable sensing technology (e.g., 

commercial inertial sensors, fitness bands, and smartwatches) 

have allowed researchers and practitioners to utilize different 

types of wearable sensors to assess dietary intake and eating 

behavior in both laboratory and free-living conditions. A 

multitude of studies for the detection of eating periods have 

been proposed in the past decade. Mirtchou et al. [3] explored 

eating detection using several sensors and combining real-life 

and laboratory data. Edison et al. [4] proposed a method that 

recognizes intake gestures separately, and later clusters the 

intake gestures within 60-minute intervals. The method was 

evaluated on real-life data. Dong et al. [5] proposed a method 

for eating detection in real-life situations based on a novel idea 
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that meals tend to be preceded and succeeded by periods of 

vigorous wrist motion. Amft et al. [6] presented an accurate 

method for eating and drinking detection using sensors attached 

to the wrist and upper arm on both hands. Navarathna et al. [7] 

combined sensor data from a smartwatch and a smartphone, 

which resulted in improved eating detection accuracy compared 

to only using smartwatch data. Kyritsis et al. [8] proposed a 

deep learning based method that recognizes bite segments, 

which are used for construction of eating periods.  

The work presented in this paper is an extension of our 

previous work [9], and the main novelty is an energy efficient 

approach for real-time eating detection.  

3 METHOD 

The proposed eating detection method consists of two parts, 

namely: a threshold-based trigger, used for activation of an 

eating detection machine learning procedure, and a machine-

learning method that predicts whether eating took place. 

3.1 Energy-Efficient Trigger 

The recent advancements in the technological development and 

accessibility of wearable devices bring new opportunities in the 

field of human activity recognition (HAR). However, the 

limited battery life and computational resources remain a 

challenge for real-life implementation of advanced HAR 

applications. Using a machine learning based model for eating 

detection that is working all the time results in a rapid battery 

drain. Therefore, we designed a threshold-based trigger that 

activates the machine learning model only when specific 

criteria are met. The main concept behind the trigger is to only 

select moments when the human is making a movement with 

his hand towards the head.  

For this purpose, we used data from an accelerometer. This 

sensor provides information about the wristband’s orientation 

from which we can see whether the hand is oriented towards the 

head. The recent accelerometers that are used in battery-limited 

devices can store acceleration values in their internal memory 

without interacting with the main chip of the microcontroller.  

The first step of trigger implementation is to define the 

buffer size in the sensor’s internal memory and the sensor’s 

sampling frequency. Based on these two parameters, we enable 

the accelerometer to collect data for a specific time without 

interacting with the main chip of the microcontroller. This 

means that the main chip of the microcontroller could be in 

sleep mode for the predefined period. When the accelerometer’s 

buffer is full, the accelerometer interrupts the main chip and 

transfers the stored acceleration data to it. We use the 

accelerometer’s y-axis and z-axis to detect moments when the 

individual is moving the hand towards the face. Namely, we 

calculate the mean value for both axes, and if both of the values 

are above a predefined threshold value, the machine learning 

procedure for eating detection is activated. We used two axes 

for the trigger to reduce the possible situations in which our 

trigger is falsely activated. However, one can work only with 

one axis, which will result in more activated triggers. We could 

say that having more activated triggers is not desirable. 

However, if the eating detection method is not good enough to 

detect eating after a trigger is activated during a meal, then the 

constraints of the trigger should be reduced.   

The next step is the definition of stopping criteria for the 

machine learning model. The idea here is to stop the machine 

learning procedure after a specific number of windows if there 

is no eating detected. Each time our trigger is activated, the 

machine learning procedure is turned on for the next three 

buffers of data. The machine learning procedure is stopped if 

there is no positive prediction in any of the three windows. 

However, if there is at least one positive prediction, the 

machine learning procedure continues to work for another three 

new buffers. Also, the number of windows for which the 

machine learning procedure is active was experimentally 

obtained. 

3.2 Machine-Learning Procedure 

А detailed description of the used method can be seen in [9]. 

The method is based on machine learning and consists of the 

following steps: filtering the accelerometer and gyroscope data 

coming from the wristband, segmentation of the filtered data, 

feature extraction, feature selection, two stages of model 

training and predictions smoothing.  

In the first step, the raw data were filtered with a 5th order 

median filter to reduce noise. Furthermore, the median filtered 

data was additionally filtered with low-pass and band-pass 

filters. Hence, we ended up with three different streams of data, 

median, low-pass and band-pass filtered data. 

