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Abstract

UPDATED—August 17, 2018. Blood pressure (BP) is the
most commonly performed medical office test. We devel-
oped a system that uses exclusively wristband-collected
photoplethysmogram (PPG) to estimate BP. A dataset was
collected and annotated during daily activities of 22 sub-
jects. Preprocessing was applied to remove the signal noise
and artefacts. Signal was segmented into cycles and fea-
tures were computed. The RReliefF algorithm was used

to select a subset of relevant features. The approach was
validated with a person-independent leave-one-subject-out
(LOSO) experiment. The LOSO experiment was updated
with personalization to improve the results. The lowest
mean absolute error (MAE) was 6.70 mmHg for systolic and
4.42 for diastolic BP. Ensemble of regression trees achieved
the best results, which borderline meet the requirements set
by two standards for BP estimation devices.
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Figure 1: Top histogram shows the
SBP distribution, while the bottom
one shows the DBP distribution.
The lines indicate the normal
distribution.

Introduction

Blood pressure (BP) measurement is the most important
commonly performed medical office test. It is a direct indi-
cator of hypertension, an important risk factor for a variety
of cardiovascular diseases (CVDs), which were the most
common cause of death in 2015, responsible for almost 15
million deaths worldwide. Despite its importance, an obvi-
ous aversion towards regular BP monitoring is present due
to the nature of the measuring devices. Cuff-based devices
remain the golden standard in terms of accuracy, however,
they also have several downsides, such as a relatively strict
measuring protocol, limited physical activity during measur-

ing, and stress during measurement (white coat syndrome).

Due to the aforementioned factors and increasing presence
of wearable devices capable of collecting physiological sig-
nals, our work focuses on developing a robust unobtrusive
BP estimation system, which can offer near real-time peri-
odic BP updates to a user.

There have been several attempts at such a system. Two
main approaches were identified in related work. The first
one relies on pulse transit time (PTT), which is the time
needed for the blood of an individual pulse to travel from
the heart to the periphery [4]. This approach is well estab-
lished, however, its major problem is the requirement of two
sensors (commonly ECG and PPG) and their synchroniza-
tion. The second approach relies on a single PPG sensor
and attempts to model the complex relationship between
the changes in PPG waveform and BP. A high-quality sen-
sor is typically used in order to capture the subtle waveform
changes. This is the subject of intense research for a num-
ber of years [5], including our work.

At a glance, there already exist systems for cuff-less BP
estimation [1]. However, to the best of our knowledge, the
PPG-only approach was never applied or tested on data

collected in an uncontrolled non-clinical environment us-
ing only a wristband sensor. This is probably due to low
sampling frequency and high amount of noise in the wave-
forms of such wristbands. The main distinction of our work
is therefore to use solely a wristband for the PPG-only ap-
proach, and to validate the quality of derived models on a
challenging dataset collected in an everyday setting.

Dataset

A dataset was collected from employees at a research
institute over a period of several months and was later
anonymized. In total, 22 healthy subjects (6 female and
16 male) participated in the experiment. The ages ranged
from 22 to 39. The distributions of the collected BP values
are shown in Figure 1.

The subjects were given precise instructions regarding the
measuring of the ground-truth BP with the Omron M10—
IT cuff-based digital monitor, while Empatica E4 wristband
was worn in a snug but comfortable way to collect PPG.
They were encouraged to measure their ground truth BP
at least every 30 minutes if allowed by their obligations.
Five subjects also collected data at home, outside of their
typical office routine, to increase the variety of the data.
Each ground-truth BP value was attributed to the signal 1
minute before and after the measurement was made. We
chose a rather short interval, as BP should change very
little in such a short time around the measurement.

The final number of instances after cleaning was around
20 000, corresponding to roughly 5.5 hours of signal. Each
instance corresponds to a single heart beat.

Methodology
As the PPG waveform collected with a wristband is often
distorted due to movement, lower quality sensor, and poor
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Figure 2: Temporal features used
in regression. T denotes time and

S denotes areas under or above

the curve. Combinations of areas

were also used (e.g., 51+ 52).
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skin-sensor contact, it is vital to extract only high-quality
segments. Once such segments are obtained, features are
computed and fed into regression models to estimate BP.

