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Abstract

Background: Alzheimer’s disease has been known for more than 100 years and the underlying molecular
mechanisms are not yet completely understood. The identification of genes involved in the processes in Alzheimer
affected brain is an important step towards such an understanding. Genes differentially expressed in diseased and
healthy brains are promising candidates.

Results: Based on microarray data we identify potential biomarkers as well as biomarker combinations using three
feature selection methods: information gain, mean decrease accuracy of random forest and a wrapper of genetic
algorithm and support vector machine (GA/SVM). Information gain and random forest are two commonly used
methods. We compare their output to the results obtained from GA/SVM. GA/SVM is rarely used for the analysis of
microarray data, but it is able to identify genes capable of classifying tissues into different classes at least as well as the
two reference methods.

Conclusion: Compared to the other methods, GA/SVM has the advantage of finding small, less redundant sets of
genes that, in combination, show superior classification characteristics. The biological significance of the genes and
gene pairs is discussed.

Background
Sporadic Alzheimer’s disease [1] is the most common
form of dementia. It is an irreversible, neurodegenerative
brain disease featuring clinical symptoms usually start-
ing at an age over 65 years, although the early-onset
Alzheimer’s disease, a rare form, can occur much earlier.

Even though there are a lot of studies on Alzheimer’s
diseases, its causes and progression are not well under-
stood. A full appreciation of the underlying molecular
mechanisms could be the key to its successful treatment.
In particular, identifying genes that have a different prop-
erty in disease affected versus healthy tissues (biomarkers)
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could help both understanding the causes of the disease as
well as suggest treatment options.

Based on gene expression data from different brain
regions of patients diagnosed with Alzheimer’s disease
and a healthy control group [2], we analyze the utility
of identifying biomarkers by a wrapper approach involv-
ing a genetic algorithm and a support vector machine [3].
The same method showed good results selecting biomark-
ers for the pluripotency of cells [4]. In this paper, we will
compare some of the results obtained for pluripotency to
the results obtained for Alzheimer. While finalizing this
comparison, we noted an inadvertent problem in the data
processing in [4], leading to slightly elevated accuracies
due to an incorrect handling of replicates. In this paper,
all results reported for the pluripotency data set were re-
done, using the correct design regarding replicates (see
Methods).

One of the important advantages of the wrapper of
genetic algorithm and support vector machine (GA/SVM)
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as a method to identify biomarkers is the observation that
it finds small gene sets that are good biomarkers in com-
bination. In particular, we identify and describe pairs of
genes that are much better suited for separating the dis-
eased and the healthy samples, as compared to the single
genes of such a pair.

Recent studies [5-8] have identified new candidate genes
associated with Alzheimer’s disease. The candidate genes
selected in [5,6] are based on the expansion of refer-
ence gene sets whose role in the disease is already well
defined. In contrast, we provide a method that allows
the identification of new candidate genes for Alzheimer
from microarray data, without including any prior knowl-
edge. Therefore, we are able to use gene sets and net-
works already associated with Alzheimer’s disease as a
first independent validation for the biological relevance of
our results. The approaches in [7,8] are closer to ours in
that they also do not rely on prior knowledge. They use
Independent Component Analysis [7] and Special Local
Clustering [8], respectively, to transform gene expres-
sion data, and then select candidate genes in a relatively
straightforward fashion. In contrast, we work directly with
gene expression data, and use a more complex method of
selecting candidate genes.

Results
In [4], we introduced the GA/SVM algorithm that shows
good results identifying pluripotency related genes using
a pluripotency-related (PLURI) data set. As we use the
same technique for analyzing the Alzheimer’s disease-
associated (AD) data set, part of the Results section is
the comparison of the results obtained on the two sets.
(See Methods section for details on these data sets.)
We then continue and analyze the specific synergistic
performance of gene pairs proposed by the GA/SVM
approach using the AD data set as well as the PLURI
data set.

Classification
As a first step of our analysis we look at the classifica-
tion performance of five different classification methods,
implemented as described in the Methods section. Table 1
shows the cross-validated classification accuracy for all
five methods on the AD data set. We also provide the
results we obtained on the PLURI data set already pub-
lished in [4] for comparison, based on the corrected
cross-validation scheme (see Methods).

For both data sets the SVM with linear kernel shows
the highest classification accuracy with 91.9% on the AD
data set and 99.0% on the PLURI data set. The lowest
accuracies are obtained by the C4.5 decision tree clas-
sifier and the Naive Bayes classifier with an accuracy
smaller than 82% on AD and smaller than 96% on PLURI.
The performance of the other three classifiers is in the

Table 1 Accuracy of six classifiers

AD PLURI

Naive Bayes 81.4% 87.1%

C4.5 decision tree 78.9% 95.1%

Nearest neighbor 87.0% 96.5%

Random Forest 87.0% 97.2%

SVM + Gaussian kernel 85.7% 97.9%

SVM + linear kernel 91.9% 99.0%

The classification results of different methods on the two 1, 000 gene data sets
AD and PLURI. The classification accuracy is computed as average from a 3-fold
cross-validation.

intermediate range. We further observe a large difference
between the two data sets. No matter what classification
method we use, the observed cross-validation accuracy is
much lower for AD than for PLURI. As SVM with lin-
ear kernel shows the best results on both data sets, we
use this classifier for evaluating the quality of the genes
selected with different feature selection methods in the
next section. Because the SVM is part of one of our
feature selection methods, we use a random forest clas-
sifier as well as SVM with Gaussian kernel to evaluate
quality of classification.

Feature selection
Feature selection is used in machine learning to select a
subset of relevant features that improves classification. We
use feature selection by information gain, random forest
and the GA/SVM to find biomarkers with a potentially
high importance in Alzheimer’s disease.

For feature selection on the AD data set, we use the same
methods as for the PLURI data set [4]. In the following
section we display all results for the AD data set and the
PLURI data set next to each other to ease the comparison
of the results.

