
Recommender System as a Service based on the
Alternating Least Squares algorithm

Gašper Slapničar
Jožef Stefan Institute,

Department of Intelligent Systems
Jamova cesta 39
1000 Ljubljana

+386 51 721 041
slapnicar.gasper@gmail.com

Boštjan Kaluža, Mitja Luštrek
Jožef Stefan Institute, Department of

Intelligent Systems
Jamova cesta 39
1000 Ljubljana

+386 1 477 3944
{bostjan.kaluza, mitja.lustrek}@ijs.si

Zoran Bosnić
University of Ljubljana, Faculty of

Computer and Information Science
Večna pot 113
1000 Ljubljana

+386 1 479 8237
zoran.bosnic@fri.uni-lj.si

ABSTRACT

In this paper, we describe a production-ready recommender system
as a service for recommending eco-friendly tourist
accommodations. It offers two main features: (1) it returns
personalized recommendations for a user by creating a latent factor
model through matrix factorization (Alternating Least Squares
algorithm, ALS) and (2) it returns accommodations that are similar
to a given accommodation by calculating content-based similarity
using the Jaccard coefficient and the Euclidian distance. The
system is evaluated on the collected data by using cross-validation
and Precision@k as a performance measure. It achieves 19%
Precision@k for personalized recommendations to a user based on
his past interactions with accommodations. This score far surpasses
a random recommender implementation that achieves 1%
Precision@k.

Keywords
Recommender system, parallel computing, machine learning, big
data, matrix factorization

1. INTRODUCTION
Due to significant growth and evolution of e-Commerce and
digitalization in many fields (medicine, economics, etc.) in the past
years, the size and complexity of collected data is growing rapidly.
Data are being generated in real time and are mostly unstructured.
Such data collections are thus being referred to as the “big data”.

Alongside the development of big data technologies, which can
successfully store and process large amounts of unstructured data
in real time, companies want to use these technologies in machine
learning and offer machine learning algorithms to users in a simple
way, as a service. This led to recent development of many Machine
Learning as a Service (MLaaS) providers.

MLaaS platforms can be used to develop recommender systems,
which are an essential part of e-Commerce and can bring a
significant competitive advantage. These systems focus on creating
personalized recommendations which should include items that
will most likely interest a potential customer. Since e-Commerce
and data science are evolving rapidly, experts from different fields
are required for development of a production grade recommender
system. This can be addressed by developing the system in a cloud
and thus ensuring separation of concerns.

We address the problem of developing such a recommender system
by dividing in into two parts. The first part is data collection. We
record the user-item interactions in the event-based style, where
each interaction corresponds to an action of the user on the web
portal and is an element of a predefined list. User is represented by
a unique tracking id while items correspond to a list of unique
accommodation ids.

The second part and core of the problem are the recommendation
algorithms. For customized recommendations to a user based on
past actions, we create a latent factor model using matrix
factorization. The model learns by using Alternating Least Squares
algorithm. We propose an algorithm that can be efficiently
executed in parallel and is a good candidate to use with distributed
big data technologies. For recommending similar accommodations
based on their properties we use the Jaccard coefficient and
normalized Euclidian distance merged together into a common
similarity measure.

2. BACKGROUND
A large number of MLaaS platforms emerged recently. These
support a wide variety of machine learning algorithms out of the
box and can be used to develop a recommender system. In the
following subsections we overview considered platforms, and
describe the outline of our proposed approach.

2.1 MLaaS PLATFORM
First, we compared several MLaaS platforms, such as BigML,
Google Prediction API, Azure ML, Amazon ML and Prediction.IO.
Due to white-box design and open source access we chose
Prediction.IO machine learning server. It is implemented as a
distributed scalable stack based on latest big data technologies,
such as Apache HBase, Apache Hadoop, Apache Spark and
Elasticsearch [3].

Since it implements Apache Spark’s MLlib, it comes with native
support for many algorithms that are suitable for development of a
recommender system. It also offers templates which are
implementations of some machine learning algorithms on actual
problem domains and are available at templates.prediction.io/ [3].

Prediction.IO machine learning server consists of three main parts
[3]:

1. Prediction.IO platform – open source machine learning stack
for creating engines with machine learning algorithms,

2. Event Server – API for collecting events from different
sources and unifying the format,

3. Template Gallery – templates with implementations of
machine learning algorithms on real problem domains.

Figure 1 shows how clients interact with the machine learning
server and it also shows that the server can have several engines,
each corresponding to one machine learning application.

100

Figure 1: Conceptual architecture and interaction between
Prediction.IO server and client.

MVC (model – view – controller) architectural pattern is well
established in web development for years, since it helped to speed
up the development process and lowered the learning curve.