Peak and cycle detection
In order to do per-cycle cleaning and subsequent feature

extraction, cycles (corresponding to heart beats) must first
be detected. First, a 4th order Butterworth band-pass (0.5
— 4Hz) filter is used on the raw signal. Then a linear-phase
differentiator (LPD) filtering transformation is used, which
enhances the systolic upslopes of the PPG pulses, allowing
for subsequent systolic peak detection. Such an upslope
and peak can be seen in Figure 2. The LPD transforma-
tion is based on the first derivative of the filtered PPG signal
(see Lazaro et al. [3] for details). Once the peaks are de-
tected, dominant valleys between two subsequent peaks
are marked as the cycle start-end locations.

Cleaning with templates
A custom cleaning procedure based on some ideas pro-

posed by Li et al. [2] was developed. The procedure tra-
verses the PPG signal with a 15-second sliding window
and creates a cycle template T of length L as the aver-
age of all the detected cycles in the current window. Then,
individual cycles are compared to the template and kept
when the matching is high, and discarded otherwise. Cycle-
template matching is assessed using three signal quality
indices (SQls): 1.) SQI1 — direct linear correlation using the
Pearson’s correlation coefficient, 2.) SQI2 — direct linear
correlation, only now each cycle is linearly resampled to
length L, using piecewise linear interpolation or extrapola-
tion, 3.) SQI3 — correlation between the time-warped cycle
and the template, as given by Dynamic Time Warping.

Machine learning
In order to predict BP, a number of features describing the

morphology of the PPG waveform were computed. Tempo-

ral features based on related work are shown in Figure 2.
The base set of temporal features was expanded with some
from the frequency domain, namely the amplitudes and the
phases of the frequency domain representation of the 15-
second PPG segment containing the current cycle. Finally,
the set of features was completed with complexity and mo-
bility (Hjorth parameters), which were also computed for a

given 15-second segment.

The set of computed features was fed into a feature se-
lection algorithm, which aims to select a smaller subset of
features that minimize redundancy and maximize relevance
to the target variable. The RReliefF algorithm was used.
The algorithm was ran 10 times, each time applied to 10%
of data instances chosen randomly. The features with over-
all positive non-zero importance were chosen to be used in

regression.

Experimental evaluation
Leave-one-subject-out (LOSO) experiment was conducted,
as it is the most robust in terms of generalization, being
completely subject-independent. To evaluate the perfor-
mance, mean absolute error (MAE) was chosen as the
metric as it is widely used and intuitive. Initial errors were
around 10 mmHg for SBP and 6 mmHg for DBP. Results
were further improved using personalization. This means
that a small number of instances of the left-out subject was
used for training and removed from the test data. This addi-
tionally lowered the MAE as shown in Figure 3.

Using this experiment, several algorithms were compared.

The results were always superior to a baseline dummy re-

gressor, which always predicted the mean of the train data.
A bagged ensemble of regression trees using only the se-

lected relevant features has been consistently the best.



Discussion points

« Dummy errors seem rela-
tively low. lts performance
can be explained by the
fact that almost all the
BP data is in a rather lim-
ited range, since all the
subjects have similar BP.

+ Personalization in practice

means the user should

do a few ground-truth BP
measurements with a
validated commercial de-
vice. The model can then
personalize to the user,
improving its accuracy.

+ A complex model shows
much better performance
compared to a linear
model, hinting at a com-
plex relationship between
PPG and BP.

» There is a default error in
ground-truth BP coming
from the device itself. For
precise evaluation, arte-
rial BP should be used as
ground truth.

» System could be used in-
formatively, but probably
not yet in medicine.
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Figure 3: LOSO experiment results with personalization.

Conclusion

The major contribution of our work is the creation and vali-
dation of an unobtrusive system capable of continuous BP
estimation using only a wristband. The system removes
the need for a professional PPG sensor in a fingertip de-
vice or additional sensors required by the PTT approach.
The main novelty lies in the robust preprocessing module
capable of obtaining high-quality cycles from a noisy wrist-
band signal. Another contribution is the collection and use
of a unique wristband-collected PPG dataset. It was shown
through evaluation that the system is capable of building re-
gression models with good predictive performance, as the
errors borderline meet the requirements set by the British
Hypertension Society (BHS) and the Association for the

Advancement of Medical Instrumentation (AAMI) standard.
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