Classification performance of selected genes
In order to give a clear statement about the quality of
the potential biomarkers found by the three feature selec-
tion algorithms, we compare the test set accuracies taking
a cross validation approach, where the genes selected
on the training set are used for classification. Therefore,
we split all samples into three subsets and prepare each
fold as described in the Methods section. The resulting
1,000 genes of each fold are sorted by their importance
based on applying information gain, random forest and
the GA/SVM on two subsets as the training set, where the
GA/SVM is run 200 times on each fold. Then we select
the best 50, 40, 30, 20, 15, 10, 5, 3, 2 and 1 genes for
each algorithm and each fold and utilize these to com-
pute the classification performance using an SVM with
Gaussian kernel and one with linear kernel as well as a
random forest on the respective test sets. As classification
accuracy for each method, the average accuracy over all
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three folds is used. For each of the three folds two subsets
were used for feature selection. To test the quality of the
selected genes we train a classifier on these two subsets
using the gene expression values of these genes as input.
The classification accuracy is determined by using the
remaining subset for testing (for more details see Methods
section). As we use the SVM within the genetic algo-
rithm, the odds are that the SVM might favor the genes
found by the GA/SVM, this is why we use random forest
as well.

In Figure 1, we plot the classification results. Using
just a few biomarkers for classification, the genes selected
by information gain and random forest are better suited
for separating the samples into two classes, compared
to the genes selected by the GA/SVM. However, tak-
ing 5 or more genes for classification, the genes selected
by the GA/SVM perform better than the ones cho-
sen by the other two methods. No matter if we use
an SVM or random forest as classifier, we observe the
same results.

Figure 1 Classification accuracy of selected genes. Classification accuracy of three classifiers using incrementally smaller sets of genes, identified
by our three feature selection methods.
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Mutual information of selected genes
For each feature selection method we construct all possi-
ble gene pairs from the 50 top-ranked genes. We calculate
the mutual information [9] for each of those gene pairs.
Figure 2 shows the Gaussian density estimations of the
resulting mutual information values for the three feature
selection methods.

For both data sets we find that the mutual informa-
tion in the genes selected by our GA/SVM algorithm is
lower than in the genes selected by information gain and
random forest. Furthermore we observe a large differ-
ence between the PLURI and the AD data set. For all
three methods the mutual information obtained in the top
50 ranked genes is higher in the PLURI than in the AD
data set.

Performance of small biomarker sets
Since the advantage of the GA/SVM is that it finds small
sets of genes well suited for classifier training when used
together, we compare the classification performance of
the individual small gene sets selected in single runs of
the GA/SVM to the performance of those genes found
most often in all different runs (as before), collecting all
genes together, from all runs of the GA/SVM. We use the
same three folds as for the performance analysis described
above, for selecting the genes for training and testing the
classifier. As accuracy we calculate the average over all
three folds. Again we run the GA/SVM 200 times on each
fold and rank the genes for each fold by the frequency of
their occurrence. Then we take incrementally smaller sets
of the top ranked genes and use them for classification
on the test set of the respective fold using an SVM with
Gaussian kernel. Each of the runs of the GA/SVM results
in a small set of genes which are supposed to work well
together for classification. Thus, we use each set of genes
for the training of a Gaussian SVM and combine the accu-
racies by computing the mean accuracies for all sets with

a specific number of genes. This is done again for each
fold separately and in a last step the average over all three
folds is taken. Figure 3 shows the results of this compar-
ison. The classification accuracy of the small sets found
by the GA/SVM in a single run is usually higher than the
accuracy of the combined list.

Top genes
Table 2 lists the top 20 most important genes selected by
each of the three feature selection methods (GA/SVM,
information gain and random forest) and a list of genes
obtained by combining the results of the three meth-
ods as described in the Methods section. Here, we base
the estimation of the important genes on all samples and
increase the number of runs of the GA/SVM to 500.

We observe more similarities between the top genes
identified by information gain and random forest. How-
ever, they both have genes in common with the genes
found by the GA/SVM. Besides, the top three genes in
the overall list are ranked among the top 20 by all three
algorithms.

Enrichment analysis
To demonstrate the biological relevance of our biomarker
candidates we perform an over-representation analysis (as
described in the Methods section). We study the over-
representation of the genes identified as most important
biomarkers by the three feature selection methods (infor-
mation gain, random forest and GA/SVM) in pre-defined
lists of genes known to play a role for Alzheimer’s disease.
Our gene sets are analyzed for enrichment with respect
to various gene sets associated with Alzheimer’s disease.
Since there is no pre-defined number of most important
genes, we start with the best 40 genes and increase the
number in steps of 20 up to 200 genes. That way we obtain
9 gene sets for each of the three feature selection methods.

Figure 2 Mutual information. Density of mutual information of the top 50 genes for three feature selection methods.
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Figure 3 Classification accuracy of small gene sets. Classification accuracy measured by an SVM with Gaussian kernel. For training the classifiers,
we use incrementally smaller sets of best ranked genes (combined list) and the small gene sets found by the GA/SVM in single runs.

In Figure 4 we find a significant enrichment (p-value <

0.05) for nearly all of the tested gene sets in the list of
genes associated with Alzheimer’s disease by GeneCards
(www.genecards.org). The biomarkers found by informa-
tion gain and random forest are significantly enriched in
the KEGG pathway of Alzheimer’s disease [10] as well as

Table 2 Top 20 genes

GA/SVM Information gain Random forest Overall

loc642711 flj11903 loc283345 loc283345

prkxp1 tncrna flj11903 pcyox1l

loc283345 loc283755 loc642711 c6orf151

sst ptpn3 gprasp2 mid1ip1

ly6h pcyox1l tncrna bcl6

ercc3 ppih pcyox1l ppih

loc643287 hsd17b7 mid1ip1 maff

tnni3k gprasp2 pdzd11 sst

cdk2ap1 loc283345 maff hsd17b7

fbxo16 c6orf151 loc283755 cdc37

gem mettl7a flj25477 ep300

taf3 mrps22 bcl6 flj11903

znf415 cdc37 palld loc645352

loc285927 nfkbia loc645352 prr11

mael fam63a eif3s12 taf3

supv3l1 rad51c slc12a7 terf2ip

c6orf151 anp32b mgc12488 scrib

fam54b ubxd4 nfkbia pdzd11

pcyox1l terf2ip c6orf151 gprasp2

ep300 bcl6 atp5b mxi1a

The top 20 genes selected by the three feature selection methods. Additionally,
an overall gene list of all three methods is shown. The genes occurring in all four
lists are highlighted in bold.

in the two collections of Alzheimer’s disease related genes
by Genotator [11] and AlzGene [12]; in case of GA/SVM,
only enrichment (without significance) is observed. The
genes found by the GA/SVM show a significant enrich-
ment, however, in the brain specific gene lists of Soler et
al. [13] and Goni et al. [14]. Notably, while the list of Soler
et al. is also enriched in the genes found by information
gain and random forest, the gene list of brain-specific tis-
sue found by Goni et al. is only significantly enriched in
the gene lists of size 100 and more that are derived by
our GA/SVM. In the blood specific list of Goni et al. none
of the three feature selection methods yields gene sets
showing an enrichment.

