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Abstract 

Identification of the key genes/proteins of pluripotency and their interrelationships is an important step in 

understanding the induction and maintenance of pluripotency. Experimental approaches have accumulated 

large amounts of interaction/regulation data in mouse. We investigate how far such information can be 

transferred to human, the species of maximum interest, for which experimental data are much more limited. 

To address this issue, we mapped an existing mouse pluripotency network (the PluriNetWork) to human. We 

transferred interaction and regulation links between genes/proteins from mouse to human on the basis of 

orthologous relationship of the genes/proteins (called interolog mapping). To reduce the number of false 

positives, we used four different methods: phylogenetic profiling, Gene Ontology semantic similarity, gene 

co-expression, and RNA interference (RNAi) data. The methods and the resulting networks were evaluated by 

a novel approach using the information about the genes known to be involved in pluripotency from the 

literature. The RNAi method proved best for filtering out unlikely interactions, so it was used to construct the 

final human pluripotency network. The RNAi data are based on human embryonic stem cells (hESCs) that are 

generally considered to be in a (primed) epiblast stem cell state. Therefore, we assume that the final human 

network may reflect the (primed) epiblast stem cell state more closely, while the mouse network reflects the 

(unprimed/naïve) embryonic stem cell state more closely. 
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1. Introduction 

In recent years the field of embryonic stem cell (ESC) and pluripotency research has gained 

importance because of its therapeutic potential in regenerative medicine (Boiani and Scholer, 2005; Rao and 

Orkin, 2006; Jaenisch and Young, 2008). Unraveling the mechanisms underlying pluripotency and 

reprogramming in human may open a new era in medicine (Cohen and Melton, 2011). These mechanisms 

involve protein-protein interactions, which participate in key biological processes in cells. They are 

supplemented by protein-DNA interactions describing gene regulation by the control of transcription. 

Describing and interpreting such a network of interaction and regulation (i.e., stimulation and inhibition) links 

is an essential task of computational biology.
 

Considering how beneficial the knowledge of the mechanisms underlying pluripotency and 

reprogramming in human would be, the description of the gene/protein interaction/regulation underlying 

pluripotency (called the pluripotency network) in human is remarkably limited. By inferring interactions in 

human based on mouse, which is the most closely related species with rich interaction/regulation data, we 

created a view of the human pluripotency network, an important first step in systems-level understanding of 

the underlying mechanisms. 

To make full use of the currently available interaction (and regulation) data, computational methods 

have been developed to predict new interactions. These methods are based on diverse attributes, concepts, and 

data types, such as interologs (Matthews et al., 2001; Yu et al., 2004), gene expression profiles (Ideker at al. 

2002), Gene Ontology (GO) annotations (Wu et al., 2006), phylogenetic profiling (Pellegrini et al., 1999), 

domain interactions (Ng et al. 2003), and co-evolution (Jothi et al., 2005).
 
Some machine learning methods, 

such as support vector machines (SVMs), were also used to predict protein-protein interactions based on 

sequence data (Shen et al., 2007; Guo et al., 2008). Among these methods, the interolog approach has been 

widely implemented (Rhodes et al., 2005). The method assumes that protein-protein interactions are 

conserved between organisms and that pairs of proteins whose orthologs are known to interact in a model 
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organism probably interact in the organism of interest (target organism) as well (Walhout et al., 2000).
 

Numerous studies were published in which mainly human protein-protein interactions were predicted based 

on interolog detection (Han et al., 2004; Lehner and Fraser, 2004; Rhodes et al., 2005; Tirosh and Barkai, 

2005; Brown and Jurisica, 2005; Persico et al., 2005; Huang et al., 2007). 

A potential problem in predicting protein-protein interactions using an interolog-based method is that 

it may generate false positive interactions, i.e., interactions that are falsely predicted to exist in the target 

organism. The false positive interactions appear due to two reasons. The first reason is false positives in 

original interactions obtained experimentally in the model organism (von Mering et al., 2002; Sprinzak et al., 

2003; Yu et al., 2008). The second reason is the lack of evolutionary conservation of interactions, in particular 

when applied to phylogenetically distant organisms (Mika and Rost, 2006; Brown and Jurisica, 2007). In such 

cases an interaction does exist in the model organism but not in the target organism. 

We minimized the appearance of false positive interactions in the interaction data of the model 

organism (i.e., the first reason) by considering the high-quality literature-curated mouse PluriNetWork as the 

model network (Som et al., 2010).
 
To reduce the number of false positives due to the lack of evolutionary 

conservation of interactions (i.e., the second reason), we filtered the interactions using four methods: (1) 

phylogenetic profiling, (2) GO semantic similarity, (3) gene co-expression, and (4) considering RNAi data. A 

novel approach was adopted to evaluate the relative performance of these four methods. The best of them 

(that is, RNAi) was finally selected to filter out the unlikely interactions, resulting in the final predicted 

human pluripotency network. 

