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Abstract: Food frequency questionnaires (FFQs) are the most commonly selected tools in nutrition
monitoring, as they are inexpensive, easily implemented and provide useful information regarding
dietary intake. They are usually carefully drafted by experts from nutritional and/or medical fields
and can be validated by using other dietary monitoring techniques. FFQs can get very extensive,
which could indicate that some of the questions are less significant than others and could be omitted
without losing too much information. In this paper, machine learning is used to explore how reducing
the number of questions affects the predicted nutrient values and diet quality score. The paper
addresses the problem of removing redundant questions and finding the best subset of questions in
the Extended Short Form Food Frequency Questionnaire (ESFFFQ), developed as part of the H2020
project WellCo. Eight common machine-learning algorithms were compared on different subsets of
questions by using the PROMETHEE method, which compares methods and subsets via multiple
performance measures. According to the results, for some of the targets, specifically sugar intake,
fiber intake and protein intake, a smaller subset of questions are sufficient to predict diet quality
scores. Additionally, for smaller subsets of questions, machine-learning algorithms generally perform
better than statistical methods for predicting intake and diet quality scores. The proposed method
could therefore be useful for finding the most informative subsets of questions in other FFQs as well.
This could help experts develop FFQs that provide the necessary information and are not overbearing
for those answering.

Keywords: food frequency questionnaire; machine learning; supervised learning; feature selection;
PROMETHEE; missing data; dimensionality reduction

1. Introduction

Adopting and maintaining healthy habits is extremely important and can at the same time be
quite challenging. WellCo (http://wellco-project.eu) is an example of an EU-funded project whose
aim is, among other objectives, to deliver a mobile application with a virtual coach that encourages
its users towards healthier choices to improve their physical, cognitive, mental and social well-being.
As proper dietary habits are very important for a healthy lifestyle, the application includes a module
that monitors and encourages dietary habits. The essential part of the nutrition module is a food
frequency questionnaire named the Extended Short Form Food Frequency Questionnaire (ESFFFQ),
through which the virtual coach acquires information about the users’ dietary habits and returns
recommendations based on the answers and quality scores calculated from them. The ESFFFQ [1] was
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developed by extending a validated questionnaire, the Short Form Food Frequency Questionnaire
(SFFFQ), developed and validated by Cleghorin et al. [2], which calculates scores for fruit intake,
vegetable intake, fish intake, sugar intake and fat intake, by adding food groups to cover additional
targets—protein intake, fiber intake and salt intake. The base questionnaire, the SFFFQ, consists of
22 questions. An additional five questions were added to it in order to develop the ESFFFQ
(see Table A1 in Appendix A). Although the ESFFFQ could still be considered short, the users
might find answering the whole questionnaire in one take a bit overwhelming, especially since
the users in the project are elderly and are expected to answer the questionnaire every two weeks.
Consequently, determining which questions are beneficial and which could be removed without
major loss turned out to be an important problem. To validate the questionnaire, the calculated
nutrient values were compared with several validated questionnaires. The questionnaire, the ESFFFQ,
is non-quantitative—it does not ask the user about the amount of consumed food, but about the
consumption of food items in a certain time period. The list of questions (food items) is available in the
Appendix A in Table A1. The scores are calculated based on the intake of nutrients provided by the
consumed food and drink. The nutrient intakes are then transformed into quality scores with respect
to the national dietary recommendations. The quality scores are discrete values—good, medium and
bad. The development and validation of the ESFFFQ are more thoroughly described in our previous
work [1], and this paper explores the performances of different methods used for selecting nutrient
value and quality score-acquiring questions from a selected food frequency questionnaire.

FFQs are the most commonly selected tools in dietary monitoring, as they are efficient,
cost-effective and non-invasive [3,4]. Once developed and validated, they are also quite simple
to use. However, in order to include as many food items as is needed to cover the full variability of
an individual’s diet, the questionnaires can get very extensive, which could be overwhelming for the
user and could also lead to overestimating the predicted nutrients’ values [3]. Thoughtless removing
of food items could, on the other hand, lead to underestimation, and it is important to find ways to
optimize the lengths of questionnaires without losing validity.

The standard procedures for creating a food frequency questionnaire (FFQ) are time-consuming,
and the selection of food items relies greatly on personal expertise; hence, an automated approach
could be of great help. Gerdessen et al. [5] showed that by using mixed integer linear programming,
the selection process becomes faster, more standardized and more transparent. However, the proposed
method still relies on substantial expert knowledge in order to be used effectively. Machine learning
could be used to help overcome the factor of personal expertise. Panaretos et al. [6] compared statistical
and machine-learning methods for the evaluation of dietary patterns based on either foods or nutrients
consumed; linear regression analysis was used to assess their associations with the cardiometabolic
score. They showed that machine learning was superior to statistical methods and that it could be
a valuable tool in the field of nutritional epidemiology. Machine-learning methods have also been
used to detect dietary patterns [7,8] and to estimate nutrient values [9]; however, to the best of our
knowledge no one has used machine learning to help experts find an optimal subset of FFQ questions
without losing too much information.

