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ABSTRACT 

In this paper, we describe a production-ready recommender system 
as a service for recommending eco-friendly tourist 
accommodations. It offers two main features: (1) it returns 
personalized recommendations for a user by creating a latent factor 
model through matrix factorization (Alternating Least Squares 
algorithm, ALS) and (2) it returns accommodations that are similar 
to a given accommodation by calculating content-based similarity 
using the Jaccard coefficient and the Euclidian distance. The 
system is evaluated on the collected data by using cross-validation 
and Precision@k as a performance measure. It achieves 19% 
Precision@k for personalized recommendations to a user based on 
his past interactions with accommodations. This score far surpasses 
a random recommender implementation that achieves 1% 
Precision@k. 
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1. INTRODUCTION 
Due to significant growth and evolution of e-Commerce and 
digitalization in many fields (medicine, economics, etc.) in the past 
years, the size and complexity of collected data is growing rapidly. 
Data are being generated in real time and are mostly unstructured. 
Such data collections are thus being referred to as the “big data”. 

Alongside the development of big data technologies, which can 
successfully store and process large amounts of unstructured data 
in real time, companies want to use these technologies in machine 
learning and offer machine learning algorithms to users in a simple 
way, as a service. This led to recent development of many Machine 
Learning as a Service (MLaaS) providers. 

MLaaS platforms can be used to develop recommender systems, 
which are an essential part of e-Commerce and can bring a 
significant competitive advantage. These systems focus on creating 
personalized recommendations which should include items that 
will most likely interest a potential customer. Since e-Commerce 
and data science are evolving rapidly, experts from different fields 
are required for development of a production grade recommender 
system. This can be addressed by developing the system in a cloud 
and thus ensuring separation of concerns. 

We address the problem of developing such a recommender system 
by dividing in into two parts. The first part is data collection. We 
record the user-item interactions in the event-based style, where 
each interaction corresponds to an action of the user on the web 
portal and is an element of a predefined list. User is represented by 
a unique tracking id while items correspond to a list of unique 
accommodation ids. 

The second part and core of the problem are the recommendation 
algorithms. For customized recommendations to a user based on 
past actions, we create a latent factor model using matrix 
factorization. The model learns by using Alternating Least Squares 
algorithm. We propose an algorithm that can be efficiently 
executed in parallel and is a good candidate to use with distributed 
big data technologies. For recommending similar accommodations 
based on their properties we use the Jaccard coefficient and 
normalized Euclidian distance merged together into a common 
similarity measure. 

2. BACKGROUND 
A large number of MLaaS platforms emerged recently. These 
support a wide variety of machine learning algorithms out of the 
box and can be used to develop a recommender system. In the 
following subsections we overview considered platforms, and 
describe the outline of our proposed approach. 

2.1 MLaaS PLATFORM 
First, we compared several MLaaS platforms, such as BigML, 
Google Prediction API, Azure ML, Amazon ML and Prediction.IO. 
Due to white-box design and open source access we chose 
Prediction.IO machine learning server. It is implemented as a 
distributed scalable stack based on latest big data technologies, 
such as Apache HBase, Apache Hadoop, Apache Spark and 
Elasticsearch [3]. 

Since it implements Apache Spark’s MLlib, it comes with native 
support for many algorithms that are suitable for development of a 
recommender system. It also offers templates which are 
implementations of some machine learning algorithms on actual 
problem domains and are available at templates.prediction.io/ [3].  

Prediction.IO machine learning server consists of three main parts 
[3]: 

1. Prediction.IO platform – open source machine learning stack 
for creating engines with machine learning algorithms, 

2. Event Server – API for collecting events from different 
sources and unifying the format, 

3. Template Gallery – templates with implementations of 
machine learning algorithms on real problem domains. 

Figure 1 shows how clients interact with the machine learning 
server and it also shows that the server can have several engines, 
each corresponding to one machine learning application.  
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Figure 1: Conceptual architecture and interaction between 
Prediction.IO server and client. 

MVC (model – view – controller) architectural pattern is well 
established in web development for years, since it helped to speed 
up the development process and lowered the learning curve. 

It would make sense to implement such a pattern in data science, 
especially in machine learning. Prediction.IO represents one of the 
first attempts of this with their DASE engine architecture. Each 
engine follows this architectural pattern and must contain all the 
components with the exception of Evaluation, which is optional: 

 Data Source/Data Preparator – reads data from an input 
source (database) and transforms it into a desired format, 

 Algorithm – the machine learning algorithm used to create 
the predictive model, 

 Serving – takes client queries and returns prediction results, 

 Evaluation – quantifies prediction success with a numerical 
score. 