 

2. Materials and methods 

Fig. 1 shows the flowchart of our approach to mapping the mouse pluripotency network to human. Its 

steps are described in detail in the rest of the paper. 
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2.1. Model network: Mouse pluripotency network 

We previously assembled a network of 547 molecular interactions, stimulations and inhibitions 

involved in mouse pluripotency called PluriNetWork (Som et al., 2010), which we consider the model 

network. It is shown in Fig. 2 (a high-resolution JPEG image and a Cytoscape version of the network are 

given in Supplementary Fig. S1). It is based on a collection of primary research data from 177 publications 

involving 264 mouse genes/proteins. It includes the core circuit of Oct4 (Pou5f1), Sox2, Nanog and Klf4, its 

periphery Esrrb, c-Myc, Nr5a2, Stat3, and Sall4 (red region), connections to upstream signaling pathways 

such as Activin, Wnt, FGF, BMP, Insulin, Notch, and LIF (green region), and epigenetic regulators such as 

Dnmt3a, Dnmt3b, Hdac1, Hdac2, and Kdm3a (blue region). A detailed description of the network assembly, 

its properties, the associated biological information, and its applications is found in the publication of Som et 

al., (2010). 

 

2.2. Ortholog identification  

Orthologs of mouse pluripotency genes/proteins in human were identified from three publicly 

available ortholog databases: (1) Ensembl (Release 62, April 2011) [http://www.ensembl.org], (2) InParanoid 

(Version 7.0, June 2009) (Berglund et al., 2008), and (3) HomoloGene (Release 64, February 2011) 

[http://www.ncbi.nlm.nih.gov/homologene/], as follows. We exported mouse-human ortholog pairs from 

Ensembl by the help of BioMart software (Haider et al. 2009). The mouse Ensembl gene ID in the 

PluriNetWork was used as an identifier to mine Ensembl with BioMart. From the InParanoid database, the 

complete dataset of mouse-human orthologs was downloaded. We then extracted the orthologs of mouse 

pluripotency genes in human. InParanoid is one of the best ortholog databases, especially as it identifies more 

correct co-orthologs (defined as two or more genes that were duplicated after the speciation and hence are 

orthologs to one or more genes in another species) than other such databases (Chen et al., 2007). Finally, the 

HomoloGene online web interface was used to establish mouse-human ortholog pairs. All three databases 
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contained orthologs for all the genes except two. None had an ortholog for Ins1 (Insulin 1) and only 

HomoloGene had an ortholog for Ctbp2 (C-terminal binding protein 2), which we nevertheless decided to 

omit from our set of human orthologs. We also looked for co-orthologs of mouse pluripotency proteins in 

human. The Ensemble ortholog dataset showed that two mouse proteins Lefty1 (Left right determination 

factor 1) and Zfx (Zinc finger protein X-linked) have co-orthologs in human, whereas Inparanoid and 

HomoloGene did not support these co-orthologs. Therefore, we assumed that only one-to-one relationships 

exist in the ortholog data. In summary, we obtained a clean set of human orthologs of mouse pluripotency 

players that contains 262 genes/proteins (Supplementary Table S1). 

 

2.3. Mouse-to-human interolog mapping  

In the PluriNetWork, protein-protein interactions and regulatory protein-DNA interactions (i.e., 

stimulations and inhibitions) are collectively called links. We do not distinguish a gene and its protein product 

– they are both referred to by the gene name. For all links between mouse genes, the mouse-human ortholog 

pairs were investigated. If both genes comprising a mouse link have human orthologs, then these human 

orthologs were predicted to be linked by an interolog. The interolog detection strategy was initially developed 

to transfer information on protein-protein interactions (from yeast to higher organisms) (Walhout et al., 2000; 

Matthews et al., 2001), but it can also be employed for regulatory links (Yu et al., 2004; Yellaboina et al., 

2007). This method assumes that links are conserved between organisms: pairs of proteins whose orthologs 

are known to interact in other species probably interact in the species of interest as well. Based on human 

orthologs of mouse pluripotency players (genes/proteins), we transferred the links from mouse to human, 

resulting in the initial human version of the mouse PluriNetWork. The predicted network consists of 262 

nodes (genes/proteins) linked by 545 links (Supplementary Fig. S2). Thus, with the exception of two links to 

genes that had no ortholog (to Ins 1 and to Ctbp2), the predicted network is identical to the original one. 
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2.4. Filtering out false positive Interologs 

The links transferred from mouse to human may include false positives due to false positives in the 

original interactions obtained experimentally in mouse (von Mering et al., 2002; Sprinzak et al., 2003; Yu et 

al., 2008) or the lack of evolutionary conservation of interactions (Mika and Rost, 2006; Brown and Jurisica, 

2007). We minimized the first reason (i.e., the appearance of false positive interactions in the model 

organism) by considering the high-quality literature-curated PluriNetWork as the model network. To evaluate 

whether the transferred links truly belong to the human pluripotency network and thus to reduce the number 

of false positives due to the second reason, we used four different link evaluation methods: (1) phylogenetic 

profiling, (2) GO semantic similarity, (3) gene co-expression, and (4) considering RNAi data. The first three 

methods are well known for their potential to improve the quality of predicted interactions, while the fourth 

one is new. 

For each link, each of the four link evaluation methods provided a value (we called it link value) 

corresponding to the probability that the link is involved in pluripotency. However, in order to actually filter 

out false positive interologs, we needed a threshold for the values provided by each of the four methods to 

separate the links to be included in the network from those to be excluded. Furthermore, in order to select the 

best of the four filtering methods, we need to evaluate the networks constructed using each of them. The four 

methods are described in the following four subsections. The selection of the thresholds and the evaluation of 

the networks is described in the final subsection. 