The users included in the WellCo project are elderly and it was of great importance to find ways for
them to answer as few questions as possible while still providing the system with sufficient information
about their nutritional habits. Since they are supposed to answer questionnaires regarding other
aspects of a healthy lifestyle as well, the number of questions could quickly become overwhelming.
This problem could be overcome by finding a method to detect which questions in the ESFFFQ are
really informative and which are redundant. Statistical methods, such as multiple imputation and
zero imputation could, of course, be used to impute the answers to the questions the users did not
answer, but it is reasonable to expect that at least zero imputation will underestimate the true intake
and therefore return wrong diet quality scores. Besides, these methods, contrary to machine learning,
are not designed to deal with intentionally missing answers.
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Therefore, the paper proposes an approach that finds the questions that provide the most
information, and estimates nutrient intake and diet quality scores from a subset of answers using
machine learning. The hypothesis of the paper is that by using the proposed method, machine learning
could better predict the nutrient intake and diet quality scores when using just the selected questions
in comparison to statistical methods.

2. Material and Methods

2.1. Study Design and Population

In the WellCo project, the aim of nutrition monitoring was to find a way to ask elderly users as
few questions about their dietary habits as possible and still get sufficient information to evaluate
their nutrition.

The problem was explored as a set of single-target problems, which means that it was explored for
each of the targets, diet quality scores, separately. The problem was explored for five of the targets—fat
intake, sugar intake, fiber intake, protein intake and salt intake. The remaining three targets (fruit
intake, vegetable intake and fish intake) are only dependent on one or two questions, and therefore the
problem of reducing and ranking the features is trivial.

The answers to ESFFFQ were collected from 92 adults from Slovenia, Italy, Spain and Denmark as
a part of the WellCo project and were then joined with answers from 197 adults included in SIMenu,
the Slovenian EU Menu research project [10] aimed at collecting information about what and how
much Slovenian inhabitants eat and drink. The FFQ in SIMenu actually included 104 questions
that were organized into nine food groups (grains, diary, fruit, vegetables and potatoes, meat and
fish and supplements, fat, sugar, drinks, other) and were asking the users about the frequencies of
consumption of different food items. The possible answers (consumption frequencies) were equivalent
to the answers available in the ESFFFQ. As the questions in the ESFFFQ were included in SIMenu,
extracting the answers from SIMenu and adding them to the answers from the ESFFFQ was a very
straightforward task.

Adults answering either of the questionnaires were between 18 and 80 years old. A more detailed
description of the population in the SIMenu is available in the paper by Zupanič et al. [11].

2.2. Data Preprocessing

Input data consisted of answers to the questionnaire. The questions were of the multi-choice
type, providing discrete answers. As not all of the questions had the same number of possible
answers—and besides, some of the answers never contributed data—the answers were standardized
to avoid one variable dominating others by subtracting the mean, and we scaled them to unit variance.
Once normalized, the answers to questions were used as input features to machine-learning algorithms.

2.3. Methods

In this study, the performance of machine learning on different subsets of questions was explored
for the following two types of machine-learning problems:

• Regression problem: In regression problems we try to predict continuous values. In our case, we
try to predict the values of the intake of nutrient selected per food group.

• Classification problem: In classification problems the predicted values are discrete. In our case,
we try to predict the diet quality scores for chosen nutrients and food groups.

For simplicity, the shorter expressions “amounts” and “scores” will be used when speaking of
nutrient values’ amounts and diet quality scores respectively.

For comparison, besides machine-learning algorithms, the scores were also computed by using
statistical methods. Statistical methods are commonly used as the state-of-the-art when dealing with
missing questions, and could therefore be used for dealing with subsets of questions. First, the scores
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were calculated by using just the answers to the questions from a subset and setting the remaining
questions to the frequency “rarely or never”. This is actually the so-called zero imputation method [12].
An alternative approach was also used, specifically multiple imputation [13,14]. The answers to the
questions not included in the subset of questions are imputed with the multiple imputation with
chained equations (MICE) method. These two methods were used as the baseline.

To calculate the scores, the amounts of nutrients were calculated based on users’ answers, and the
amounts were further transformed to diet quality scores. For easier understanding, the example for
target “vegetable intake” is presented. The amounts were calculated from sums of average amounts in
Table 1 based on users’ answers (frequencies of consumption). Once the amount of intake is calculated,
it is transformed to a diet quality score based on the recommendations listed in Table 2. For instance—a
user answers that he/she eats a salad every day and that he eats vegetables 4–6 times per week.
From Table 1 we calculate that the amount for vegetable intake is 176.8 g, and from Table 2 that the
score for vegetable intake is 2 (medium).

Table 1. Amounts of vegetable intake in grams for different frequencies of consumption.

Answer_tag
Rarely

or
Never

Less than
Once a
Week

Once a
Week

2–3
Times a
Week

4–6
Times a
Week

1–2
Times a

Day

3–4
Times a

Day

5+ a
Day

salad 0.00 4.00 11.2 28.8 56.8 120 280 480
vegetables 0.00 4.00 11.2 28.8 56.8 120 280 480

Table 2. Diet quality scores from the vegetable intake.

Score 1 (Bad) 2 (Medium) 3 (Good)

Vegetables less than 80 g 80 g to 240 g more than 240 g

In the field of machine learning, the expression features is used for the data that we feed to
machine-learning methods. In our case, the features are the answers to the questions, and subsets of
features represent answers to the questions included in the subset of questions.