It would make sense to implement such a pattern in data science,
especially in machine learning. Prediction.IO represents one of the
first attempts of this with their DASE engine architecture. Each
engine follows this architectural pattern and must contain all the
components with the exception of Evaluation, which is optional:

 Data Source/Data Preparator – reads data from an input
source (database) and transforms it into a desired format,

 Algorithm – the machine learning algorithm used to create
the predictive model,

 Serving – takes client queries and returns prediction results,

 Evaluation – quantifies prediction success with a numerical
score.

2.2 ALGORITHMS
The “Netflix prize” competition has demonstrated that within
collaborative filtering, latent factor models are the most successful
method for recommending products. This method is gaining
popularity, due to good scalability and better precision in
comparison with neighborhood methods [1, 2].

Latent factor models are most successfully implemented by using
matrix factorization. Two of the best known algorithms for solving
the matrix factorization problem are Stochastic Gradient Descent
(SGD) and Alternating Least Squares (ALS). A lot of effort has
been put towards parallelization of the SGD algorithm. This has
proven to be a difficult problem. ALS is an algorithm that is closely
related to SGD and offers high level of potential parallelization [2].

3. DATA AND RECOMMENDATION TASK
The data are collected from a website, which offers eco-friendly
accommodations. Any accommodation which meets 5 out of 10
required criteria is considered eco-friendly. Examples of these
criteria are re-usage of water, usage of solar energy, waste
recycling, etc.

Training data are being collected in real time in event-based style.
This means that each action that a user does on the web portal,
corresponds to a single user-item interaction.

User – action – item format was chosen to describe interactions
between users and accommodations as it comprises all the required

information. Each event on the web portal can be represented with
this format. User corresponds to a unique user performing actions
on the web portal and is traced by using a long lasting cookie id.
Action is whatever this user does on the web portal and it
corresponds to the user-item interaction. It is an element of a
predefined list containing all relevant possible actions on the web
portal. Item corresponds to unique identifier of the accessed object
and is an element of a predefined set of all existing accommodation
ids.

Example of this format is given as: user U1 views accommodation
I1 (U1 – view – I1).

A custom API was developed in order to implement basic
authentication and authorization together with data sanity check.
This API connects to the Event Server of Prediction.IO machine
learning server and saves the collected data to HBase data store in
real time. Each event corresponds to an HTTP POST request which
contains parameters corresponding to user – action – item format.
It also contains the timestamp of the event.

Different feedback mechanisms can be used to record user-item
interactions. Recommender systems work best with data collected
through explicit feedback mechanism such as ratings. Due to the
implementation of the web portal, only implicit feedback
mechanism is available (e.g. views, inquiries). A mapping was
implemented to map the collected implicit data to explicit
numerical ratings on the scale of 2 to 5. This is explained further in
the following section.

Due to the design of the web portal, a user can either do a complete
search from the landing page or he can access the page with
accommodation details directly from a web search engine. In first
case the web portal design allows us to implement
recommendations for this specific user that can be displayed with
the search results. In second case we are limited by design to
recommend similar accommodations to the currently viewed
accommodation. This also makes more sense since this type of
access typically occurs for users without any past interactions with
the web portal. Thus we develop two distinct recommending
functionalities.

4. RECOMMENDATION OF
ACCOMMODATIONS FOR A USER
First broad recommendation approach is known as collaborative
filtering and it relies only on past user-item interactions. Based on
these past actions it then finds similar users to other users. This
approach usually produces better results but suffers from the cold
start problem. This means that for a new user without past
interactions (no history), the system will not be able to produce any
meaningful recommendations. An important advantage is that the
system can obtain the required data by observing and recording user
history [2, 6].

To recommend accommodations to a given user, we used latent
factor models approach, which is a method within collaborative
filtering group.

Latent factor models try to explain the past ratings by
characterizing users and items on hidden variables called factors,
which are inferred from these past ratings patterns. The factors
measure dimensions that are not obvious or easily explained. For
users, each factor measures how much the user likes the item which
scored high or low on the corresponding factor [2].

This method requires explicit preference values which we defined
through the following mappings:

101

 view an accommodation ⇒ value 2.0,

 open inquiry window ⇒ value 4.0,

 send an inquiry ⇒ value 5.0,

 close inquiry window without sending ⇒ value 4.0.
The last action is important as an anomaly can happen where a user
can access the inquiry window directly from a link and can
therefore bypass other preceding actions.

In the case where a user does more than one action on the same
accommodation, the highest preference value is kept.