 

2.4.1. Phylogenetic profiling method 

Phylogenetic profiling assumes that two proteins displaying a similar phylogenetic profile (i.e., a 

similar presence/absence pattern in a set of reference organisms) are functionally linked (Pellegrini et al., 

1999). In other words, if both proteins are either conserved or deleted in several organisms, this is an 

indication of a link between them. A binary phylogenetic profile of a gene is represented by a vector of 0 and 
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1, depending on the presence or absence of the gene’s homolog in the set of reference organisms. We 

constructed binary profiles for all mouse pluripotency genes, using 14 reference vertebrate genomes (incl. 

human) listed in Supplementary Table S2. A Blastp phylogenetic profile (Enault et al., 2003) of a mouse gene 

is represented by a vector of normalized bit scores obtained from BLAST when searching for homologs of the 

protein encoded by the gene in the 14 other genomes. The normalized Blastp (Altschul et al., 1997) bit scores 

were taken from the InParanoid ortholog dataset. We then calculated an “evolutionary dissimilarity score” 

(EDS) for each link using binary and Blastp profiles. The EDS of the linked genes i and j is defined as the 

sum of the absolute differences of binary or Blastp scores across the profile, i.e.  

 

 

where Pik and Pjk denote the presence or absence of the homologs of the genes i and j in the genome k, or the 

Blastp bit scores of the proteins encoded by the genes i and j when searching for them in the genome k, and N 

is the number of genomes. 

We defined the EDS based on the hypothesis that a pair of interacting genes should feature similar 

evolutionary changes among species, elaborating on the fundamental assumption of phylogenetic profiling 

that co-evolving genes are functionally linked. According to our definition of EDS, two proteins with similar 

phylogenetic profiles should have a low EDS, and two proteins with dissimilar profiles should have a high 

EDS. A link with a low EDS indicates that the link should be included in the human pluripotency network, 

whereas a link with a high EDS is likely a false positive and should be excluded from the network.  

 

2.4.2. GO semantic similarity method 

This method assumes that interacting proteins share the same subcellular localization (Shin et al., 2009) and 

are involved in similar biological processes (Ewing, 2007). We assessed these two properties by the similarity 

of the genes according to their Cellular Component (CC) and Biological Process (BP) GO terms (Schlicker et 
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al., 2006). We used three variants of the GO semantic similarity method: (1) BP similarity, (2) CC similarity, 

and (3) BP + CC similarity. The BP and CC similarities were computed as the similarities of the GO BP and 

CC terms of the genes that are linked. The BP + CC was computed as the average of the BP and CC 

similarities if the link consisted of either two transcription factors (TFs) or two non-TFs, or as the BP 

similarity otherwise. The reason for not considering the CC similarity of links between a TF and non-TF is as 

follows. The PluriNetWork contains several transcriptional links (i.e., a link between a TF and a non-TF, such 

as a signaling protein), e.g. Sox2-Fgf4 and Pou5f1-Fgf4. Naturally, the TFs, Sox2 and Pou5f1 are located in 

the nucleus, whereas the location of Fgf4 is the extracellular space. In such cases the CC similarity cannot 

reflect the probability of stimulation/inhibition. 

We calculated the GO BP and CC semantic similarities between interacting genes using Resnik’s term 

similarity method as implemented in the GOSim package (Frohlich et al., 2007). Resnik’s method is based on 

the information content of the lowest common ancestor (LCA) of two terms (Resnik, 1999). The more 

frequently a term occurs, the lower is its information content. If the LCA of two terms describes a generic 

concept, these terms are not very similar and this is reflected in the low information content of their LCA. The 

corresponding genes probably do not interact and are thus assigned a low link value. Resnik’s method is 

considered the best among the existing methods for measuring the semantic similarity (Guo et al., 2006; 

Wang et al., 2007). 

 

2.4.3. Gene co-expression method 

This method assumes that interacting pairs of proteins tend to be co-expressed. Human pluripotency-

specific gene expression data were used to measure the co-expression values (twelve samples: GSM530601-3, 

6, 9, 11, and 13-18 from the Gene Expression Omnibus series GSE21222). Of the twelve samples, six samples 

(GSM530601-3, 6, 9, 11) are of the (primed) epiblast type (hESC), and six samples (GSM530613-18) are of 
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the (unprimed) naïve type (see Fig. 4C of Hanna et al., 2010 from the paper that is associated with the 

GSE21222 dataset). Expression values were preprocessed using MAS5 algorithm (Hubbell et al., 2002). 

Co-expression of a pair of genes was first assessed by calculating the Pearson correlation coefficient 

of their expression values. We calculated the correlation coefficient for each link in three different manners: 

(1) using the hESC type data only (six samples), which we called hESC correlation score of the link, (2) using 

the naïve type data only (also six samples), which we called naïve correlation score, and (3) using both hESC 

and naïve type data (i.e., using all the twelve samples), which we called hESC + naïve correlation score. The 

correlation coefficients range from –1 to 1. Values close to 1 or –1 indicate likely interaction (negative values 

mean one gene/protein probably inhibits the other) and values close to zero indicate no interaction. We thus 

used the absolute values of correlation coefficients of pairs of genes as the link values.  