The accelerometer and gyroscope data were segmented 

using a sliding window of 15 seconds with a 3-second overlap 

between consecutive windows. This means that once we have 

15 seconds of data, the buffer is adjusted to only store 3 

seconds of new data. After that, each time the buffer is full, we 

add the new 3 seconds of data to the previous 15 seconds 

window and we drop the oldest 3 seconds from it.  The reason 

for the length of the window is that it needs to contain an entire 

food intake gesture [10]. 

After the segmentation step, we extracted three different 

groups of features. Also, we included a feature selection step to 

improve the computational efficiency of the method, to remove 

the features that did not contribute to the accuracy and to reduce 

the odds of overfitting.  

The training procedure for the method used in this study 

consists of three stages. The first two aim at training an eating-

detection models on an appropriate amount of representative 

eating and non-eating data. The third step smooths the 

predictions of the model. 

4 DATASET AND EXPERIMENTAL SETUP 

For this study, we recorded data from 10 subjects (8 male and 2 

female), ranging in age from 20 to 41 years. The data were 

recorded using a commercial smartwatch Mobvoi TicWatch S 

running WearOS, providing 3–axis accelerometer and 3–axis 

gyroscope data sampled at 100 Hz. The technical description of 

the sensors from the smartwatch shows that the recorded data is 

compatible with our target wristband for which we are 

developing our eating detection method. Additionally, the use 

of a commercially available smartwatch was an easier option 

for recording data. The collected dataset contains recordings 
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from usual daily activities performed by the subjects, including 

eating. The subjects were wearing the smartwatch on their 

dominant hand while recording.  The smartwatch had an 

application installed on it, which enabled them to label the 

beginning and the end of each meal. There were no limitations 

about the type of meals the subjects could have while recording, 

which resulted in having 70 different meals included in the 

dataset. Furthermore, the subjects were also asked to act 

naturally while having their meals, meaning talking, 

gesticulating, using the smartphone, etc. The total data duration 

is 161 hours and 18 minutes, out of which 8 hours and 19 

minutes correspond to eating activities.  

For evaluation, the LOSO cross-validation technique was 

used. In other words, the models were trained on the whole 

dataset except for one subject on which we later tested the 

performance. The same procedure was repeated for each subject 

in the dataset. The results obtained using this evaluation 

technique are more reliable compared to approaches where the 

same subject’s data is used for both training and testing, which 

show excessively optimistic results. 

As mentioned before, smartwatches offer limited resources, 

one of which is the size of the RAM memory. Therefore, we 

analyzed models with different sizes to see whether the bigger 

and more complex models provide higher accuracy. We tested 

the performance of four different machine learning algorithms, 

Random Forest [11], Decision Tree [12], Logistic Regression 

[13] and LinearSVC [14]. 

We analyzed the following evaluation metrics: recall, 

precision and F1 score. These evaluation metrics are the most 

commonly used metrics for classification tasks like ours and   

give a realistic estimate of the efficacy of the algorithm. Also, 

the final results were obtained from the whole recordings by 

each subject. The reason for this is mainly to give a real picture 

of how good the developed method is in real-life settings. 

5 RESULTS 

The primary use of the trigger is to reduce the activity of the 

machine learning procedure. However, for the efficiency of the 

trigger, a very important requirement is when and how often the 

trigger is activated during a meal. In order to achieve accurate 

predictions, we want the trigger to be activated as soon as the 

meal is started. Additionally, the percentage of activated 

triggers during a meal should be bigger compared to noneating 

segments. For this purpose, we explored which window size 

works best with our trigger. Table 1 shows the results achieved 

in the conducted experiments. We tested two different window 

sizes with two slide values for each window, resulting in a total 

of four combinations. 

Table 1: Different window size for the trigger procedure. 

Window and 

slide size 

Trigger 

activation time 

% of activated 

triggers 

Meals 

detected 

3 - 1 36 s 34.2 68/70 

3 - 3 41 s 32.6 68/70 

15 - 3 48 s 42.0 55/70 

15 - 5 41 s 42.0 54/70 

Table 2: Results of eating detection procedure achieved with 

different algorithms and their model size. 