Interaction analysis
As shown in the previous sections, our GA/SVM finds
genes that are suitable for separating two groups of sam-
ples on the basis of their gene expression values, but there
are other methods showing a good performance on this
problem as well. Compared to information gain [15] and
random forest [16], the GA/SVM differs fundamentally,
however. During each run it selects a specific small set of
genes. On average, these sets show an even better clas-
sification capability than the genes of the combined list
(see Figure 3). Explicitly selecting small sets of features,
we can not only find good biomarkers, but we can also
observe joint occurrences of genes well suited for train-
ing classifiers. Some gene pairs in the selected feature sets
consist of two genes occurring at the frequency expected
if we assume that the genes contribute independently to
the classification performance of the SVM that is wrapped
by the GA. Other gene pairs are present more frequently
(over-represented) or less frequently (under-represented)
than expected, so we assume that those genes are not inde-
pendent of each other. These gene pairs are the subject in
the analysis that follows.

www.genecards.org
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Figure 4 Gene set enrichment analysis. Results of the gene set enrichment analysis for incrementally larger sets of genes found by the three
feature selection methods. Green: significant enrichment (p-value < 0.05). Yellow: enrichment. Red: no enrichment.

As described in the Methods section, for each gene pair
we calculate the strength of over- or under-representation
(importance jo) considering 3,000 small gene sets selected
by the GA/SVM. This way, we are able to label which
gene pairs are most over-represented and which are most
under-represented in the small gene sets. We use 3,000
small sets to ensure a sufficiently large number of sig-
nificantly over- and under-represented gene pairs for our
analysis, where significance is defined as described in the
Methods section. For the same reason, we examine gene
pairs instead of triples or combinations of more than three
genes. Further, we use an SVM with Gaussian kernel to
determine the SVM classification accuracy (SVMacc), the
mean gain of accuracy (SVMgainMean) and the minimal
gain of accuracy (SVMgainMin) of each gene pair (see
Methods section).

Figure 5 shows the SVM classification accuracy
(panel(a)), the mean gain of accuracy (panel(b)) and the
minimal gain of accuracy (panel(c)), each time averaged
over the 3, 6, 9, . . . , 75 most over- and under-represented
gene pairs.

In Figure 5(a) we consistently obtain a higher classifi-
cation accuracy for the most over-represented gene pairs
than for the most under-represented gene pairs. However,
we are not primarily interested in the absolute classifi-
cation accuracy of those gene pairs, but in the relative
gain of accuracy observed by combining two genes. In
Figures 5(b) and 5(c) we illustrate the gain of accuracy we
obtain by combining two genes. The mean accuracy gain
as well as the minimal accuracy gain is significantly larger
for the most over-represented gene pairs than for the
most under-represented gene pairs (two-tailed t-test [17],
p-value ≤ 0.05). Furthermore we observe a decrease of
accuracy gain, the more less important over-represented
gene pairs we add. The inverse applies for the under-
represented gene pairs. Here we see a slight increase of
accuracy gain, the more under-represented gene pairs
we add.

Figure 6 shows the gene expression diagrams of the
single most over- as well as the single most under-
represented gene pair for each data set. The figure gives

a visual impression of the accuracy gain obtained by
combining two such single genes, enabling inspection
of their expression patterns in two dimensions. The
line charts show the Gaussian kernel estimates of the
gene expression distribution of the single genes. The
distribution is shown for each of the two categories
of samples separately, using the red line for affected
(Alzheimer respectively pluripotent) and the black dotted
line for non-affected samples (healthy respectively non-
pluripotent). The scatterplot shows the expression values
of both genes in two dimensions. In the density charts
of the most over-represented gene pairs we see a large
overlap of the two classes, whereas the overlap in the scat-
terplot is much lower. For the most under-represented
gene pairs we see a large overlap of the two classes in the
density diagram as well as in the scatterplot. The corre-
sponding SVM accuracy of the single genes as well as the
SVM accuracy for the gene pairs and the mean and mini-
mal gain of accuracy are given in Tables 3 and 4. We note
that the accuracy gain is high for most over-represented
gene pairs.

Discussion
We split the discussion into three parts. The first part
concerns the quality of the three feature selection meth-
ods information gain, random forest and GA/SVM as
well as the classification performance of different classi-
fiers. The second part deals with the over- and under-
represented gene pairs selected by the GA/SVM. Finally,
we discuss the biological relevance of the selected
genes.

Comparison of the three feature selection methods
Usually, regulatory processes in a cell are very complex
and single genes are not able to explain all aspects of a
biological cell state. For this reason, combining the best-
ranked genes to improve the classification capability is
a frequently used approach [18,19]. However, combining
redundant genes usually does not improve the classifica-
tion capability of a gene set much.
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Figure 5 Accuracy and accuracy gain of the most over- and under-represented gene pairs. Accuracy and accuracy gain of the most over- and
under-represented gene pairs. As we obtain only 38 significantly over-represented gene pairs for the PLURI data set, the upper lines for the PLURI
data set are truncated.

Figure 1 shows the classification capability of incremen-
tally smaller sets of genes ranked top by our three feature
selection methods. Independently of the classifier used
to evaluate the resulting gene list, we observe very sim-
ilar results. There does not seem to be any particular
preference for the GA/SVM if the SVM is used to mea-
sure performance. This suggests that the selected genes
generally have a good classification capability. Comparing

classifiers only trained with the best 50 genes (Figure 1)
to classifiers trained with the larger set of 1000 genes
(Table 1), we find nearly no difference in classification
accuracy. We assume this to be another piece of evidence
for the quality of the selected biomarkers.