Additionally, we used a method to measure the change of frequency of interaction (that is, its startup 

or shutdown) known as LinkScore (Warsow et al., 2010). The LinkScore method calculates the amount of 

change in interaction between two genes/proteins, usually measured by two gene expression experiments. We 

computed the LinkScores of each pair of linked genes from pluripotent states (we again considered hESC, 

naïve, and hESC+naïve samples separately) to non-pluripotent state, and used them as the link values. For the 

pluripotent states we used the already described twelve samples. For the non-pluripotent state, we used the 

non-pluripotent counterparts of our samples (GSE7178 and GSE 17772, samples GSM172865-73 and 

GSM443832-34). A high LinkScore means that both genes interact more in the non-pluripotent state, which 

indicates that the link should not be included in the human pluripotency network. 

 

2.4.4. RNAi method 

Recently, a genome-wide RNAi screen was conducted to identify genes which regulate self-renewal 

and pluripotency properties in hESC (Chia et al., 2010). In this study, the authors screened a small interfering 

RNA (siRNA) library targeting 21,121 human genes and reported the importance of their role in hESC. Each 
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of the 21,121 human genes was assigned a numerical score called Fav. Higher values of Fav indicated a more 

important role in hESC. For example, in their score sheet Pou5f1 was placed on top with the highest score, 

indicating Pou5f1’s critical importance in hESC, a fact established by several other studies. 

For the purpose of filtering out false positive interologs, we needed to assign values to links instead of 

genes. We considered three approaches (i.e., three variants of processing the RNAi data) to transform two 

gene scores to a link score: (1) the minimum of the Fav scores of the linked genes, (2) the arithmetic mean of 

the scores, and (3) the geometric mean of the scores. The rationale for (1) is that if one of the linked genes is 

not involved in human pluripotency, the link between it and another gene does not belong to the human 

pluripotency network, either. The rationale for (2) is that since the relation between the Fav score and the 

involvement in pluripotency is somewhat uncertain, averaging the scores of both genes cancels out some of 

the uncertainty. The last method, (3) geometric mean, is striving for a balance between (1) and (2): it averages 

the Fav scores, but if one of the scores if very low and the other very high, their geometric mean is still very 

low, as in (1). 

 

2.5. Evaluation of the methods 

Each of the four link evaluation methods provided us with link values for a subset of the 545 links in 

the initial predicted human pluripotency network. This is because some of the data required to use the 

methods was not available for all the links – for example, a number of genes have no GO annotations, so the 

links associated with these genes have no GO semantic similarity scores. The sizes of these subsets are given 

in Table 1. The size of the intersection of the four subsets, which contains the links for which all four methods 

provided link values, is 406. The link evaluation methods were compared on these 406 links. 

In order to compare the link evaluation methods and to evaluate the resulting pluripotency networks, 

we needed some reference data – reliable and independent information on which links belong to the human 

pluripotency network. Such data for links between genes is hard to come by, but there is some literature on 
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genes/proteins experimentally shown to be or not to be involved in human pluripotency. We found 15 genes 

known to be involved in human pluripotency and 12 genes known not to be involved (Table 2). We translated 

this information on genes/proteins into information on links as follows. If both genes in a link are known to be 

involved in human pluripotency, we considered the link to belong to the human network. If at least one of the 

genes is known not to be involved, we considered the link not to belong to the human network. If one of the 

genes is known to be involved and we had no information on the other, we assigned a probability to that link 

belonging to the human network. Since one gene in such a link is already known to be involved, the 

probability for the whole link is equal to the probability of the other gene being involved. Therefore, the 

probability of such a link belonging to the human network was computed as the number of link endpoints 

known to be involved in human pluripotency (314, that is the number of times that the 15 genes known to be 

involved are the endpoint of a link), divided by the number of link endpoints on which we had some 

literature-based information (436 endpoints, 314 involved and 122 not involved), which equals 0.72. (Note 

that a "link endpoint" is a gene, but we use this term to convey that we count it once for every occurance in a 

link.) We used the counts of link endpoints instead of simple gene counts because we wished to count each 

gene once for each occurrence in a link, since this gives a greater weight to the genes involved in more links. 

We ignored the links for which we had no information on either gene. The correctness scores for inclusion in 

or exclusion from the human pluripotency network are given in Table 3. A link is assigned the same score if 

the involvements of the first and the second gene are reversed. For example, if the third case were (yes, no) 

instead of (no, yes), the correctness scores for that case would be the same. 