2.3.1. Dimensionality Reduction

The paper explores how reducing the number of questions in FFQs affects the diet quality scores,
which could further be used to optimize the selection of the FFQ questions and shorten very extensive
FFQs. First, Pearson correlation coefficients between the features were calculated. This approach was
used as a Pearson correlation coefficient measures the statistical relationship between two variables.
Features with a high correlation are more linearly dependent and therefore have a similar effect on the
dependent variable. If two features are highly correlated, one of the two could be dropped. To get a
subset of questions, we set a threshold THi and remove one of the two questions that have a correlation
higher than this threshold. Thresholds were chosen experimentally. Pearson correlation coefficients
were calculated and the thresholds were chosen in such way that number of elements in subsets
determined by the thresholds fell approximately linearly. The set F0 represents the complete set of
features. To produce the first subset of features F1, one of the two features whose correlation coefficient
exceeded the chosen threshold was removed, and the same was done for every such pair of features.
The procedure was repeated for the next thresholds. For thresholds TH1, TH2, . . . , THn, we get subsets
of features (questions) F1, F2, . . . , Fn, which is shown in Figure 1. The thresholds and subsets obey the
following relations:

TH1 > TH2 > . . . > THn

F0 ⊃ F1 ⊃ F2 ⊃ . . . ⊃ Fn
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Figure 1. Pearson correlation coefficients.

2.3.2. Machine-Learning Algorithms

Eight classification and eight regression models were built—some of them very simple,
such as linear/logistic regression, decision tree and k-nearest neighbors; and the others more
complex, including support vector machine, random forest, gradient boosting classifier/regressor,
and finally, the voting classifier/regressor that combines all the previous models [15]. To build
machine-learning models we used the sklearn library with default settings. Although tuning of
hyperparameters—number of iterations, number of trees, max depth of trees, learning rate, etc.—could
improve the performances of the models, it was decided not to do any tuning in order to have a fair
comparison between the models. The goal of the paper was to find the subsets of questions on which
most of the methods performed similarly or better than on the whole set of questions. Showing that
machine-learning algorithms perform better on different subsets compared to the baseline models
would be a desirable side product of the experiment.

2.3.3. Evaluation Method—PROMETHEE

When dealing with a comparison of different models on different subsets of features,
many evaluation measures can be used, and drawing clear summaries and conclusions from them
may become a very challenging task. Besides, incorporating and comparing more different metrics
makes the evaluation more robust and fair. We decided to combine different metrics by which models
and subsets of features are compared. Specifically, the approach proposed by Eftimov and Kocev [16],
which follows the idea of the preference ranking organization method for enrichment of evaluations
(PROMETHEE) and was designed for multi-label classification problems was used. In the classification
problem, the labels are the diet quality scores, and the regression problem predicts amounts, which are
continuous values. The PROMETHEE methodology works as a ranking scheme, and we used it to
rank the subsets of features based on the performances of different models trained on these subsets
and to rank the methods on a subset.

For each subset of questions F0, F1, . . . , F5 (see Table 3), scores and amounts were predicted
by using only the answers to the questions included in the subset. Next, the vectors of predicted
values were compared with the vectors of the so-called true values, which were calculated from
the full questionnaire, and different metrics—precision, which represents the percentage of positive
identifications that are actually correct; recall, which represents the proportion of actual positives
that were identified correctly; F-score, defined as the harmonic mean of the precision and recall;
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mean absolute error, which is the sum of absolute differences between our target and predicted
variables etc.

The general pipeline of the evaluation method that returns the best feature subset for all targets
(fat intake, sugar intake, etc.) is presented in Figure 2. The pipeline to extract the best algorithm is
similar to the one presented in Figure 2, but with swapped labels for subsets (F) and models (M).
The pipeline is explained for the case of ranking the methods.

First, k models are built with methods M1, M2, . . . , Mk on each of n feature subsets F1, F2, . . . ,
Fn with previously described dimensionality reduction. The models are built on all subsets for all
m targets (fat intake, sugar intake, etc.) T1, T2, . . . , Tm. For each target and each feature subset the
decision matrix D is built. In D, qj(Mi) represents the performance measure of j for method i. In this
paper, performance measure qj(Mi) is one of the calculated metrics, for instance, precision for the
classification problem or mean square error (MSE) for the regression problem.

D =


q1(M1) q2(M1) . . . qN(M1)

q1(M2) q2(M2) . . . qN(M2)
...

...
. . .

...
q1(Mk) q2(Mk) . . . qN(Mk)

 (1)

The next step is to make pairwise comparisons between all methods for each performance measure.
The preference function pj of a performance measure qj for two methods is defined as the degree of
preference of one method over the other. For example, for methods M1 and M2 the j-th preference
measure would be defined with the equation:

Pj(M1, M2) =

{
pj(qj(M1)− qj(M2)) qj is a maximizing measure

pj(−(qj(M1)− qj(M2))) qj is a minimizing measure.