4.1 Matrix factorization model
Latent factor models are most commonly created using matrix
factorization. First a ratings matrix R of dimensions m x n is created
from collected data. This means that the rows of matrix R represent
m users and the columns represent n items. A specific value ܴ
represents the rating given by user i to item j. Matrix R is then
factorized into smaller matrices U and V. Matrix U represents users
and is of dimensions m x rank, while matrix V represents items and
is of dimensions rank x n. Rank is the parameter that tells us how
many latent factors we want to use to describe a user or an item and
is always much smaller than the dimensions of the original matrix
which is very large (rank << m, n) [2].

Some elements of matrix R are not defined, meaning they cannot
be interpreted as 0. This means that decomposition methods such
as SVD (singular value decomposition) cannot be used.

4.2 Alternating Least Squares algorithm
Alternating Least Squares algorithm is used to modify latent factors
and learn the model. It first initializes matrix V with small random
values. When V is fixed, it iterates through matrix U and modifies
the latent factors to best correspond to known ratings by
minimizing the error. When this is done, it fixes U and does the
same for V. It alternates doing this, solving the least squares
problem defined by Equation (1) [2].

 min
,

 ሺݎ௨ െ ݍ
௨ሻଶ் λሺห|ݍ|ห

ଶ
 ௨||ଶሻ||

ሺ௨,ሻ∈

 (1)

In Equation 1, K is the set of (u,i) pairs for which rating ݎ௨ is
known. ሺݎ௨ െ ݍ

 ௨ሻ represents the error between known and்
predicted rating where ݍ

் is the vector of latent factors for an item

and ௨ is the vector of latent factors for a user. λሺห|ݍ|ห
ଶ
 ௨||ଶሻ||

represents the normalization term where λ is the normalization
parameter which ensures that there is no data overfitting.

This algorithm is very suitable to be executed in parallel since many
vectors of latent factors of U or V can be computed at the same time,
considering one of the matrices is fixed. Potentially this allows the
computation of all vectors of a single matrix in parallel.

The result of the algorithm is a model of latent factors which
predicts preference values of any known user for any item.

5. SIMILAR ITEM RECOMMENDATION
Content-based filtering is the second broad recommendation
approach and it focuses on creating a profile of each user or item to
describe its nature. This profile usually contains the properties of
an item. The system then finds similar items based on these profiles.
This approach relies on obtaining data about items from an outside
source, meaning it cannot obtain this data on its own [2, 6].

To recommend similar accommodations, an approach based on
content-based filtering and the properties of accommodations was

used. Based on our data we chose two similarity measures: Jaccard
coefficient and Euclidian similarity.

5.1 Jaccard coefficient
Each accommodation has its corresponding attributes (e.g. pool,
internet, bathroom, solar cells etc.). Each of these attributes is
represented by an integer value and is either present or not. This
was presented using a binary vector, where the index corresponds
to the integer value of the attribute. Value 1 denotes presence of
this attribute, while value 0 denotes its absence.

Since this data is binary, Jaccard coefficient is most suitable to
measure attribute similarity between accommodations. It is defined
by Equation (2), where ܣ ∩ represents the common attributes and ܤ
ܣ ∪ :represents the union of attributes of both accommodations ܤ

,ܣሺ݀ݎܽܿܿܽܬ ሻܤ ൌ 	
ܣ ∩ ܤ
ܣ ∪ ܤ

 (2)

5.2 Euclidian similarity
Each accommodation is also defined by its geographic position,
consisting of longitude and latitude. Euclidian distance was used to
first measure the distance between accommodations as shown by
Equation (3).

,ሺܽݐݏ݅݀_݈݊ܽ݅݀݅ܿݑܧ ܾሻ ൌ ඥሺݔଶ െ ଵሻଶݔ ሺݕଶ െ ଵሻଶ (3)ݕ

A transformation of the distance into a similarity measure was then
done by using Equation (4).

݉݅ݏ_݈݊ܽ݅݀݅ܿݑܧ ൌ
1

1 ,ሺܽݐݏ݅݀_݈݊ܽ݅݀݅ܿݑܧ ܾሻ
 (4)

Finally both similarity scores were merged into a unified similarity
score. This was done by using Equation (5), where ݓ and ݓ
correspond to weight parameters given to each similarity score:

 ܵ݅݉ ൌ
ݓ ∙ ,ܣሺ݀ݎܽܿܿܽܬ ሻܤ ݓ ∙ ݉݅ݏ_݈݊ܽ݅݀݅ܿݑܧ

ݓ ݓ
 (5)

6. EVALUATION
The system was evaluated using Precision@k, which is a standard
measurement in information retrieval systems. Precision@k is
defined by equation 6 [4].