2.2 ALGORITHMS 
The “Netflix prize” competition has demonstrated that within 
collaborative filtering, latent factor models are the most successful 
method for recommending products. This method is gaining 
popularity, due to good scalability and better precision in 
comparison with neighborhood methods [1, 2]. 

Latent factor models are most successfully implemented by using 
matrix factorization. Two of the best known algorithms for solving 
the matrix factorization problem are Stochastic Gradient Descent 
(SGD) and Alternating Least Squares (ALS). A lot of effort has 
been put towards parallelization of the SGD algorithm. This has 
proven to be a difficult problem. ALS is an algorithm that is closely 
related to SGD and offers high level of potential parallelization [2]. 

3. DATA AND RECOMMENDATION TASK 
The data are collected from a website, which offers eco-friendly 
accommodations. Any accommodation which meets 5 out of 10 
required criteria is considered eco-friendly. Examples of these 
criteria are re-usage of water, usage of solar energy, waste 
recycling, etc. 

Training data are being collected in real time in event-based style. 
This means that each action that a user does on the web portal, 
corresponds to a single user-item interaction.  

User – action – item format was chosen to describe interactions 
between users and accommodations as it comprises all the required 

information. Each event on the web portal can be represented with 
this format. User corresponds to a unique user performing actions 
on the web portal and is traced by using a long lasting cookie id. 
Action is whatever this user does on the web portal and it 
corresponds to the user-item interaction. It is an element of a 
predefined list containing all relevant possible actions on the web 
portal. Item corresponds to unique identifier of the accessed object 
and is an element of a predefined set of all existing accommodation 
ids. 

Example of this format is given as: user U1 views accommodation 
I1 (U1 – view – I1).  

A custom API was developed in order to implement basic 
authentication and authorization together with data sanity check. 
This API connects to the Event Server of Prediction.IO machine 
learning server and saves the collected data to HBase data store in 
real time. Each event corresponds to an HTTP POST request which 
contains parameters corresponding to user – action – item format. 
It also contains the timestamp of the event. 

Different feedback mechanisms can be used to record user-item 
interactions. Recommender systems work best with data collected 
through explicit feedback mechanism such as ratings. Due to the 
implementation of the web portal, only implicit feedback 
mechanism is available (e.g. views, inquiries). A mapping was 
implemented to map the collected implicit data to explicit 
numerical ratings on the scale of 2 to 5. This is explained further in 
the following section. 

Due to the design of the web portal, a user can either do a complete 
search from the landing page or he can access the page with 
accommodation details directly from a web search engine. In first 
case the web portal design allows us to implement 
recommendations for this specific user that can be displayed with 
the search results. In second case we are limited by design to 
recommend similar accommodations to the currently viewed 
accommodation. This also makes more sense since this type of 
access typically occurs for users without any past interactions with 
the web portal. Thus we develop two distinct recommending 
functionalities. 

4. RECOMMENDATION OF 
ACCOMMODATIONS FOR A USER 
First broad recommendation approach is known as collaborative 
filtering and it relies only on past user-item interactions. Based on 
these past actions it then finds similar users to other users. This 
approach usually produces better results but suffers from the cold 
start problem. This means that for a new user without past 
interactions (no history), the system will not be able to produce any 
meaningful recommendations. An important advantage is that the 
system can obtain the required data by observing and recording user 
history [2, 6]. 

To recommend accommodations to a given user, we used latent 
factor models approach, which is a method within collaborative 
filtering group. 

Latent factor models try to explain the past ratings by 
characterizing users and items on hidden variables called factors, 
which are inferred from these past ratings patterns. The factors 
measure dimensions that are not obvious or easily explained. For 
users, each factor measures how much the user likes the item which 
scored high or low on the corresponding factor [2]. 

This method requires explicit preference values which we defined 
through the following mappings: 
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 view an accommodation ⇒ value 2.0, 

 open inquiry window ⇒ value 4.0, 

 send an inquiry ⇒ value 5.0, 

 close inquiry window without sending ⇒ value 4.0. 
The last action is important as an anomaly can happen where a user 
can access the inquiry window directly from a link and can 
therefore bypass other preceding actions.  

In the case where a user does more than one action on the same 
accommodation, the highest preference value is kept. 

4.1 Matrix factorization model 
Latent factor models are most commonly created using matrix 
factorization. First a ratings matrix R of dimensions m x n is created 
from collected data. This means that the rows of matrix R represent 
m users and the columns represent n items. A specific value ܴ 
represents the rating given by user i to item j. Matrix R is then 
factorized into smaller matrices U and V. Matrix U represents users 
and is of dimensions m x rank, while matrix V represents items and 
is of dimensions rank x n. Rank is the parameter that tells us how 
many latent factors we want to use to describe a user or an item and 
is always much smaller than the dimensions of the original matrix 
which is very large (rank << m, n) [2]. 