For both data sets we observe the same two main points.
First, if we use only few genes for training a classifier,
the genes selected by information gain and random forest
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Figure 6 Visualisation of the most over- and under-represented gene pairs. Visualisation of the most over- and under-represented gene pairs
of the AD and the PLURI data set. The scatter plots show the distribution of the gene expression values of the samples for the pairs of genes. The
density diagrams show the distribution of gene expression values of the samples for single genes. The pluripotent and Alzheimer affected samples
are marked by + and continuous lines (red), the non-pluripotent and healthy samples are marked by 0 and dotted lines (black).

show better classification results than the genes selected
by GA/SVM. Second, if we use five or more top ranked
genes, the genes selected by GA/SVM are better.

Expanding on [4], we explain these observations by
the differences between the three feature selection meth-
ods. Information gain ranks a gene only considering the
gene expression values of this single gene. For this rea-
son we expect a lot of redundancy among the top ranked

genes. The results in Figure 1 show that the accuracy
increases slowly as we increase the number of genes
used for classification, which probably happens precisely
because combining redundant genes does not improve the
classification accuracy much. Nevertheless, the Shannon
entropy [20] (used by information gain) seems to be a
good ranking criterion, as the top ranked gene shows a
very good classification capability.

Table 3 Most over/under-represented gene pairs

Gene pair SVMacc SVMgainMean SVMgainMin Data set

SLC39A12/LAP3(↑) 80% 14% 10% AD

SLC39A12/GEM(↓) 71% 2% 1% AD

Utp20/Irx3(↑) 92% 13% 11% PLURI

Otx2/Gbx2(↓) 88% 4% 3% PLURI

Most over(↑)- and most under(↓)-represented gene pairs and their corresponding accuracies.
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Table 4 Single genes of the most over/under-represented
gene pairs

Gene SVMacc Data set

SLC39A12 70% AD

LAP3 63% AD

GEM 69% AD

Utp20 81% PLURI

Irx3 77% PLURI

Otx2 83% PLURI

Gbx2 85% PLURI

Accuracies of the single genes contained in the most over(↑)- and most
under(↓)-represented gene pairs (see Table 3).

In contrast to information gain, random forest deter-
mines the importance of a gene based on the classifica-
tion capability of that gene in multiple trees. This way
the score of each gene depends on the gene expression
value of other genes as well. Nevertheless, usually the
list of top ranked genes still contains many redundancies
(see Figure 2). This explains why combining multiple top
ranked genes does not distinctly improve the classification
capability of the trained classifier.

In contrast to these two methods, our GA/SVM has
a strong tendency to eliminate redundant genes. This
is demonstrated by the observed low values of mutual
information (see Figure 2) measuring the mutual depen-
dency of gene pairs. Thus we hypothesize that each small
gene set, selected by the GA/SVM in a single run, con-
sists of genes that fulfill different functions for the spe-
cific biological state. If multiple genes are redundant,
only one of those redundant genes tends to be cho-
sen by chance, as a member of a gene set. For this
reason, ranking the genes by their frequency of occur-
rence in the small gene sets, genes with many redundant
partners are infrequent. The genes best ranked by the
GA/SVM tend to have no redundant partners in the list of
top ranked genes concerning the specific biological state
(Alzheimer affected; pluripotent). Combining top ranked
genes strongly improves the classification capability of a
gene set, as can be seen in the sharp rise (from right to
left) in the accuracy as the number of genes increases in
Figure 1.

Analyzing the 50 top-ranked genes of each feature selec-
tion algorithm we observe that the genes selected by
the GA/SVM algorithm on average show less pairwise
mutual information than those selected by information
gain and random forest. As the mutual information of
two genes is a measure for the mutual dependency of
the genes we assume that on average two genes selected
by our GA/SVM algorithm depend on each other in a
weaker degree than genes selected by the other two fea-
ture selection methods. As a high mutual dependency

reveals redundancy between the genes, this supports our
assumption that the gene lists selected by the GA/SVM
algorithm contain less redundancies than the genes
selected by information gain and random forest.

Even though GA/SVM is known to show good results
in feature selection [3,4,21,22] the utility of the small gene
sets selected during a single run has not been investigated
in-depth yet. In the following section we consider this
topic.

Analysis of the small gene sets of GA/SVM
Many machine learning methods used for learning
biomarkers, such as information gain [15] and random
forest [16], perform only univariate ranking of genes.
Although the top-ranked genes are valuable hints for
understanding the underlying molecular mechanism of
cellular processes, these processes are usually more com-
plicated than single genes are able to explain. We are,
therefore, interested in small sets of genes that best distin-
guish Alzheimer diseased versus healthy tissues (respec-
tively pluripotent versus non-pluripotent cells).

In the previous section we discussed that small sets of
genes obtained from the GA/SVM combined list are bet-
ter suited for classification than those from information
gain and random forest. Small sets individually selected by
the GA/SVM have an even higher classification accuracy,
as seen in Figure 3. For this reason, we conclude that the
assembly of specific genes in a small set plays an impor-
tant role for the prediction accuracy of classifiers using
the genes selected by our GA/SVM. Therefore, it is use-
ful to examine gene pairs that occur more frequently or
less frequently than expected in the small gene sets of the
GA/SVM.

In Figure 5 we display the difference between the most
over- and under-represented gene pairs in absolute clas-
sification accuracy as well as in mean and minimal gain
of accuracy. We observe that gene pairs often selected
together in a single small gene set of the GA/SVM are
on average better suited for separating the two groups
of samples than those gene pairs rarely selected together
(Figure 5(a)). Further, we observe that the GA/SVM
prefers to assemble those genes whose combination leads
to an increase (gain) of classification accuracy (Figure 5(b)
and Figure 5(c)). We propose that non-redundant genes
are chosen together much more often than redundant
genes.