Algorithm Precision Recall F1 score Model size 

Random Forest 0.84 0.75 0.79 36339 KB 

Logistic Regression 0.70 0.71 0.70 1.25 KB 

LinearSVC 0.69 0.71 0.70 1.8 KB 

Decision Tree 0.59 0.65 0.62 175 KB 

 

The used combinations for the window and slide size are shown 

in the first column of the table. The second column shows the 

average time needed for the trigger to be activated for the first 

time after a meal is started. The third column shows the average 

percentage of triggered windows during a meal. These two 

columns were used as a metric for selecting the optimal size of 

a window and slide between the windows. The last column 

shows the number of meals when the trigger was activated. The 

values for the second and third columns were obtained only 

from the meals for which the trigger was activated. Row-wise 

comparison between these two columns shows the results 

obtained with each different combination of a window and 

slide. We can see that the most optimal combination regarding 

the average time needed for a trigger to be activated after a 

meal is started is a window size of 3 seconds with a slide of 1 

second between two windows. Therefore, in our further 

analysis, we used this combination. The optimal window size of 

3 seconds is expected if we have in mind that the usual intake 

gesture lasts around 2 seconds. Longer windows fail to detect 

the gesture while having a meal because usually we have two or 

three intakes in 15 seconds and the mean value over the whole 

window is low. 

Table 2 shows the final results obtained using the whole 

method described in Section 2. Row-wise comparison between 

the used evaluation metrics shows the results obtained using the 

different algorithms shown in the first column. Additionally, the 

last column of the table represents the final model size. We can 

clearly see that the results achieved with Random Forest are 

better than the remaining algorithms. However, if we compare 

the model size of the best performing algorithm with the 

remaining algorithms we can say that the results achieved using 

Logistic Regression and LinearSVC are acceptable. 

Additionally, the precision value of 0.84 shows that the 

combination of trigger and machine learning procedure can 

differentiate between eating and noneating segments. However, 

the recall value of 0.75 suggests that a more accurate method 

regarding the eating periods is needed. 

We also analyzed how much time each of the previously 

described algorithms was active during the noneating period. 

The results from this experiment are shown in Table 3. 

Additionally, in this table we can see the false positive rate 

during the noneating period. The best results are achieved using 

a Random Forest classifier, which is active only 20% of the 

whole noneating period. This means that our trigger-based 

procedure reduces the usage of the machine-learning procedure 

for 80%. However, this number also depends on the detection 

method because once it is activated, the eating predictions 

extend the active time of the method. 
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Table 3: Comparison of active time and false positive rate of 

the machine learning algorithms during noneating period. 

Algorithm 
Active time during 

noneating period 
False positive rate 

Random Forest 20% 1.36% 

Logistic Regression 22% 2.18% 

LinearSVC 22% 2.34% 

Decision Tree 23% 3.93% 

 

6 CONCLUSION AND FUTURE WORK 

In this paper, we presented a method that can accurately detect 

eating moments using a 3-axis accelerometer and gyroscope 

sensor data. Our method consists of an energy-efficient trigger 

and a machine-learning procedure, which is started only after 

the trigger is activated. We evaluated this method using a 

dataset of 70 meals from 10 subjects. The results from the 

LOSO evaluation showed that we are able to recognize eating 

with a precision of 0.84 and recall of 0.75. 

The presented results are important because both the training 

and the evaluation data were recorded in uncontrolled real-life 

conditions. We want to emphasize the real-life evaluation since 

it shows the robustness of the method while dealing with plenty 

of different activities that might be mistaken for eating as well 

as recognizing meals that were recorded in many different 

environments while using many different utensils. The 

proposed method can also deal with interruptions while having 

a meal, such as having a conversation, using the smartphone, 

etc. Additionally, we believe that the energy efficiency of the 

proposed method is very important. The proposed technique 

uses a trigger to activate the machine learning procedure and it 

is able to reduce the active time of the machine learning 

procedure for almost 80%. If we have in mind that the 

wristbands are devices with limited resources, we could say that 

even small reductions in resource usage can be significant for 

longer battery life. 

The initial results achieved in this study are encouraging for 

further work in which we expect to improve the eating detection 

method. In the near future, we plan to optimize our machine 

learning procedure to detect eating periods more accurately 

once the trigger is activated. Furthermore, we want to overcome 

the problem with false positives predictions. For this problem, 

we believe that a more sophisticated method for selecting 

representative noneating data will help to recognize the 

problematic activities and directly include them in the training 

data. Also, we plan to investigate personalized threshold values. 

We believe that personalized values for the threshold will help 

to activate the trigger during eating periods more easily. 

Additionally, this could reduce the activation of the machine-

learning procedure during non-eating periods. Also, we plan to 

explore memory efficient methods for storing the models in 

memory.  
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