There are six types of preference function [17]. We chose the V-shaped preference function,
which transforms the difference dj(M1, M2) = qj(M1)− qj(M2) between the values of methods for
the preference function using a linear function. The V-shaped function is defined as:

p(x) =


0, x ≤ 0
x
Q , 0 ≤ x ≤ Q

1, x > Q,

where Q is the indifference threshold, the greatest amount of difference that is insignificant.
After calculating preference measures Pj for all pairs, the next step is to calculate the average

preference index:

π(M1, M2) =
1
N

N

∑
j=1

ωjPj(M1, M2).

where ωj represents the relative significance (weight) of the performance measure qj. For a more
detailed explanation on how to calculate the weights, refer to the paper from Eftimov and Kocev [16].

The final step is to compute the positive, the negative and the net preference flows. The positive
preference flow for Mi quantifies how model Mi outperforms other models and is calculated as:

φ(M+
i ) =

1
n− 1 ∑

x∈M
π(Mi, x).
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The negative preference flow quantifies how method Mi is outperformed in another way and is
calculated as:

φ(M−i ) =
1

n− 1 ∑
x∈M

π(x, Mi).

Finally, the positive and negative flow are aggregated into net flow by subtracting negative flow
from positive flow:

φ(Mi) = φ(M+
i )− φ(M−i ).

The higher the net flow for method Mi, the better the overall performance of this method.
By ordering the net flows in decreasing order we can get the rank of the feature sets for each target
and each method. Next, the ranks are averaged and these averages are then ranked. This returns the
ranking of the feature sets for each target. From here the most optimal method for one feature set can
be deduced. We repeat a similar procedure for each target (fat intake, sugar intake . . . ). From there we
can get the most optimal method for all subsets.

To get the most optimal subset for each method, the matrix D was formatted a bit differently.
For example, for method M1 the rows of the matrix D represent the performance measures on feature
sets—the first row presents the performance on the feature set F0, in the second row the performance
measures on the feature set F1, etc. The above-listed equations were adjusted. This returned the most
optimal feature set for method M1, and the same procedure was repeated for all methods: M1, M2, . . . ,
Mk. The pipeline for this example, on how to get the most optimal feature set FwTi

for target i and the
best feature set Fw for all targets is shown in Figure 2.

Figure 2. The pipeline of ranking the feature sets by using the PROMETHEE method. F represents a
subset of questions, and M represents one of the chosen statistical or machine-learning methods. Fwi is
the subset on which method Mi performs the best, and FwT1

is the subset on which most of the methods
M perform the best. Fw is the subset of features on which methods perform the best for all targets.

The PROMETHEE was used to:

1. Rank methods—for each of the subsets of questions F0, F1, F2, F3, F4 and F5 we rank the methods
by their performances on that subset;

2. Ranked subsets of questions—for each of the models (machine-learning and statistical methods)
we rank the subsets of questions by the performance of that model on them.
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To run the experiments, the dataset was split into five splits and 5-fold cross-validation was
used to test the performances of the models. We trained on four splits and tested on the fifth one.
We repeated the same for all combinations of splits. The same splits were used for all models and all
subsets for a fair comparison.

3. Results

3.1. Dimensionality Reduction

The Pearson correlation coefficients were calculated for all features. The more correlated the
two features are, the higher the coefficient. Based on the calculated correlation coefficients, we chose
thresholds 0.40, 0.30, 0.25, 0.20 and 0.10, and from those we got subsets of features F1, F2, F3, F4

and F5 respectively. As the ESFFFQ was already designed to have a minimal number of questions
included, the low correlations between the questions were expected. Therefore, the thresholds were
quite low. The subsets of features (number of questions and list of questions) are listed in Table 3.
The full questionnaire, which we mark as set F0, contains 27 questions. The full questionnaire is listed
in Table A1.

Table 3. List of features above different thresholds

Threshold # of Features Features Feature Set Tag

0.40 19
fruit, juice, salad, vegetables, chips, beans, fiber,
wholebread, cheese, cakes, cream, grains, pizza,
nuts_salt, nuts, potato, readmeat, whitemeat, fish

F1

0.30 16
fruit, juice, salad, vegetables, chips, beans, fiber,
wholebread, cheese, cakes, grains, nuts, potato,
readmeat, whitemeat, fish

F2

0.25 10 fruit, juice, salad, beans, fiber, wholebread, grains,
nuts, readmeat, whitemeat F3

0.20 6 fruit, juice, salad, fiber, wholebread, grains F4

0.10 2 fruit, juice F5

3.2. Evaluation—PROMETHEE

The results are presented in the following subsections. For each of the targets (fat intake,
sugar intake, fiber intake, protein intake and salt intake) a table representing ranked methods and a
table representing ranked subsets are included. In each table, the best performing method or subset is
marked in bold. In tables ranking methods the results are compared column-wise and the subsets are
compared row-wise.

For each subset of features the performances of the classification models were measured
with precision, recall and F1-score and the regression models with mean average error (MAE),
mean squared error (MSE), root mean squared error (RMSE) and coefficient of determination (R2-score).
Precision, recall, F-score and R2-score are maximizing metrics (higher is better), while MAE, MSE and
RMSE are minimizing metrics (lower is better). The results, ranked methods across all subsets of
questions and subsets across all methods, are presented in the tables. To compare the performances of
methods, elements are compared column-wise and the subsets row-wise. For better representation the
best rank is marked in bold.