Based on the link values assigned by the link evaluation methods, the links were ranked in the order of 

the probability that they should be included in the human pluripotency network (i.e., the higher rank of a link 

by a given method, the more likely the link is involved in pluripotency according to that method). The link 

values and the corresponding ranks for the four link evaluation methods are shown in Supplementary Table 

S3. To construct the human network, we needed to decide for each link whether to include it or not, which 
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means that we needed thresholds for the values provided by the link evaluation methods. Ideally, the links 

above such a threshold would all be involved in human pluripotency, and the links below it would not be 

involved. As the threshold we used the number of links to be included in the human network, which we 

denoted n. This made it possible to compare the four link evaluation methods, since each method uses a 

different scale. Each method and each value n split the links into those to be included in the human network 

(the top-ranked n links) and those not to be included (the bottom-ranked 406 – n links). For example, if we 

chose the RNAi method and the threshold 100, the 100 links with the highest link values according to the 

RNAi method would be included in the human network, and the remaining 306 links would be excluded. For 

the links to be included, the correctness scores from the third column (inclusion) of Table 3 were added up, 

and for the links to be excluded, the scores from the fourth column (exclusion) were added up. The total sum 

of these gave the overall quality of the human pluripotency network for a given link evaluation method and a 

given number of links n. The value n for which this score was the largest, was considered the optimal 

threshold for a given method. 

 

3. Results 

We first constructed the initial human pluripotency network by transferring the links between the 

genes from the mouse pluripotency network. Afterwards we compared the four link evaluation methods used 

to filter out the false positive links, as described in the Materials and method section, and constructed the final 

human network using the best of them. The following two sections present the results of the comparison of 

the link evaluation methods and the final human network. 

 

3.1. Comparison of the link evaluation methods 

Each of the four link evaluation methods has multiple variants, which we compared to choose the best variant 

for each method. For phylogenetic profiling, we compared binary profiles with profiles consisting of Blastp 
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bit scores. For GO semantic similarity, we compared similarities of BP, CC and BP + CC GO terms. For gene 

co-expression, we compared the degree of co-expression computed with the Pearson correlation coefficient 

and LinkScore using hESC, naïve and hESC + naïve samples. For the RNAi method, we compared the link 

values computed as the minimum, arithmetic mean and geometric mean of gene values. The results of the 

comparisons revealed that for the phylogenetic profiling method binary profile is the best variant (see 

Supplementary Figure S3), for the GO semantic similarity method CC similarity is the best variant, for the 

gene co-expression method LinkScore using hESC samples is the best variant, and for the RNAi method 

arithmetic mean of gene values is the best variant (the comparison of the variants of each of the four link 

evaluation methods, as described in the next paragraph, are presented in Supplementary Fig. S3). We selected 

as the best variant the one with the highest average and peak correctness score. 

After selecting the best variant of each link evaluation method, we compared the four methods using 

these variants. The results are presented in Fig. 3. The horizontal axis of the graph represents the threshold 

(n), which ranges from 0 (no links included) to 406 (all links included). The vertical axis shows the number of 

links whose inclusion in the human network or exclusion from it is correct based on the literature. The 

correctness curves show the correctness of each method at a given threshold. Of particular interest is the 

threshold at which a method reaches the highest correctness, since that is the threshold for inclusion in the 

pluripotency network that would be chosen for that method. The comparison of the link evaluation methods 

shows that the RNAi method is the best performer followed by the gene co-expression method. The most 

commonly used phylogenetic profiling and GO semantic similarity methods performed poorly. 

 

3.2. Derivation of human pluripotency network 

Since the RNAi method proved to be the best link evaluation method, we used it to filter out false 

positive interactions from the human pluripotency network. Fig. 4 shows the correctness score with respect to 

the threshold for the RNAi method for all the links for which we had RNAi information, which are 540 out of 
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545 links. RNAi data (Fav score) was missing for four genes (Kdm1a, Kdm4c, Kdm5c, and mTOR), which 

appeared in five links. The threshold thus ranges from 0 (no links included) to 540 (all links included). 

The maximum possible correctness that could be achieved by the method is 307.52, which is 

calculated as follows. We have literature-based information on 373 links. For 139 of them we know that both 

genes in the link are involved in pluripotency (so the link is involved as well) or that one of the genes is not 

involved (so the link is not involved, either). If all of these links are included in / excluded from the network 

correctly, they contribute 139 to the correctness score. For 234 links we know that one gene is involved, so if 

all of them are included in the network, they contribute 234 × 0.72 = 168.52 to the correctness score (as per 

Table 3). The maximum  number achieved by the RNAi method is 250.29 when the threshold is 215, which 

indicates that the top-ranking 215 links are to be retained in the human network. Thereafter, we used the gene 

co-expression method to evaluate the remaining five links (on which we had no RNAi data). All the five links 

were filtered out by the co-expression method, so we deleted them from the human network. 

After filtering out possible false positive interactions by the RNAi method, we observed that for a 

number of genes the majority of their links were filtered out. This observation led us to the conjecture that 

they are not involved in human pluripotency. We decided to delete all genes from the network for which at 

least 80% of the links were filtered out. The threshold of 80% was set to the highest value such that the 

remaining genes not involved in human pluripotency based on the literature were deleted. By applying this 

criterion, ten more genes (and 18 links) shown in Table 4 were deleted from the filtered network. Out of the 

ten deleted genes, the literature reported that seven genes (Ctnnb1, Esrrb, Klf2, Klf5, Nr5a2, Smad1, and 

Stat3) are not involved in human pluripotency (Table 2) and the role of the other genes (Mbd3, Myc and 

Sall4) in hESCs is unknown. Finally, we deleted the remaining gene that the literature reported not to be 

involved in human pluripotency – LIF – and its links. As a result, LIFR was disconnected from the network, 

so we deleted it as well. The final human pluripotency network retained 196 links and 136 genes (see 

Supplementary Table S4). This means that the majority of links (approximately 64%) were filtered out from 
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the predicted network. Fig. 5 thus shows the final putative interaction/regulation network of human 

pluripotency (a high-resolution JPEG image and a Cytoscape version of the network are given in 

Supplementary Fig. S4).  

