Continuous blood pressure estimation from PPG signal
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ABSTRACT

Given the importance of blood pressure (BP) as a direct
indicator of hypertension, regular monitoring is encouraged
in people and mandatory for such patients. We propose
an approach where photoplethysmogram (PPG) is recorded
using a wristband in a non-obtrusive way and subsequen-
tly BP is estimated continuously, using regression methods
based solely on PPG signal features. The approach is valida-
ted using two distinct datasets, one from a hospital and the
other collected during every-day activities. The best achie-
ved mean absolute errors (MAE) in a Leave-one-subject-out
experiment with personalization are as low as 11.87 + 12.31
/ 11.09 £+ 9.99 for systolic BP and 5.64 +5.73 / 6.18 - 4.85
for diastolic BP.
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1. INTRODUCTION

According to the World Health Organization (WHO), car-
diovascular diseases were the most common cause of death
in 2015, responsible for almost 15 million deaths combined
[1]. Hypertension is a common precursor of such diseases
and can be easily detected with regular blood pressure (BP)
measurements.

Given the importance of BP, people should actively moni-
tor its changes. This is not trivial as the traditional BP
measurement method involves an inflatable cuff and a ste-
thoscope, which should be placed directly above the main
artery at approximately heart height. These requirements
impose relatively strict movement restrictions on the pati-
ent and require substantial time commitment. Furthermore,
when done by the patient himself, the process can cause
stress, which in turn influences the BP values, so it is most
commonly done by medical personnel. However, when BP is
measured by medical personnel, this can again cause anxiety
in the patient, commonly known as white coat syndrome.

Our work focuses on analyzing the photoplethysmogram (PPG)

and then developing a robust non-obtrusive method for con-
tinuous BP estimation, which will be implemented and used
in one such m-health system, based on a wristband with a
PPG sensor.

2. RELATED WORK
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Photoplethysmography is a relatively simple and non-expensive

technique, which is becoming increasingly popular in wea-
rables for heart rate estimation. Exploring its applications,
we can see that it is also becoming more widely used in BP
estimation.

PPG is based on illumination of the skin and measurement
of changes in its light absorption. It requires a light source
(typically a light-emitting diode — LED light) to illuminate
the tissue (skin), and a photodetector (photodiode) to me-
asure the amount of light either transmitted or reflected to
the photodetector. Thus, PPG can be measured in either
transmission or reflectance mode.

With each cardiac cycle the heart pumps blood towards the
periphery of the body, thus producing a periodic change
in the amount of light that is absorbed or reflected from
the skin, as the skin changes its tone based on the amount
of blood in it [6]. An example of this periodic signal as
produces by Empatica E4 wristband [7] is shown in Figure
1.

Figure 1: An example PPG signal as produced by
Empatica E4 wristband.

It is being used in two common approaches: 1.) BP estima-
tion from two sensors (PPG + Electrocardiogram (ECG))
and 2.) BP estimation using PPG only.

The first approach suggests the use of two sensors, typically
an ECG and a PPG sensor, in order to measure the time it
takes for a single heart pulse to travel from the heart to a
peripheral point in the body. This time is commonly known
as pulse transit time (PTT) or pulse arrival time (PAT) and
its correlation with BP changes is well established [2].

The more recent approach is focused on PPG signal only,
however the relationship between PPG and BP is only po-
stulated and not well established, unlike the relationship
between PTT and BP. This approach is the least obtrusive



by far and PPG sensors have recently become very common
in most modern wristbands.

One of the earliest attempts at this approach was conducted
by Teng et. al. [3] in 2003. The relationship between arterial
blood pressure and certain features of the photoplethysmo-
graphic (PPG) signals was analyzed. Data was obtained
from 15 young healthy subjects in a highly controlled la-
boratory environment, ensuring constant temperature, no
movement and silence. The mean differences between the li-
near regression estimations and the measured BP were 0.21
mmHg for SBP and 0.02 mmHg for DBP. The correspon-
ding standard deviations were 7.32 mmHg for SBP and 4.39
mmHg.

A paper was published in 2013 in which authors used data
from Multiparameter Intelligent Monitoring in Intensive Care
(MIMIC) waveform database [4] to extract 21 time domain
features and use them as an input vector for artificial neural
networks (ANNs). The results are not quite as good as the
linear regression model described earlier, however the data
is obtained from a higher number and variety of patients
in a less controlled environment, but was still measured in
a hospital setting and an undisclosed subsample of all ava-
ilable data was taken. The results reached mean absolute
difference between the estimation and the ground truth of
less than 5 mmHg with standard deviation of less than 8
mmHg [5].