3.2.1. Fat Intake

In Table 4 the rankings of the methods on all subsets of features for target fat intake are presented.
It is obvious that the best methods to get the scores (classification) and amounts (regression) on the
full subset F0 of questions were the statistical methods, as in this case we were not working with any



Nutrients 2020, 12, 3789 9 of 16

missing data and the calculations were actually the ground truth. This was same for all other targets
as well (sugar intake, fiber intake, protein intake and salt intake).

For the classification problem, F0 and F1 were the only subsets where statistical methods
performed better than machine learning; and for the regression problem, machine learning performed
better on all subsets. The overall best methods on all subsets were SVM for the classification problem
and voting classifier for the regression problem.

Table 4. Rankings of classification and regression models for different feature sets for fat.

Classification Regression

F0 F1 F2 F3 F4 F5 avg. F0 F1 F2 F3 F4 F5 avg.

Logistic/Linear Regression 9.0 6.0 1.0 5.0 4.0 4.5 4.0 7.0 6.0 3.5 2.5 1.0 1.0 2.0
K-Nearest Neighbors 10.0 8.0 5.0 2.0 7.0 1.0 6.0 8.0 7.0 5.0 2.5 4.0 4.0 6.0
Decision Tree 8.0 9.0 9.0 7.0 8.0 3.0 9.0 9.0 8.0 9.0 8.0 8.0 7.5 9.0
SVM 4.0 3.0 3.0 1.0 6.0 2.0 1.0 10.0 9.0 7.0 4.0 2.0 1.0 6.0
Bagging Clf./Reg. 7.0 7.0 8.0 8.0 5.0 7.0 8.0 6.0 5.0 6.0 6.0 7.0 7.5 7.0
Gradient Boosting Clf./Reg. 5.0 5.0 2.0 4.0 2.5 4.5 3.0 3.0 1.0 3.5 7.0 5.5 5.5 3.5
Random Forest 6.0 2.0 6.0 6.0 2.5 8.0 5.0 4.0 3.5 2.0 5.0 5.5 5.5 3.5
Voting Clf./Reg. 3.0 4.0 4.0 3.0 1.0 6.0 2.0 5.0 3.5 1.0 1.0 3.0 1.0 1.0

Zero imputation 1.5 10.0 10.0 10.0 10.0 9.5 10.0 1.5 10.0 10.0 10.0 10.0 10.0 10.0
Multiple imputation 1.5 1.0 7.0 9.0 9.0 9.5 7.0 1.5 2.0 8.0 9.0 9.0 9.0 8.0

When ranking the subsets (see Table 5), it is again obvious that the best performing subset for
statistical methods “zero imputation” and “multiple imputation” was the full subset of questions F0.
This again stands for all the targets and will not be repeated in the following subsections. For target fat
intake, machine learning also worked the best on the full set of questions. For the regression problem,
the same is true, except that the SVM worked the best on the subset F1. Additionally, it is possible to
see that the performances of the kNN on F0 and F1 are very similar. However, the best subset for the
regression and classification problems is the full subset of questions. Moreover, for most methods the
loss of information between subsets F0 and F1 is lower than the loss of information between F1 and F2.

Table 5. Rankings of feature sets for different classification and regression models for fat.

Classification Regression

F0 F1 F2 F3 F4 F5 F0 F1 F2 F3 F4 F5

Logistic/Linear Regression 1.0 2.0 3.0 4.0 5.0 6.0 1.0 2.0 3.0 5.0 4.0 6.0
K-Nearest Neighbors 1.0 2.0 3.0 4.0 5.0 6.0 1.0 2.0 3.0 4.0 5.0 6.0
Decision Tree 1.0 2.0 3.0 4.0 5.0 6.0 1.0 2.0 4.0 5.0 6.0 3.0
SVM 1.0 2.0 4.0 3.0 5.0 6.0 2.0 1.0 3.0 4.0 5.0 6.0
Bagging Classifier/Regressor 1.0 2.0 3.0 5.0 4.0 6.0 1.0 2.0 3.0 4.0 6.0 5.0
Gradient Boosting Classifier/Regressor 1.0 2.0 3.0 4.0 5.0 6.0 1.0 2.0 3.0 4.0 5.0 6.0
Random Forest 1.0 2.0 3.0 4.0 5.0 6.0 1.0 2.0 3.0 4.0 5.0 6.0
Voting Classifier/Regressor 1.0 2.0 3.0 4.0 5.0 6.0 1.0 2.0 3.0 4.0 5.0 6.0

Zero imputation 1.0 2.0 3.0 4.0 6.0 5.0 1.0 2.0 3.0 4.0 5.0 6.0
Multiple imputation 1.0 2.0 3.0 4.0 5.0 6.0 1.0 2.0 3.0 4.0 5.0 6.0

Average rank 1.0 2.0 3.0 4.0 5.0 6.0 1.0 2.0 3.0 4.0 5.0 6.0

3.2.2. Sugar Intake

As seen in Table 6, for sugar intake statistical methods worked a bit better than machine-learning
algorithms, even on some of the smaller subsets, not just on F0. However, as the subsets got equal
to or smaller than subset F3, statistical methods started to perform far worse and machine-learning
algorithms worked better. The overall best algorithm was the gradient boosting classifier for both the
classification and the regression problem.