Figure 6 shows the most over-represented and under-
represented gene pair for both data sets. The correspond-
ing SVM accuracies can be found in Tables 3 and 4. For
the AD data set the two genes LAP3 and SLC39A12 indi-
vidually have a low classification capability (accuracy: 63%
and 70%, respectively). However, LAP3/SLC39A12 is the
most over-represented gene pair in the AD data set. Com-
bining the two genes increases classification accuracy to
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80%. Figure 6(a) illustrates the similar distribution of the
two sample groups regarding the single genes, as well
as the straight separability of the samples using both
genes. Using a simplified rule, we may classify a sam-
ple as Alzheimer-affected if the gene expression value of
SLC39A12 is larger than the expression value of LAP3.

For the most over-represented gene pair of the PLURI
data set we make some similar observations. Combining
the single genes Irx3 and Utp20 with individual classifi-
cation accuracies of 77% and 81% increases accuracy to
92%. In Figure 6(b) we find the sample distribution con-
cerning the single genes even better separable than for
Lap3/SLC39A12 (see Figure 6(a)). Using a simple rule, we
classify a sample as pluripotent if Utp20≥ 8 and Irx3≤ 6.

For the two most under-represented gene pairs in
Figure 6(c) and Figure 6(d) we cannot determine such an
easy rule for distinguishing the two sample groups. From
a biological point of view we hypothesize that the genes
contained in the pairs occurring in the small sets selected
by the GA/SVM more often than expected are responsible
or indicating the specific biological state, but we assume
that they are not co-regulated and, therefore, not corre-
lated. Instead we hypothesize that the genes fulfill differ-
ent functions with respect to the specific biological state.
We find indirect evidence for this hypothesis by inspecting
Gbx2/Otx2, which constitute the most under-represented
gene pair in the PLURI data set. Otx2 and Gbx2 are both
known to play a role in pluripotent and undifferentiated
stem cells [23,24]. Further, Gbx2 and Otx2 interplay as
antagonists in cellular processes [25-27]. This negative
correlation suggest that the two genes are redundant and,
therefore, selected together rarely in a small set of genes
by the GA/SVM. Inspecting the other gene pairs displayed
in Figure 6 we find no reference to their interactions or
redundancy in the literature. Thus, it is future work to
investigate our hypothesis in more detail, optimally in a
systematic way.

Comparison of the two data sets
Performing the same analyses on two different data sets
(PLURI and AD) enables us to compare the two data sets
with each other and draw some conclusions about the two
biological phenomena.

Besides many similarities between the two data sets
already discussed in the two previous sections we also
observe an important difference. Independently of the
analysis performed, we observe a difference in absolute
classification accuracy between the two data sets. Per-
forming the same analysis, the accuracy obtained on the
PLURI data set is usually at least 5% higher than on the
AD data set (see Figures 1, 3 and 5(a) as well as Tables 1, 3
and 4).

Another interesting point is the different size of the
small gene sets selected by the GA/SVM on AD and

PLURI. Starting with approximately 15 genes in the start
chromosomes of the GA/SVM, the algorithm selects up
to 15 genes in the final small sets on the AD data set
but only up to 8 genes on PLURI. For that reason we
can assume that more genes are required for separating
Alzheimer’s disease affected samples from healthy ones
than pluripotent from non-pluripotent.

There are two possible reasons for the differences
between the two data sets. (1) As the size of the two data
sets differs a lot (containing 286 samples in the PLURI
and 161 samples in the AD data set) and machine learning
methods work best on large data sets, increasing the num-
ber of samples of AD could improve the ability of training
a good classifier. (2) There are differences in the number
of genes involved in pluripotency and Alzheimer’s disease,
and in the way these genes function together. This could
lead to specific difficulties in the classification problem
based on the respective data sets. Both reasons are also
supported by the different sizes of the small sets selected
by the GA/SVM.

Biological relevance of the selected genes
In this subsection we discuss the biological relevance of
our results on the AD data set.

First, we elaborate on the enrichment analysis per-
formed on the best genes selected by the three feature
selection methods (see Figure 4). Second, we discuss the
top genes in detail (see Table 2).

The gene list provided by GeneCards (www.genecards.
org) when searching for Alzheimer’s disease is the most
extensive one. All of the gene sets computed by the three
feature selection methods show a significant enrichment.
For the two gene lists offered by Genotator [11] and
AlzGene [12] the biomarkers selected by information gain
as well as random forest show a significant enrichment.
The genes selected by the GA/SVM still show an enrich-
ment. The experimental gene expression array studies of
Soler et al. [13] (brain) and Goni et al. [14] (blood+brain)
show an interesting point. Whereas the genes found by
the GA/SVM are enriched in both studies concerning the
brain, for information gain and random forest we only find
an enrichment in the gene list of Soler et al. As we use only
samples of brain tissues, it is understandable that none
of the methods show an enrichment in the blood-based
genes found by Goni et al.

The top five genes we found using the GA/SVM
are LOC642711, PRKXP1, LOC283345, SST and LY6H.
Although some of these genes are not yet well character-
ized, we can identify a relevance for Alzheimer’s disease
for the majority of them.

The GA/SVM wrapper method found that LOC642711
is a very good choice for a small set of genes that can
discriminate Alzheimer-affected brain tissue from non-
affected brain tissue. However, LOC642711 has a RefSeq

www.genecards.org
www.genecards.org
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status of ’withdrawn’. To shed some light on this, we
performed a nucleotide BLAST search with the with-
drawn RefSeq, accession XM 931285.1, using standard
parameters. The best match (see Additional file 1) is
NR 036650.1, the ’WAS protein homolog associated with
actin, golgi membranes and microtubules pseudogene
(LOC100288615)’, which is 100% identical to our probe,
over 75% of its length. This pseudogene is abbreviated
as WHAMMP3, WHAMML12 and WHDC1L1 (accord-
ing to GeneCards), and very recently is was shown to be
part of a duplication on chromosome 15 associated with
Alzheimer [28]. Also, sorting in post-golgi compartments
has been implicated in AD [29]. Further analyses and
experiments are needed to find out about the expression
pattern of this pseudogene and its possible involvement in
Alzheimer’s disease.

Recently, PRKXP1, SST and TNCRNA (also known as
NEAT1, listed second by information gain) were identified
by Squillario and Barla [30] as part of a 39 gene signature
implicated in Alzheimer’s disease.