It is clear that the PPG only approach has potential, howe-
ver a robust method that works well on a general case is yet
to be developed.

3. METHODOLOGY

The workflow consists of two main parts, namely the signal
pre-processing and machine learning part. In signal pre-
processing, our PPG signal is cleaned of most noise and se-
gmented into cycles, where one cycle corresponds to a single
heart beat. Afterwards, features are extracted on per-cycle
basis and fed into regression algorithms which build models
that are further evaluated.

3.1 Signal pre-processing

When PPG is used in a wristband, the main problem comes
from the contact between the sensor and the skin. During
everyday activity, the patient moves his arm a lot, which
in turn causes substantial movement artefacts in the signal.
This is partially alleviated by the usage of green light, which
is less prone to artefacts, however pre-processing is still re-
quired.

3.1.1 Cleaning based on established medical crite-
ria

In first phase, both BP and PPG signal are roughly cleaned
based on established medical criteria [9]. During this phase,
parts of signals with systolic BP (SBP) > 280mmHg or dia-
stolic BP (DBP) < 20mmHg or the difference between SBP
and DBP < 20mmHg, are removed. This removes parts of
signals for which the reference BP signal most likely con-
tained an anomaly as such values indicate extreme medical
condition and are not feasible in a common patient.

3.1.2  Peak and cycle detection

In order to do further cleaning and feature extraction, PPG
cycle detection is mandatory. This is again not trivial, as
substantial noise in the PPG signal poses a significant pro-
blem.

A slope sum function, which enhances the abrupt upslopes of
pulses in the PPG signal is first created. Afterwards, a time-
varying threshold for peak detection is applied [8]. After
the peaks are detected, finding the cycle start-end indices is
rather simple as the valleys between peaks must be found.
An example of detected peaks and cycle locations is shown
in Figure 2.

Figure 2: An example output of peak/cycle detec-
tion algorithm. Black asterisks correspond to a de-
tected peak while red circles correspond to a detec-
ted cycle beginning.

Once cycles are detected, they are used for further cleaning
and feature extraction.

3.1.3 Cleaning based on ideal templates

In the second cleaning phase, a sliding window of 30 seconds
is taken and the mean of all cycles within this window is
computed from the PPG signal. Presuming that the majo-
rity of cycles within a 30sec window are not morphologically
altered, a good ”ideal cycle template” is created. Each indi-
vidual cycle is then compared to this ideal template and its
quality is evaluated with three signal quality indices (SQIs).
The most likely length of cycle L is always determined with
autocorrelation analysis. The template is computed by al-
ways taking L samples of each cycle in the current window.

Signal quality indices are computed as follows. SQI1: First
L samples of each cycle are taken, and each cycle is direc-
tly compared to the template using a correlation coefficient.
SQI2: Each cycle is interpolated to length L and then the
correlation coefficient is computed. SQI3: The distance be-
tween template and cycle is computed using dynamic time
warping (DTW).

Finally thresholds for each SQI are determined and if more
than half cycles in the given 30sec window are discarded,
the whole window is considered too noisy and thus removed.
Example of this cleaning is shown in Figure 3.

Once high quality signal is obtained, features can be extrac-
ted from each cycle.

3.2 Machine learning



Original (filtered) PPG

1958 1.96 1.962 1964 1.966

1968 197 1.972 1974 1976 1978

PPG after SQI cleaning

! I

1.96 1.962 1.964 1.966

1.968 1.97 1.972 1.974 1976 1978

Figure 3: An example of the cleaning algorithm in the 2nd phase. Comparing the top (uncleaned) and bottom
(cleaned) signal, we see that the obvious artefact period is discarded.

In accordance with related work [5] several time domain fe-
atures were computed and the set of features was further
expanded with some from the frequency domain [9]. These
are shown in Figure 4.
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Figure 4: Time domain features which were used.
Tc = cycle time, Ts = systolic rise time, Td = di-
astolic fall time, AAC = area above the curve and
AUC = area under the curve for systolic and dia-
stolic part of a cycle.

These features were extracted for each cycle and used in
machine learning to derive a regression model for BP esti-
mation.