 

4. Discussion 

In this study, we mapped a mouse pluripotency network to human by interolog detection and then used 

the RNAi method as a filter to increase the quality of the transferred network. We first established 

orthologous relationships of mouse-human pluripotency genes/proteins by the combination of the three most 

popular publicly available databases, namely Ensembl, InParanoid and HomoloGene. Even given an adequate 

set of orthologs, the predicted network is expected to contain several false positive interactions. To filter out 

such false positives, we used four methods to evaluate the interactions. To find out the best method, we 

evaluated their relative performance. Interestingly, we found that the most widely used methods (i.e., 

phylogenetic profiling, GO semantic similarity, and gene co-expression) performed worse than the RNAi 

method. The high performance of the RNAi method is not entirely surprising, because the RNAi experiment 

was conducted precisely to identify the genes which regulate self-renewal and pluripotency in hESCs (i.e., it 

directly measured the involvement and/or criticality of the genes in hESCs). However, it is worth examining 

why the other methods performed relatively poorly. 

A likely reason for the poor performance of phylogenetic profiling is that it is too general. It predicts 

interactions based on evolutionary conservation of genes only and does not take into account the function of 

the genes. For example, Esrrb, LIF, and Il6st (also called Gp130) are well conserved across the genomes, so 

phylogenetic profiling is unable to filter them out, even though they are known not to be involved in human 

pluripotency (i.e., the phylogenetic profiling method is unable to measure the degree of involvement in 

pluripotency; rather it measures the degree of interaction between genes). However, it is possible that these 
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genes are involved in other cellular phenomena (i.e., they are false positives not because they do not interact, 

but because they are not involved in pluripotency). 

The underlying hypothesis of the GO semantic similarity method is that interacting proteins share the 

same sub-cellular localization and are involved in similar biological processes. As described in the GO 

semantic similarity method, because of transcriptional links the CC score cannot reflect the probability of 

interaction. The BP score is not reliable, either, because the observations that pair of proteins shares the same 

biological process do not guarantee that they in fact interact. Finally, GO annotations are known to be 

incomplete and erroneous (Done et al., 2010). Particularly for the species human, GO annotation is fairly 

problematic. A large number of GO annotations of human genes come from mouse genes (the annotation that 

was made for the mouse gene was transferred to the human gene) (http://www.geneontology.org/). 

Even though the gene co-expression methods performed better than phylogenetic profiling and GO 

semantic similarity methods, it was still unable to filter many genes properly. The method is based on the 

notion that interacting proteins are co-expressed. However, expression data are usually derived from a 

heterogeneous mixture of cells and cellular compartments. Genes may have very specific expression patterns 

based on a variety of cellular activities. Thus, overlapping local expression patterns may not be identifiable in 

a global co-expression measure. Moreover, the human pluripotency network is composed of TFs, signaling 

proteins and epigenetic factors. It is, therefore, possible that interacting signaling proteins or interacting TFs 

are strongly co-expressed, but this may not be true for an interacting pair of a signaling protein and a TF (i.e., 

both signaling proteins and TFs may have their specific expression patterns, including time delays if a TF is 

activated by a signal, or if a TF activates a signal). The Pearson correlation coefficient variant of the gene co-

expression method utilizes co-expression pattern only, while the LinkScore variant looks for a difference 

between pluripotent and non-pluripotent samples. The latter performed better which confirms our observation 

that false positives are caused by the lack of involvement in pluripotency, not the lack of interaction. 

http://www.geneontology.org/
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After filtering out false positives, the final human pluripotency network retained 196 links and 136 

genes, which means that the majority of links (approximately 64%) were filtered out from the predicted 

network. This result implies that the underlying mechanisms of pluripotency significantly differ between 

mouse and human. This is somewhat surprising considering that 99% of mouse pluripotency genes have 

human orthologs. Furthermore, mouse and human genomes are highly conserved in general, with about 85% 

of all the mouse genes having human orthologs. However, the difference in the mechanism of pluripotency 

between the species was explained by Tesar et al., (2007), who found fundamental differences between the 

mouse and human state of pluripotency usually investigated that is an embryonic mouse stem cell 

(naïve/unprimed) versus an epiblast-like human stem cell (primed). 