LOC283345, known as RPL13P5, is ranked by all three
feature selection methods as one of the best 20 genes,
although we have not found any link to Alzheimer’s
disease. However, RPL13 has been implicated in severe
Alzheimer [7] although it is also known as a housekeeping
gene, in qRT-PCR studies in autopsy brain tissue sam-
ples from control and Alzheimer diseased cases [31] and
it indeed shows a very low log fold change of 0.04 in our
data set. However, its pseudogene 5 shows a very high log
fold change of 0.96. Therefore, we assume that there is an
unknown link between the pseudogene and Alzheimer’s
disease, possible mediated by the original RPL13 gene.
Alternatively, there may be unknown phenomena that
confound the distinction between the pseudogene and the
gene itself.

PRKXP1 is another pseudogene; interestingly the origi-
nal gene PRKX is patented as an Alzheimer’s disease diag-
nostic and therapeutic target (http://www.google.com/
patents/US20090136504).

SST (somatostatin), see also [30], expression was shown
to be decreased in cortex and hippocampus of Alzheimer-
affected brains [32]. SST also occurs in the top 20 overall
list, since it is ranked high by information gain and ran-
dom forest as well.

LY6H is patented as a brain-specific gene for treating
Alzheimer’s disease (http://www.freepatentsonline.com/
y2004/0254340.html).

Besides LOC283345, LOC642711 and TNCRNA (see
above), the random forest ranks FLJ11903 and
GPRASP2best. The function of the pseudogene FLJ11903
is not yet known. GPRASP2 encodes a protein that was
shown to interact with several GPCRs (G protein-coupled
receptors), which are relevant for the signal transduction
system in Alzheimer’s disease [33,34].

Similar to random forest, information gain ranks
FLJ11903 and TNCRNA best. It further chooses
LOC283755, PTPN3 and PCYOX1L as most important
genes. The protein encoded by PTPN3 (also known
as PTPH1) belongs to a family known as cellular pro-
cess regulating signaling molecules. A PTPH1 inhibitor
is patented for the treatment of Alzheimer’s disease
(http://www.freepatentsonline.com/y2011/0015254.html).
Moreover, PTPN3 is a phosphatase and phosphoryla-
tion of the tau protein is considered highly relevant for
AD progression [35]. The two genes LOC283755, also
called HERC2P3, and PCYOX1L are not yet related
to Alzheimer’s disease. Nevertheless, PCYOX1L is the
second highest ranked gene in the overall list.

An interesting gene in the overall list, following
LOC283345 and PCYOX1L, is C6ORF151. As the two
others, it is ranked by all three selection methods as one
of the top 20 genes. Likely, C6ORF151 is involved in U12-
type 5’ splice site recognition; also known as SNRNP48
it participates in the massive transcriptional downregu-
lation seen at late stage neurodegenerative (ALS) disease
affecting mRNA metabolism and processing as well as
RNA splicing [36].

The gene ranked 4th overall, MID1IP1, is among the
top-10 genes found upregulated in the Alzheimer neo-
cortex [37]. Finally, the gene ranked 5th overall, BCL6,
is (together with CD24) the only immunity-related gene
with significantly higher expression in severe Alzheimer’s
disease that was singled out by principal component anal-
ysis (PCA) [7].

Recapitulating, we can demonstrate that the majority
of the genes found by the three feature selection meth-
ods are related to Alzheimer’s disease. The genes not yet
associated with Alzheimer’s disease will have to be further
examined.

Conclusion
Using our GA/SVM wrapper approach we identified new
candidate biomarkers and, moreover, small sets of these,
for Alzheimer’s disease, potentially providing new insights
into the associated molecular processes. We expect that
future biological experiments can test some of our com-
putational predictions.

Compared with two popular feature selection meth-
ods, information gain and random forest, our GA/SVM
shows the most promising results in finding new poten-
tial biomarkers. Usually, single genes are not responsible
for the behavior of a cell. That is why we are also inter-
ested in finding genes who together are best suited to
distinguish Alzheimer-affected cells from healthy ones,
as compared to the single genes. While common feature
selection methods do not consider such gene interactions
for finding biomarkers, our GA/SVM not only considers
these interactions in biomarker selection, it also enables

http://www.google.com/patents/US20090136504
http://www.google.com/patents/US20090136504
http://www.freepatentsonline.com/y2004/0254340.html
http://www.freepatentsonline.com/y2004/0254340.html
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us to identify pairs of genes relevant for Alzheimer’s dis-
ease that classify the samples very well when they are used
in combination.

One promising way to improve the GA/SVM approach
that we consider important future work is the use of
specialized recombination and mutation operators based
on directly feeding back ranking information based on
the SVM results. Such approaches have been previously
described in [38-40].

In the future, we would like to test our method on
many more data sets, describing a wider variety of cellular
phenotypes and diseases.

Methods
Gene expression data
On the subject of Alzheimer’s disease, surprisingly few
large studies of gene expression exist. We use the data
set GSE5281 as a comparatively large data set with raw
data available. This data series consists of 161 samples
of six different brain regions. 87 samples are of patients
diagnosed with Alzheimer’s disease whereas the other 74
samples are from a healthy control group [2]. The exper-
iments are based on an Affymetrix human genome U133
Plus 2.0 array. We refer to this data set as the AD data set.

As the samples of different brain regions partially orig-
inate from the same volunteers, we deal with partially
correlated sample structures. To perform a proper cross
validation on the data set, we ensure that all samples
of the same patient are either in the training or in the
test set. This way the training remains completely inde-
pendent of the testing. Each sample is treated as a spe-
cific characteristic of either an affected or an unaffected
brain and analyzed as if being an independent measure-
ment. Furthermore, each sample can be associated with
one of six brain regions. For each brain region the data
set consists of approximately the same number of sam-
ples. To ensure that we identify genes that are usable
for distinguishing between Alzheimer affected and non-
affected samples and not between samples of different
brain regions, we additionally take care of using uni-
form proportions of the brain regions in the training and
test sets.

For comparison, we also discuss feature selection and
machine learning results obtained with another data set
referred to as PLURI. This set contains 146 pluripotent
and 140 non-pluripotent samples of mouse cells. Here, all
experiments are based on an Affymetrix mouse genome
430 2.0 array. The PLURI data set contains multiple repli-
cates. To enable a proper cross validation with indepen-
dent training and testing, in this paper we ensure that all
replicates of a sample belong either to the training or the
test set. We inadvertently did not follow this approach in
[4], reporting slightly elevated accuracies there. A side-by-

side comparison of all results for Alzheimer and pluripo-
tency can be found in the Additional file 2.