݇@݊݅ݏ݅ܿ݁ݎܲ ൌ 	
.ݎܰ ݀݁݀݊݁݉݉ܿ݁ݎ	݇	݃݊݉ܽ	ݐ݊ܽݒ݈݁݁ݎ	݂

݇

In systems such as search engines and recommenders, the first k
results are most important for their performance. It is highly
important to show the relevant items among the first k. Relevant in
the case of evaluation means the accommodations with which a
user actually had an interaction in the past.

Recommender system was evaluated using k-fold cross validation,
where the data is randomly split into k sets. The learning set always
contains 80% of the data while the testing set contains 20%.

After the data was split, we chose evaluation parameters based on
our problem. The following evaluation parameters were used:

 kFold = 5 – Chosen as a standard value.

 threshold = 2.0 – The threshold tells us which items are
considered relevant. Threshold 2.0 means that any viewed or
more strongly preferred is considered relevant.

 k = 3, 10 – Chosen as the user sees 3 accommodations on the
site without scrolling and sees 10 accommodations on the
first page of results.

102

The evaluation was executed for different parameters of algorithm:

 λ = 0.01 – Standard value which ensures that latent factor
values do not overfit the learning data.

 numIterations = 5, 10 – Number of iterations during which
latent factors are being modified.

 Rank = 5, 10, 20 – Number of latent factors which are used
to describe user-item interactions.

Results are shown in Table 1.

rank numIterations Precision@3 Precision@10

5 5 1,74% 1,25%

5 10 5,38% 2,68%

10 5 8,90% 4,05%

10 10 17,66% 6,29%

20 5 18,79% 6,69%

20 10 16,69% 6,16%

Random recommender 0,97% 0,92%

Table 1: The evaluation results for different parameters of
algorithm.

The results compare Precision@k of the developed recommender
system with random recommender. The best result 19% was very
superior to the 1% of random recommendation.

Better results are shown with low k. This is due to the fact that the
average user only has three actions. This means that when the
system recommends these items, it usually does so early (among
the first three). Subsequently, by increasing the number of
recommended items, the precision decreases, since there are not
any relevant items left to recommend.

This measure proves to be pessimistic as Precision@k = 100%
cannot be achieved when k is greater than the average number of
actions per user. In case we had exactly one relevant item per user
in the testing set, this measure could be normalized by dividing the
scores with the maximum possible score that could be obtained.
Example is shown by Equation 6 [5].

3@݊݅ݏ݅ܿ݁ݎܲ ൌ
18.79%

1
3

ൌ 56.37%	

10@݊݅ݏ݅ܿ݁ݎܲ ൌ
6.69%
1
10

ൌ 66.9%

(6)

Comparison of our system with random recommender is shown on
Figure 2.

Figure 2: Precision@k comparison of the developed system
with random recommender.

7. CONCLUSION
We developed a recommender system as a service for eco-friendly
accommodations booking site. It was deployed in a cloud by using
cloud-based machine learning server Prediction.IO. Data was
collected in real time in user-action-item format by leveraging
Prediction.IO built-in Event Server API. It offers recommendations
for a user based on his past actions by building a latent factor model
using matrix factorization with Alternating Least Squares learning
algorithm. It also offers similar accommodations based on
accommodation properties by computing Jaccard and Euclidian
similarities.

The developed system was evaluated using the Precision@k
performance measure and compared with a random recommender.
It achieved 19% Precision@k which is far superior to 1% achieved
by the random recommender.

MLaaS platform has shown to be an efficient tool for developing
real-world machine learning applications, with a gentle learning
curve. Due to good evaluation results we expect improved business
results and improved user experience.

At the time of writing, a graphical representation of recommended
accommodations is being implemented on the web portal. We
further plan to use an algorithm developed for implicit datasets and
to use other attributes about accommodations, especially price
groups, since these have high influence on potential customers.

8. REFERENCES
[1] Bennett, J. and Lanning S. "The Netflix prize." Proceedings of
KDD cup and workshop. 2007.

[2] Koren, Y., Bell R. and Volinsky C. "Matrix factorization
techniques for recommender systems." Computer 8: 30-37, 2009.

[3] https://docs.prediction.io/. Accessed 20th September 2015.

[4] C. D. Manning, P. Raghavan, and H. Schutze. “Introduction to
Information Retrieval.” Cambridge University Press, New York,
NY, USA, 2008.

[5] Slapničar, G. "Recommending accommodations using machine
learning provider in a cloud." EngD thesis, University of Ljubljana,
2015.

[6] Adomavicius, G. and Tuzhilin, A. "Toward the next generation
of recommender systems: a survey of the state-of-the-art and
possible extensions." in Knowledge and Data Engineering, IEEE
Transactions on, vol.17, no.6, pp.734-749, 2005

103