We inspected the pathways in the final human network, namely TGF-beta/Activin/Nodal, Wnt 

signalling and LIF signalling, and found that the TGF-beta/Activin/Nodal pathway exists (Fig. 5; yellow 

region), the Wnt pathway was disconnected from the core network (brown region) and the LIF signaling 

pathway was deleted. It was reported that the activation of the TGF-beta/Activin/Nodal branch through 

SMAD2/3 is associated with pluripotency in human and is required for the maintenance of the 

undifferentiated state in hESCs (Vallier et al., 2005; James et al., 2005). Our filtered human network thus 

agrees with the current state of experimental knowledge of the TGF-beta/Activin/Nodal pathway. However, 

Wnt proteins are also believed to play an important role in controlling hESC maintenance (Sato et al., 2004), 

but the Wnt pathway was disconnected. A possible reason is that different Wnt genes are required for the 

maintenance of the undifferentiated state of the ESCs in human and in mouse. The Wnt family has 19 

members (genes). In the mouse PluriNetWork, two Wnt genes, namely Wnt3a and Wnt5a, were included. In 

human, it was reported in the literature that Wnt3, Wnt5a and Wnt10B are involved in pluripotency mediated 

by the Wnt pathway (Katoh, 2008). Furthermore, the RNAi screening result confirmed that Wnt3 and 

Wnt10B (together with Wnt2B and Wnt9B) play a more important role in hESCs than Wnt3a and Wnt5a 

(Chia et al., 2010). Several experimental studies reported that unlike in mouse, the LIF signaling pathway is 
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not required to maintain hESC (Okita and Yamanaka, 2006; Sun et al., 2006). Our filtered human network 

matches these experimental results. 

 The main limitation of the human pluripotency network derived from the mouse network is the 

missing links. Links are missing because they are absent from the mouse network or are human-specific. We 

believe that the mouse network reflected the current knowledge of mouse pluripotency fairly well, and as new 

links are discovered, they can be added to the mouse network and transferred to human. Some of the missing 

links, however, are human-specific. Considering that the size of the derived human network is less than half 

of the mouse network and that we have no reason to believe that the true human network is smaller than the 

mouse network, the human-specific links may well be in the majority. Some of these links may be transferred 

from other species or inferred from gene expression and RNAi data, although it is doubtful that these 

approaches would yield much reliable information. We may consider them in the future, but the only sure way 

to fill in the missing links is experimental identification. It is also future work to find out how useful networks 

from other murine cell types may be for estimating the human pluripotency network. We expect that the main 

determinant of usefulness will be the proximity of the murine cell type to the specific kind of pluripotency 

featured by hESC. In particular, a network from mouse Epiblast stem cells (EpiSC) may be very close, 

whereas networks of proliferating (cancer) cells of mice are expected to be less related, though they may still 

share features related to proliferation / renewal. Networks from very different cell types are expected to be 

only remotely related; they should miss the core pluripotency network around Pou5f1, Sox2 and Nanog as 

well as much of its periphery.  

 

5. Conclusions 

In conclusion, we derived a putative human pluripotency network for mouse, for which experimental 

data are much more plentiful than for human. The quality of the predicted network was improved by using 

genome-wide RNAi screening data, which directly measured the involvement and/or criticality of the genes in 
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hESCs. The predicted network will be useful to understand the biology underlying pluripotency, and scientists 

are expected to benefit from the access to a human network of pluripotency players and mechanisms, which 

will help them make sense of high-throughput data. Most importantly, given recent investigations, we assume 

that the human network may reflect the “primed” epiblast stem cell state more closely, while the mouse 

network reflects the “unprimed”, or, “naïve”, ESC state more closely. It is future work, requiring more 

experimental data, to disentangle the difference in the developmental state and the species difference. 

In the future, we are interested in mapping the pluripotency network to more organisms of interest 

where the experimental data are also limited (e.g., Axolotl, Chicken, Rat, etc.) and to investigate their 

evolution. Multi-species pluripotency networks should be useful to identify species-specific pathways 

evolution, and afford a deeper understanding of the evolution of pluripotency. 
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Table 1: The number of links (genes/proteins) in the pluripotency network at various steps of our approach to 

transfer the mouse pluripotency network to human. 

Step Number 

Interactions identified experimentally in mouse 547 (264) 

Interologs transferred to human based on orthologous relationship 545 (262) 

Interactions for which phylogenetic profiling data was available 545 

Interactions for which GO semantic similarity data was available 480 

Interactions for which gene co-expression data was available 453 

Interactions for which RNAi data was available 540 

Interactions for which data for all four link evaluation methods was available 406 

Interactions remaining after filtering by the RNAi method 215 (148) 

Interactions remain in the final network 196 (136) 

 

Table 2: Genes experimentally shown to be required, or shown not to be required for the induction and/or 

maintenance of pluripotency in human. 

Genes required References Genes not required References 

ACVR1 

DNMT3B
 

DPPA4 

FGFR1 

HELLS 

KLF4 

LEFTY1 

NANOG 

NODAL 

PHF17 

POU5F1 

SMAD2 

SOX2 

TGFB1 

ZIC3 

Schnerch et al. (2010) 

Adewumi et al. (2007) 

Assou et al. (2007)  

Schnerch et al. (2010) 

Assou et al. (2007) 

Pera and Tam (2010) 

Schnerch et al. (2010)  

Pera and Tam (2010)  

Pera and Tam (2010)  

Assou et al. (2007)  

Pera and Tam (2010)  

Schnerch et al. (2010)  

Pera and Tam (2010) 

Schnerch et al. (2010) 

Assou et al. (2007) 

CTNNB1 

ESRRB 

FBX15 

IL6ST 

JAK1 

KLF2 

KLF5 

LIF 

NR5A2 

SMAD1 

STAT3 

TBX3 

Lam et al. (2008) 

Xie et al. (2009) 

Rao (2004) 

Schnerch et al. (2010) 

Schnerch et al. (2010) 

Greber et al. (2007) 

Greber et al. (2007) 

Pera and Tam (2010)  

Xie et al. (2009)  

Schnerch et al. (2010) 

Schnerch et al. (2010) 

Greber et al. (2007)  
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Table 3: Correctness scores for the inclusion of a link between genes in the human pluripotency network or 

the exclusion from the network, depending on whether the genes that are linked are known to be involved in 

human pluripotency based on the literature. 