Data preprocessing
We accomplish data preprocessing in the same way as
described in [4]. In the following, we give an overview of
this process.

First, we summarize the Affymetrix gene expression
arrays by using the Affymetrix Power Tool [41] imple-
menting the robust multi-array average (RMA) method
[42,43]. We use unmodified perfect match intensities for
background adjustment, quantile normalized intensities
[44] and median polish as summation method [42,43].

Before further filtering the data set, we combine all
Affymetrix probe set identifiers that correspond to the
same gene symbol from the UniGene record [45] by cal-
culating the mean value. At this point, the two data sets
contain gene expression data for 19, 762 (AD) and 20, 668
(PLURI) genes.

We split the analysis of the two data sets into two parts:
(1) Analyzing the performance of classification algorithms
and (2) finding best biomarkers. For (1) we use a suitable
cross-validation approach with independent training and
test sets. For that reason, we split the data sets into three
subsets, to set up a three-fold cross-validation process
using the same folds for each classification and feature
selection algorithm. For each of the three folds two sub-
sets are used for training, whereas the remaining subset
is used for testing. The partitioning of the two data sets,
following the rules set forth in the first section (’ Gene
expression data’), can be found in the Additional files 3
and 4. In order to find the best biomarkers (2), we avoid
information loss by using the whole data set for the
feature selection process.

As the first step of our analysis, we perform the fol-
lowing filtering process for each of the three training sets
(1) as well as for the whole data set (2), for both AD and
PLURI. As we are interested in genes that are responsible
for distinguishing the two classes of samples (affected
and unaffected by Alzheimer’s disease, pluripotent and
non-pluripotent), genes that show different expression
values between these two groups of samples are identified
by applying a two-sample t-test for samples with unequal
variances. Then, the genes are sorted by their corrected
p-values based on the concept of false discovery rate [46].
We dismiss all genes with a false discovery rate estimate
larger than 0.1. After removal, we calculate the fold
changes of the remaining genes. The fold change is com-
puted using the difference between the means of the
two groups of samples taking the normalized expression
data at the log level. The genes are finally sorted by their
fold change in decreasing order, and the data set used
for feature selection consists of the first 1, 000 genes in
this ranking.
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Classification
We use six classification methods, all provided by the
Weka machine learning suite [47], namely Naive Bayes
[48,49], C4.5 decision trees [49,50], Random forest [16],
Nearest neighbor [49,51] and SVM [49,52] with linear and
Gaussian kernel.

As measurement of the classification performance of
these algorithms we use their classification accuracies.
The classification accuracy is defined as the number of
correctly classified instances divided by the total number
of instances.

All parameters of the machine learning algorithms are
kept at Weka’s default values with two exceptions. First,
for the SVM with Gaussian Kernel, we use the default
parameters of LibSVM [53], because we use the LibSVM
implementation inside the GA/SVM. Second, for classi-
fication with random forest, we build 1000 trees (default
10), to reduce variability of the results.

Feature selection
We use a wrapper approach combining genetic algorithm
and support vector machine (GA/SVM) [4], as well as two
well known machine learning methods, information gain
[15] and random forest [16]. As the GA/SVM approach
enables us not only to find single biomarkers, but also
to identify small sets of genes that are jointly best suited
for training a classifier, this is the method we are most
interested in.

Genetic algorithm
Feature selection with GA/SVM is performed using our
own implementation described in detail in [4], briefly
outlined in the following paragraphs.

The genetic algorithm [54] is a heuristic search method
based on the processes of natural evolution. Starting with
a population of chromosomes that encode problem solu-
tions (in our case the selection of genes/biomarkers) it
improves these chromosomes step by step. This process
proceeds over numerous generations using recombina-
tion, mutation and selection until a stopping criterion is
met, in our case 25 generations. The genetic algorithm
is known for good results for a wide range of search
problems.

We start with a population of 200 chromosomes, each
describing a set of approximately 15 genes that are con-
sidered potential biomarkers, randomly chosen from the
filtered list of 1000 genes. This gene set is scored by a
fitness function based on the classification performance
using a support vector machine [52], as follows:

fitness = (1 − weight) · accuracy + weight

× numberOfAllGenes−numberOfSelectedGenes
numberOfAllGenes

.

The first part of the fitness function ensures a prefer-
ence for gene sets with a high classification performance,
whereas the second part favours the selection of small
gene sets. As our focus is on finding correct biomarkers
we choose a small value for weight, setting it to 0.2 [55].

The term accuracy describes the classification accuracy
of an SVM with Gaussian kernel. We use the LibSVM
[53] implementation with default parameters perform-
ing a six-fold internal cross-validation to estimate the
accuracy of a given gene set. Fitness also depends on
numberOfSelectedGenes, the number of genes that the
chromosome contains. In our case numberOfAllGenes is
constantly set to 1,000 as we are working on data sets
which each consist of 1,000 genes.

Beginning with the start population, we use recombina-
tion, mutation and selection to improve it. First, two chro-
mosomes are chosen randomly depending on their fitness,
using roulette wheel selection. Using uniform cross-over
[56] a new chromosome is generated from the two parent
chromosomes. This way 160 new chromosomes are gen-
erated. Furthermore, we perform a mutation on 20 more
chromosomes, also chosen by roulette wheel selection. By
mutation, we change approximately 0.15 percent of the
bits (encoding the selection of genes). After performing
cross-over and mutation we choose the best 200 chromo-
somes out of the 380 available as starting point for the next
generation. This process is repeated 25 times.

The algorithm results in small sets of genes that are best
suited for separating the samples into two classes. In order
to assign a score to each gene and make the results com-
parable to random forest and information gain, we run
the GA/SVM multiple times and count the frequency of
occurrence of each gene in the resulting gene sets. For
the cross-validated performance analysis we run the algo-
rithm 200 times, while using the whole data set for feature
selection we run it 500 times.

For the interaction analysis we run the GA/SVM 3,000
times and use the resulting small sets for analysis.