Some elements of matrix R are not defined, meaning they cannot 
be interpreted as 0. This means that decomposition methods such 
as SVD (singular value decomposition) cannot be used. 

4.2 Alternating Least Squares algorithm 
Alternating Least Squares algorithm is used to modify latent factors 
and learn the model. It first initializes matrix V with small random 
values. When V is fixed, it iterates through matrix U and modifies 
the latent factors to best correspond to known ratings by 
minimizing the error. When this is done, it fixes U and does the 
same for V. It alternates doing this, solving the least squares 
problem defined by Equation (1) [2]. 

 min
,

 ሺݎ௨ െ ݍ
௨ሻଶ்  λሺห|ݍ|ห

ଶ
 ௨||ଶሻ||

ሺ௨,ሻ∈

 (1) 

In Equation 1, K is the set of (u,i) pairs for which rating ݎ௨ is 
known. ሺݎ௨ െ ݍ

 ௨ሻ represents the error between known and்
predicted rating where ݍ

் is the vector of latent factors for an item 

and ௨ is the vector of latent factors for a user. λሺห|ݍ|ห
ଶ
  ௨||ଶሻ||

represents the normalization term where λ is the normalization 
parameter which ensures that there is no data overfitting. 

This algorithm is very suitable to be executed in parallel since many 
vectors of latent factors of U or V can be computed at the same time, 
considering one of the matrices is fixed. Potentially this allows the 
computation of all vectors of a single matrix in parallel.  

The result of the algorithm is a model of latent factors which 
predicts preference values of any known user for any item. 

5. SIMILAR ITEM RECOMMENDATION 
Content-based filtering is the second broad recommendation 
approach and it focuses on creating a profile of each user or item to 
describe its nature. This profile usually contains the properties of 
an item. The system then finds similar items based on these profiles. 
This approach relies on obtaining data about items from an outside 
source, meaning it cannot obtain this data on its own [2, 6]. 

To recommend similar accommodations, an approach based on 
content-based filtering and the properties of accommodations was 

used. Based on our data we chose two similarity measures: Jaccard 
coefficient and Euclidian similarity.  

5.1 Jaccard coefficient 
Each accommodation has its corresponding attributes (e.g. pool, 
internet, bathroom, solar cells etc.). Each of these attributes is 
represented by an integer value and is either present or not. This 
was presented using a binary vector, where the index corresponds 
to the integer value of the attribute. Value 1 denotes presence of 
this attribute, while value 0 denotes its absence.  

Since this data is binary, Jaccard coefficient is most suitable to 
measure attribute similarity between accommodations. It is defined 
by Equation (2), where ܣ ∩  represents the common attributes and ܤ
ܣ ∪  :represents the union of attributes of both accommodations ܤ

,ܣሺ݀ݎܽܿܿܽܬ  ሻܤ ൌ 	
ܣ ∩ ܤ
ܣ ∪ ܤ

 (2) 

5.2 Euclidian similarity 
Each accommodation is also defined by its geographic position, 
consisting of longitude and latitude. Euclidian distance was used to 
first measure the distance between accommodations as shown by 
Equation (3). 

,ሺܽݐݏ݅݀_݈݊ܽ݅݀݅ܿݑܧ  ܾሻ ൌ ඥሺݔଶ െ ଵሻଶݔ  ሺݕଶ െ  ଵሻଶ (3)ݕ

A transformation of the distance into a similarity measure was then 
done by using Equation (4). 

݉݅ݏ_݈݊ܽ݅݀݅ܿݑܧ  ൌ
1

1  ,ሺܽݐݏ݅݀_݈݊ܽ݅݀݅ܿݑܧ ܾሻ
 (4) 

Finally both similarity scores were merged into a unified similarity 
score. This was done by using Equation (5), where ݓ and ݓ 
correspond to weight parameters given to each similarity score: 

 ܵ݅݉ ൌ
ݓ ∙ ,ܣሺ݀ݎܽܿܿܽܬ ሻܤ  ݓ ∙ ݉݅ݏ_݈݊ܽ݅݀݅ܿݑܧ

ݓ  ݓ
 (5) 

6. EVALUATION 
The system was evaluated using Precision@k, which is a standard 
measurement in information retrieval systems. Precision@k is 
defined by equation 6 [4].  

݇@݊݅ݏ݅ܿ݁ݎܲ ൌ 	
.ݎܰ ݀݁݀݊݁݉݉ܿ݁ݎ	݇	݃݊݉ܽ	ݐ݊ܽݒ݈݁݁ݎ	݂

݇
 

In systems such as search engines and recommenders, the first k 
results are most important for their performance. It is highly 
important to show the relevant items among the first k. Relevant in 
the case of evaluation means the accommodations with which a 
user actually had an interaction in the past. 