Subset ranking (Table 7) for sugar intake shows that, contrary to fat intake, the full set of questions
works the best only for statistical methods. For almost all classification and regression machine-learning
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algorithms, smaller subsets perform better. The overall best subset of questions for both regression and
classification problems was F2, which included 16 questions (for the specific list of questions please
refer to Table 3 and Table A1). Half of the classification algorithms and most of the regression problems
performed the best on the subset F2.

Table 6. Rankings of classification and regression models for different feature sets for sugar.

Classification Regression

F0 F1 F2 F3 F4 F5 avg. F0 F1 F2 F3 F4 F5 avg.

Logistic/Linear Reg. 8.0 8.0 8.0 5.0 5.0 8.5 8.0 8.0 8.0 8.0 1.0 1.5 1.5 4.0
K-Nearest Neighbors 9.0 9.0 10.0 7.0 9.0 6.0 9.0 9.0 9.0 9.0 4.0 3.0 5.0 8.0
Decision Tree 6.0 7.0 7.0 8.0 6.0 1.0 6.0 7.0 7.0 7.0 9.0 9.0 8.0 9.0
SVM 10.0 10.0 9.0 9.0 8.0 8.5 10.0 10.0 10.0 10.0 6.0 7.0 5.0 10.0
Bagging Clf./Reg. 4.0 4.5 4.0 2.5 1.0 2.0 2.0 5.0 5.0 4.0 7.0 6.0 5.0 6.0
Gradient Boost. Clf./Reg. 3.0 3.0 2.0 1.0 3.0 4.0 1.0 3.0 3.0 2.0 3.0 4.5 5.0 1.0
Random Forest 7.0 4.5 3.0 2.5 4.0 5.0 5.0 4.0 4.0 3.0 5.0 4.5 5.0 3.0
Voting Clf./Reg. 5.0 6.0 5.0 4.0 2.0 3.0 3.5 6.0 6.0 6.0 2.0 1.5 1.5 2.0

Zero imputation 1.5 2.0 6.0 10.0 10.0 8.5 7.0 1.5 2.0 5.0 10.0 10.0 10.0 7.0
Multiple imputation 1.5 1.0 1.0 6.0 7.0 8.5 3.5 1.5 1.0 1.0 8.0 8.0 9.0 5.0

Table 7. Rankings of feature sets for different classification and regression models for sugar.

Classification Regression

F0 F1 F2 F3 F4 F5 F0 F1 F2 F3 F4 F5

Logistic/Linear Regression 3.0 1.0 2.0 5.0 4.0 6.0 3.0 2.0 1.0 5.0 4.0 6.0
K-Nearest Neighbors 5.0 4.0 1.0 2.0 3.0 6.0 3.0 2.0 1.0 5.0 4.0 6.0
Decision Tree 1.0 2.0 3.0 5.0 4.0 6.0 3.0 1.0 2.0 6.0 5.0 4.0
SVM 6.0 4.0 1.0 3.0 2.0 5.0 3.0 2.0 1.0 5.0 4.0 6.0
Bagging Classifier/Regressor 1.0 2.0 3.0 5.0 4.0 6.0 3.0 2.0 1.0 5.0 4.0 6.0
Gradient Boosting Classifier/Regressor 2.0 1.0 3.0 5.0 4.0 6.0 2.0 1.0 3.0 4.0 5.0 6.0
Random Forest 3.0 2.0 1.0 5.0 4.0 6.0 3.0 2.0 1.0 5.0 4.0 6.0
Voting Classifier/Regressor 2.0 3.0 1.0 5.0 4.0 6.0 3.0 2.0 1.0 5.0 4.0 6.0

Zero imputation 1.0 2.0 3.0 4.0 6.0 5.0 1.0 2.0 3.0 4.0 5.0 6.0
Multiple imputation 1.0 2.0 3.0 5.0 4.0 6.0 1.0 2.0 3.0 4.0 5.0 6.0

Average rank 3.0 2.0 1.0 5.0 4.0 6.0 3.0 2.0 1.0 5.0 4.0 6.0

3.2.3. Fiber Intake

For fiber intake statistical methods again worked the best from all the methods on the full subset
of questions (Table 8). Like for sugar intake, in this experiment the multiple imputation works
best out of all methods on subsets F1 and F2 as well, both for the classification and the regression
problem. For smaller subsets, the machine-learning approach takes over. The overall best methods for
classification and regression problems are the gradient boosting classifier and regressor.

Table 8. Rankings of classification and regression models for different feature sets for fiber.

Classification Regression

F0 F1 F2 F3 F4 F5 avg. F0 F1 F2 F3 F4 F5 avg.