A java implementation of the algorithm, NewGa.jar,
is available at http://sourceforge.net/projects/gasvmbmc/
files/.

Random forest
The machine learning method random forest [16] is based
on an ensemble of decision trees. Starting with a training
set of n samples and m genes, a tree is built by selecting
n samples of the training set randomly with replacement.
Out of the m genes, k genes (with k << m) are selected
randomly. First, the algorithm chooses the gene with the
largest entropy [20] as the root of the tree and splits the
samples into two subsets based on the expression values of
this gene. For each child node the algorithm again chooses
the gene with the largest entropy and splits the remaining

http://sourceforge.net/projects/gasvmbmc/files/
http://sourceforge.net/projects/gasvmbmc/files/
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sample set. This process is repeated recursively until the
leaves contain samples of one class only. As the random
forest consists of several of such decision trees, in our case
1000, classification is performed by classifying a sample
by all trees separately and determining the final class by
majority voting.

Selecting the samples for growing a tree randomly with
replacement, some samples are selected more than once
and some are never selected. These never selected sam-
ples are called out-of-bag instances. To get a measure
of the importance of a gene g, the out-of-bag instances
are classified and the number of correct classifications
are counted as cbefore. Before classifying the out-of-bag
instances again, the values of gene g in the out-of-bag
instances are permuted randomly. The new number of
correctly classified instances is called cafter . The impor-
tance of a gene g is given by the difference between cbefore
and cafter , averaged over all the trees in the forest, it is
called mean decrease accuracy.

Feature selection using random forest is performed
using a custom Weka distribution by Livingston [57].

Information gain
The information gain of a gene g quantifies the informa-
tion one gains about a class c conditioned on knowing
the gene expression value of g, neglecting the information
of all other genes. Feature selection with the information
gain is performed using Weka machine learning suite [47].

Top genes
To obtain a list of the top 20 most promising biomarkers,
the importance of each gene was computed by each of the
three feature selection methods, the information gain [15],
the random forest [16] and our GA/SVM [4].

The information gain and the random forest both assign
a real-number importance score to each gene. While the
information gain is a deterministic method, the scores
computed by the random forest vary, depending on
the randomly built trees. To minimize the variance, the
importance score given by the random forest is averaged
over three runs. The GA/SVM does not give an explicit
score. It returns a small set of genes that is suitable for
separating the given samples into two classes. To get suit-
able importance scores, we run the GA/SVM 500 times
and count the occurrence of each gene, this count is used
as the score.

These scores are comparable on the basis of ranking the
genes with respect to their importance. To compute a list
of genes combining the information of all three methods,
the ranks (not the scores) for each gene are averaged over
the three methods and the top 20 genes are chosen by their
average rank.

Gene set enrichment analysis
We apply a gene set enrichment analysis to evaluate the
biological relevance of our results. To find out whether
the genes we select in case of the AD data set are bio-
logically relevant for Alzheimer’s disease, we compare the
genes selected on the AD data set with several established
gene lists associated with Alzheimer’s disease, obtained
in different Alzheimer’s disease studies (Genotator [11],
AlzGene [12], Soler et al. [13], Goni et al. [14]) and
well known databases (KEGG [10], GeneCards (www.
genecards.org)).

A standard over-representation analysis (ORA) then
reveals whether the gene sets selected by the three meth-
ods are over- or under-represented in the established gene
lists. Taking the approach of using the hypergeometric
distribution as in [58] we estimate how likely the observa-
tions are due to chance. As reference set we use the set of
all genes that are annotated on the Affymetrix array.

Gene interactions
We examine pairs of genes that occur in combination in
the same small gene set selected by the GA/SVM. We run
the GA/SVM 3,000 times on the whole 1,000 gene data
set to obtain 3,000 small sets of genes. Each of these small
sets consists of 4 to 15 genes for AD and 2 to 8 genes for
PLURI. The number of different gene pairs for a small set
of n genes can be calculated as

n · (n − 1)

2
.

In the following, we define a joint occurrence as the
co-occurrence of two genes i and j in the same small set
of genes found by the GA/SVM. The actual number of
such co-occurrences in the 3,000 examined small sets is
denoted ki,j, and the number of occurrences of a single
gene i is denoted ki.

Based on the single gene occurrences ki and kj, the
expected frequency of a joint occurrence of genes i and
j, assuming independence of the single occurrences, is
defined as

k′
i,j = kikj

3000
.

To compute the statistical significance of the joint
occurrences, we apply a χ2-test [59,60] with 1 degree of
freedom and correct the resulting p-values using false dis-
covery rate correction [46], using a cutoff of 0.05 for the
estimated false discovery rate. As one requirement of the
χ2-test, the expectation value k′

i,j has to be larger than 5
[61], so we also dismiss all joint occurrences that do not fit
this criterion.

www.genecards.org
www.genecards.org
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As a measurement for the importance of a joint occur-
rence we use the log-scaled ratio between the actual and
the expected number of occurrences.

importance joi,j = log
(

ki,j

k′
i,j

)

If ki,j < k′
i,j we refer to the gene pair i, j as an under-

represented gene pair, otherwise as an over-represented
gene pair. So, the most over-represented gene pair is the
gene pair with the largest value for importance joi,j and
the most under-represented gene pair is the pair with the
smallest value.

To evaluate the obtained joint occurrences, we use
three reference measurements defined by an SVM with
Gaussian kernel. We classify the samples of the data sets
with an SVM using the gene expression values of each
gene i separately and define the resulting accuracy as
SVMacci; calculated by a 10-fold cross-validation on the
whole set of samples. In the same way we determine
SVMacci,j using the gene expression values of both genes
i and j as input. Our three reference values are then
calculated as follows:

1. SVM classification accuracy:

SVMacci,j

2. Mean gain of accuracy:

SVMgainMeani,j = SVMacci,j− SVMacci + SVMaccj

2
3. Minimal gain of accuracy:

SVMgainMini,j = SVMacci,j

− max{SVMacci, SVMaccj}
We accumulate gene pairs by increasing and decreas-

ing importance joi,j and plot the three reference values to
figure out whether there is a relationship between the clas-
sification accuracy of a gene pair (relative to the single
genes) and the frequency of its choice by our GA/SVM.
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