Involvement in human pluripotency 

based on the literature 

Inclusion in the 

human network 

Exclusion from the 

human network 

First gene Second gene 

yes yes 1 0 

no no 0 1 

yes no 0 1 

yes unknown 0.72 0.28 

no unknown 0 1 

unknown unknown 0 0 

 

 

 

Table 4: The nodes deleted by the 80% criterion (i.e., a node was deleted when at least 80% of the links 

attached to it were filtered out). 

Gene name Total no. of links 

attached to the gene 

No. of links deleted Fraction of links deleted 

ESRRB 

KLF2 

KLF5 

MBD3 

NR5A2 

SALL4 

SMAD1 

MYC 

STAT3 

CTNNB1 

16 

5 

11 

6 

23 

12 

11 

15 

32 

7 

14 

4 

10 

5 

19 

10 

9 

13 

30 

6 

87% 

80% 

91% 

83% 

82% 

83% 

82% 

86% 

94% 

86% 
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Fig. 1: Flowchart of the approach used for the derivation of human pluripotency network. 

 

Mouse-to-human ortholog identification  

(Ensembl, Inparanoid, HomoloGene) 

Interaction transfer to orthologs in human – 

interolog mapping (262 nodes & 545 links) 

Mouse pluripotency network – model network 

(264 nodes linked by 547 links; Figure 2) 

Finding the best variant of each of the four 

methods for filtering out false positive 

interactions (Supplementary Figure S3) 

Comparing the best variants of the four methods 

(phylogenetic profiling, GO semantic similarity, 

gene co-expression, RNAi) and finding the best 

method (Figure 3) 

Filtering out of false positive interactions by the 

best method (RNAi) 

Human pluripotency network – target network 

(136 nodes & 196 links; Figure 5) 

Filtering out the genes for which at least 80% of 

the links were deleted, and those known not to be 

involved in human pluripotency 
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Fig. 2: Manual layout of the PluriNetWork in Cytoscape. Nodes (264) are genes/proteins, edges (547) are 

stimulations (arrows), inhibitions (T-bar arrows) and interactions (lines). The top third of the network includes 

upstream signaling pathways (green region), the middle is composed of the core circuitry of pluripotency 

(Pou5f1 – also known as Oct4, Sox2 and Nanog) and its periphery (red region), and the left part includes 

epigenetic factors and related mechanisms (blue region). A high-resolution JEPG image and a Cytoscape 

version of the network are presented in Supplementary Fig. S1. 
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Fig. 3: Comparison of the interolog filtering methods. Threshold versus correctness score is plotted for the 

four link evaluation methods. A higher correctness score indicates that the method better filters out possible 

false positive interactions. The plot shows that the RNAi method is the best method followed by the co-

expression method. 
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Fig. 4: Threshold versus correctness score for the RNAi method for all the links for which we had RNAi 

information, which is 540 out of 545 links. The correctness score reaches the highest value (250.29) when the 

threshold is 215, which indicates the top-ranking 215 links are to be retained in the human network.  
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Fig. 5: The derived human pluripotency network after filtering out putative false positives. This network 

contains 136 nodes (genes/proteins) and 196 links. A high-resolution JPEG image and a Cytoscape version of 

the network are found in Supplementary Fig. S4. 
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Supplementary materials 
 
Table S1: The list of human orthologs of mouse pluripotency genes/proteins. The mouse-human orthologous 

relationships were established by combining the orthologous information from Ensembl, InParanoid, and 

HomoloGene databases. 

 

 

Table S2: The list of the 14 genomes used for the phylogenetic profiling method. 

 

 

Table S3: A set of the 406 links used to evaluate the relative performance of the four methods by their best 

variants. For each link and for each of the four methods, evolutionary dissimilarity score (EDS), GO semantic 

similarity score, co-expression LinkScore, and RNAi score and their respective ranks are given. Rank 1 

indicates the link has the highest probability that it is involved in the human pluripotency network. 

 

 

Table S4: The links (196) and nodes (136) retained in the final predicted human pluripotency network. 

 

 

Fig. S1: (a) A high-resolution JPEG image of the mouse PluriNetWork, which is used as the model network 

and (b) a Cytoscape version of the mouse PluriNetWork. 

 

 

 

Fig. S2: A Cytoscape version of the initial predicted human pluripotency network (links transferred on the 

basis of mouse-human orthologous relationships). This network contains 262 nodes (genes/proteins) and 545 

links (stimulation, inhibition, and interaction). 

 

 

Fig. S3: The comparison of the variants of each of the four link evaluation methods. Threshold versus 

correctness score is plotted for each variant. A higher correctness score indicates that the variant better filters 

out possible false positive interactions. 

 

 

Fig. S4: The final human pluripotency network in (a) JEPG image file and (b) Cytoscape format. 