Logistic/Linear Regression 3.0 6.5 5.0 1.0 4.0 7.0 2.0 7.0 7.0 7.0 5.0 1.5 2.0 4.5
K-Nearest Neighbors 10.0 10.0 10.0 7.0 1.5 4.0 9.0 8.0 8.0 8.0 6.0 3.0 4.5 7.0
Decision Tree 6.0 9.0 9.0 9.0 8.0 3.0 10.0 10.0 10.0 10.0 9.0 8.0 8.0 10.0
SVM 9.0 8.0 7.0 2.0 1.5 10.0 8.0 9.0 9.0 9.0 7.0 4.5 1.0 8.5
BaggingClf./Reg. 7.0 6.5 4.0 6.0 7.0 1.0 6.0 5.0 6.0 5.0 4.0 7.0 6.5 6.0
Gradient Boosting Clf./Reg. 4.0 3.0 3.0 5.0 6.0 2.0 1.0 3.0 3.0 2.0 1.0 4.5 4.5 1.0
Random Forest 5.0 5.0 8.0 3.0 5.0 5.0 5.0 5.0 4.0 4.0 2.0 6.0 6.5 3.0
Voting Clf./Reg. 8.0 4.0 2.0 4.0 3.0 9.0 4.0 5.0 5.0 3.0 3.0 1.5 3.0 2.0

Zero imputation 1.5 2.0 6.0 10.0 10.0 7.0 7.0 1.5 2.0 6.0 10.0 10.0 10.0 8.5
Multiple imputation 1.5 1.0 1.0 8.0 9.0 7.0 3.0 1.5 1.0 1.0 8.0 9.0 9.0 4.5
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Rankings of subsets in Table 9 show that smaller subsets generally still give better results for
the majority of the models. For most of the machine-learning algorithms for both classification and
regression problems, the subsets of questions smaller or equal to F2 give better results.

Table 9. Rankings of feature sets for different classification and regression models for fiber.

Classification Regression

F0 F1 F2 F3 F4 F5 F0 F1 F2 F3 F4 F5

Logistic/Linear Regression 2.0 3.0 4.0 1.0 5.0 6.0 1.0 2.0 3.0 4.0 5.0 6.0
K-Nearest Neighbors 3.0 5.0 4.0 2.0 1.0 6.0 2.0 1.0 3.0 4.0 5.0 6.0
Decision Tree 2.0 1.0 3.0 4.0 5.0 6.0 2.0 3.0 1.0 4.0 6.0 5.0
SVM 4.0 2.0 5.0 1.0 3.0 6.0 3.0 1.0 2.0 4.0 5.0 6.0
Bagging Classifier/Regressor 3.0 1.0 2.0 4.0 5.0 6.0 1.0 2.0 3.0 4.0 5.0 6.0
Gradient Boosting Classifier/Regressor 2.0 1.0 3.0 4.0 5.0 6.0 1.0 2.0 3.0 4.0 5.0 6.0
Random Forest 3.0 1.0 5.0 2.0 4.0 6.0 2.0 1.0 3.0 4.0 5.0 6.0
Voting Classifier/Regressor 5.0 1.0 2.0 3.0 4.0 6.0 1.0 2.0 3.0 4.0 5.0 6.0

Zero imputation 1.0 2.0 3.0 4.0 6.0 5.0 1.0 2.0 3.0 4.0 5.0 6.0
Multiple imputation 1.0 2.0 3.0 4.0 5.0 6.0 1.0 2.0 3.0 4.0 5.0 6.0

Average rank 2.0 1.0 4.0 3.0 5.0 6.0 1.0 2.0 3.0 4.0 5.0 6.0

3.2.4. Protein Intake

For protein intake, statistical methods perform edthe best on the full set of questions F0, and for the
regression problem multiple imputation performed the best on subset F1 as well (see Table 10). In all
other cases, machine learning worked better. It is interesting that with previous targets, more complex
machine learning models performed the best, while for protein intake, linear models (logistic and
linear regression) performed better. For the classification problem logistic regression performed the
best on three subsets out of six and also had the best overall performance. For the regression problem
the best overall algorithm was again the gradient boosting regressor; however, linear regression had
the second-best performance (see Table 10).

As is visible in Table 11, the overall best subset for the classification problem was F2. For the
regression problem, the best performance was achieved on the full set of questions—except when
using SVM.

Table 10. Rankings of classification and regression models for different feature sets for protein.

Classification Regression

F0 F1 F2 F3 F4 F5 avg. F0 F1 F2 F3 F4 F5 avg.

Logistic/Linear Regression 3.0 1.0 1.0 1.0 2.0 7.5 1.0 4.0 3.0 2.0 3.0 3.5 1.0 2.0
K-Nearest Neighbors 5.0 4.0 3.0 2.0 1.0 4.0 2.0 8.0 7.0 7.0 6.0 3.5 7.0 7.0
Decision Tree 10.0 10.0 9.0 9.0 5.0 5.5 10.0 9.0 10.0 9.0 8.0 8.0 7.0 10.0
SVM 7.5 3.0 7.0 5.0 8.0 7.5 7.0 10.0 9.0 8.0 7.0 6.5 1.0 8.0
Bagging Clf./Reg. 9.0 6.0 5.5 7.0 6.0 5.5 8.0 7.0 6.0 6.0 5.0 6.5 4.5 6.0
Gradient Boosting Clf./Reg. 4.0 9.0 8.0 4.0 3.0 2.0 5.0 3.0 2.0 1.0 1.0 3.5 4.5 1.0
Random Forest 6.0 8.0 4.0 8.0 7.0 3.0 6.0 6.0 5.0 4.0 3.0 3.5 7.0 4.0
Voting Clf./Reg. 7.5 5.0 5.5 6.0 4.0 1.0 4.0 5.0 4.0 3.0 3.0 1.0 1.0 3.0

Zero imputation 1.5 7.0 10.0 10.0 10.0 9.0 9.0 1.5 8.0 10.0 10.0 10.0 10.0 9.0
Multiple imputation 1.5 2.0 2.0 3.0 9.0 10.0 3.0 1.5 1.0 5.0 9.0 9.0 9.0 5.0

Table 11. Ranking of feature sets for different classification and regression models for target protein.