4. EXPERIMENTS AND RESULTS

In an effort to make our method as general as possible, two
datasets were considered for our experiment and all the data
which had both PPG and BP signal were used.

4.1 Data

First is the publicly accessible MIMIC database set from
which all the patients having both PPG and arterial BP
(ABP) signal were taken. This results in 50 anonymous
patients, each having on average several hours of both signals

available. The data was collected in a hospital environment,
using the hospital equipment.

Second is a dataset collected at Jozef Stefan Institute (JSI)
using the Empatica E4 wristband for PPG and an Omron
cuff-based BP monitor for the ground truth BP. In the first
phase of data collection, 8 healthy subjects were considered,
5 male and 3 female. Each wore the wristband for several
hours during every-day activities and measured their BP
every 30min or more often. Finally, only parts of signals 3
minutes before and after the BP measurement were taken
into consideration.

4.2 Experimental setup

Leave-one-subject-out experiment was conducted on each
dataset, as it is the most suitable experiment to evaluate the
generalization performance of the algorithms. Due to time
and computational power restrictions, data was subsampled
by taking 500 uniformly selected cycles.

During the initial attempt, a regression model was trained
in each iteration on all subjects, except the left out. This
yielded poor results, hinting at the fact, that most patients
are unique in some way. This was confirmed by doing a
cycle morphology analysis during which it was established
that different subjects have different cycle shapes and that
similar cycle shapes do not signify similar BP values. Thus,
personalization of the trained models was considered.

In the second attempt, the regression models were again
trained using all subjects except the left out, however they
were further personalized using some data instances from
the left out subject. The instances of the left out subject
were first grouped by BP values and these groups were then
sorted from lowest to highest BP. Afterwards, every n-th
group (n = 2,3,4,5,6) of instances was taken from the testing
data and used in training in order to personalize the model
to the current patient. This ensures personalization with
different BP values, as taking just a single group of instances
gives little information, since the BP will be constant within
this group. Given the fact that MIMIC data consists of



roughly 5x the amount of patients compared to JSI collected
data, the personalization data for it was multiplied 5 times,
making it noticable within the large amount of training data
from the remaining patients.

During both attempts, several regression algorithms were
considered, as given in Figures 5 and 6. Mean Absolute Er-
ror (MAE) was used as a metric. All models were compared
with a dummy regressor, which always predicted the mean
BP value of the same combination of general and persona-
lization data as the other models used to train themselves.
Finally, the regressor with the lowest MAE was chosen.

4.3 Results

Due to low variations in BP, the dummy regressor often
performs relatively well, however for MIMIC data with more
BP variation, some improvements have been made as shown
in Figure 5. The JSI collected data has proven to be more
problematic, as there are only a low amount of different BP
values in this phase of collection.
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Figure 5: MAE for SBP and DBP for MIMIC data-
set at different amounts of personalization.
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Figure 6: MAE for SBP and DBP for JSI collected
dataset at different amounts of personalization.

The lowest error using MIMIC data was achieved by using
the RandomForest regression algorithm, with the highest
amount of personalization. The achieved errors were 11.87+
12.31 for SBP and 5.64 + 5.73 for DBP.

Due to high amount of movement artefacts in JSI collected
data, a lot of data was removed by the cleaning algorithm,
leaving a very low amount of usable data with very low va-
riations in BP. This further enhanced the performance of
dummy regressor, while leaving little information for other
algorithms. Best achieved errors of 11.09+9.99 for SBP and
6.18 + 4.85 for DBP are only slightly surpassing the mean
predictions at maximum personalization, as shown in Figure
6.

S. CONCLUSION

We have developed a pipeline for BP estimation using PPG
signal only and have evaluated its performance on two dis-
tinct datasets.

First part of the pipeline does signal pre-processing, remo-
ving most movement artefacts and detecting PPG cycles.
The second part computes features on per-cycle basis and
feeds them in regression algorithms. These were evaluated
on hospital collected MIMIC database data as well as field
collected data at JSI using a wristband. Due to low variati-
ons in subject’s BP and high variation in their PPG, there is
limited information about the correlation between the two,
however promising results were obtained with best achie-
ved mean absolute errors (MAE) in a Leave-one-subject-out
experiment with personalization as low as 11.87 + 12.31 /
11.09£9.99 for systolic BP and 5.64+5.73 / 6.18 4.85 for
diastolic BP.
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