Recommender system was evaluated using k-fold cross validation, 
where the data is randomly split into k sets. The learning set always 
contains 80% of the data while the testing set contains 20%. 

After the data was split, we chose evaluation parameters based on 
our problem. The following evaluation parameters were used: 

 kFold = 5 – Chosen as a standard value. 

 threshold = 2.0 – The threshold tells us which items are 
considered relevant. Threshold 2.0 means that any viewed or 
more strongly preferred is considered relevant. 

 k = 3, 10 – Chosen as the user sees 3 accommodations on the 
site without scrolling and sees 10 accommodations on the 
first page of results. 
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The evaluation was executed for different parameters of algorithm: 

 λ = 0.01 – Standard value which ensures that latent factor 
values do not overfit the learning data. 

 numIterations = 5, 10 – Number of iterations during which 
latent factors are being modified. 

 Rank = 5, 10, 20 – Number of latent factors which are used 
to describe user-item interactions. 

Results are shown in Table 1. 

rank numIterations Precision@3 Precision@10 

5 5 1,74% 1,25% 

5 10 5,38% 2,68% 

10 5 8,90% 4,05% 

10 10 17,66% 6,29% 

20 5 18,79% 6,69% 

20 10 16,69% 6,16% 

Random recommender 0,97% 0,92% 

Table 1: The evaluation results for different parameters of 
algorithm. 

The results compare Precision@k of the developed recommender 
system with random recommender. The best result 19% was very 
superior to the 1% of random recommendation.  

Better results are shown with low k. This is due to the fact that the 
average user only has three actions. This means that when the 
system recommends these items, it usually does so early (among 
the first three). Subsequently, by increasing the number of 
recommended items, the precision decreases, since there are not 
any relevant items left to recommend. 

This measure proves to be pessimistic as Precision@k = 100% 
cannot be achieved when k is greater than the average number of 
actions per user. In case we had exactly one relevant item per user 
in the testing set, this measure could be normalized by dividing the 
scores with the maximum possible score that could be obtained. 
Example is shown by Equation 6 [5]. 

 

3@݊݅ݏ݅ܿ݁ݎܲ ൌ
18.79%

1
3

ൌ 56.37%	

 

10@݊݅ݏ݅ܿ݁ݎܲ ൌ
6.69%
1
10

ൌ 66.9% 

(6) 

Comparison of our system with random recommender is shown on 
Figure 2. 

 

Figure 2: Precision@k comparison of the developed system 
with random recommender. 

7. CONCLUSION 
We developed a recommender system as a service for eco-friendly 
accommodations booking site. It was deployed in a cloud by using 
cloud-based machine learning server Prediction.IO. Data was 
collected in real time in user-action-item format by leveraging 
Prediction.IO built-in Event Server API. It offers recommendations 
for a user based on his past actions by building a latent factor model 
using matrix factorization with Alternating Least Squares learning 
algorithm. It also offers similar accommodations based on 
accommodation properties by computing Jaccard and Euclidian 
similarities. 

The developed system was evaluated using the Precision@k 
performance measure and compared with a random recommender. 
It achieved 19% Precision@k which is far superior to 1% achieved 
by the random recommender. 

MLaaS platform has shown to be an efficient tool for developing 
real-world machine learning applications, with a gentle learning 
curve. Due to good evaluation results we expect improved business 
results and improved user experience. 

At the time of writing, a graphical representation of recommended 
accommodations is being implemented on the web portal. We 
further plan to use an algorithm developed for implicit datasets and 
to use other attributes about accommodations, especially price 
groups, since these have high influence on potential customers. 

8. REFERENCES 
[1] Bennett, J. and Lanning S. "The Netflix prize." Proceedings of 
KDD cup and workshop. 2007. 

[2] Koren, Y., Bell R. and Volinsky C. "Matrix factorization 
techniques for recommender systems." Computer 8: 30-37, 2009. 

[3] https://docs.prediction.io/. Accessed 20th September 2015. 

[4] C. D. Manning, P. Raghavan, and H. Schutze. “Introduction to 
Information Retrieval.” Cambridge University Press, New York, 
NY, USA, 2008. 

[5] Slapničar, G. "Recommending accommodations using machine 
learning provider in a cloud." EngD thesis, University of Ljubljana, 
2015. 

[6] Adomavicius, G. and Tuzhilin, A. "Toward the next generation 
of recommender systems: a survey of the state-of-the-art and 
possible extensions." in Knowledge and Data Engineering, IEEE 
Transactions on, vol.17, no.6, pp.734-749, 2005 

 

103