Classification Regression

F0 F1 F2 F3 F4 F5 F0 F1 F2 F3 F4 F5

Logistic/Linear Regression 3.0 1.0 2.0 4.0 5.0 6.0 1.0 2.0 3.0 4.0 5.0 6.0
K-Nearest Neighbors 3.0 1.0 2.0 4.0 5.0 6.0 1.0 2.0 3.0 4.0 5.0 6.0
Decision Tree 1.0 3.0 2.0 6.0 5.0 4.0 1.0 2.0 3.0 4.0 6.0 5.0
SVM 3.0 1.0 2.0 4.0 6.0 5.0 3.0 2.0 1.0 4.0 5.0 6.0
Bagging Classifier/Regressor 2.0 3.0 1.0 4.0 6.0 5.0 1.0 2.0 3.0 4.0 5.0 6.0
Gradient Boosting Classifier/Regressor 1.0 4.0 2.0 3.0 6.0 5.0 1.0 2.0 3.0 4.0 5.0 6.0
Random Forest 2.0 3.0 1.0 5.0 6.0 4.0 1.0 2.0 3.0 4.0 5.0 6.0
Voting Classifier/Regressor 2.0 3.0 1.0 4.0 6.0 5.0 1.0 2.0 3.0 4.0 5.0 6.0

Zero imputation 1.0 2.0 3.0 4.0 6.0 5.0 1.0 2.0 3.0 4.0 5.0 6.0
Multiple imputation 1.0 2.0 3.0 4.0 5.0 6.0 1.0 2.0 3.0 4.0 5.0 6.0

Average rank 2.0 3.0 1.0 4.0 6.0 5.0 1.0 2.0 3.0 4.0 5.0 6.0
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3.2.5. Salt Intake

For salt intake, machine-learning algorithms performed better than statistical methods. The results
in Table 12 show that for the classification problem statistical methods are almost always ranked in the
last two positions, except of course, for the full set of questions.

Table 12. Rankings of classification and regression models for different feature sets for the target salt.

Classification Regression

F0 F1 F2 F3 F4 F5 avg. F0 F1 F2 F3 F4 F5 avg.

Logistic/Linear Regression 5.0 3.0 1.0 1.0 3.0 7.0 1.0 5.0 1.0 1.0 2.5 2.0 1.5 1.0
K-Nearest Neighbors 8.0 8.0 8.0 7.0 6.0 1.0 7.0 9.0 8.0 7.0 6.0 4.5 6.5 7.0
Decision Tree 10.0 9.0 9.0 5.5 7.0 3.0 9.0 10.0 9.0 9.0 8.0 8.0 6.5 9.0
SVM 3.0 1.0 2.0 3.0 8.0 8.0 3.0 6.5 6.0 6.0 6.0 6.5 1.5 5.0
Bagging Clf./Reg. 9.0 5.5 5.0 2.0 2.0 5.0 4.0 8.0 5.0 5.0 6.0 6.5 6.5 6.0
Gradient Boosting Clf./Reg. 6.0 3.0 6.0 5.5 5.0 4.0 5.0 3.0 2.5 3.0 2.5 2.0 4.0 3.0
Random Forest 7.0 5.5 4.0 4.0 4.0 6.0 6.0 6.5 4.0 4.0 2.5 4.5 6.5 4.0
Voting Clf./Reg. 4.0 3.0 3.0 8.0 1.0 2.0 2.0 4.0 2.5 2.0 2.5 2.0 3.0 2.0

Zero imputation 1.5 10.0 10.0 10.0 10.0 9.5 10.0 1.5 10.0 10.0 10.0 10.0 10.0 10.0
Multiple imputation 1.5 7.0 7.0 9.0 9.0 9.5 8.0 1.5 7.0 8.0 9.0 9.0 9.0 8.0

The results in Table 13 show that the overall best subset for classification and regression problems
for salt intake was the full set of questions F0. Generally, performance got worse when removing
questions. However, there were some cases wherein a method performed better on a smaller subset.
For instance, the decision tree regressor performed better on F2 than it did on F1.

Table 13. Rankings of feature sets for different classification and regression models for salt.

Classification Regression

F0 F1 F2 F3 F4 F5 F0 F1 F2 F3 F4 F5

Logistic/Linear Regression 1.0 3.0 2.0 4.0 5.0 6.0 1.0 2.0 3.0 4.0 5.0 6.0
K-Nearest Neighbors 1.0 2.0 3.0 4.0 5.0 6.0 1.0 2.0 3.0 4.0 5.0 6.0
Decision Tree 1.0 2.0 3.0 4.0 5.0 6.0 1.0 3.0 2.0 5.0 6.0 4.0
SVM 1.0 2.0 3.0 4.0 5.0 6.0 1.0 2.0 3.0 4.0 5.0 6.0
Bagging Classifier/Regressor 1.0 2.0 3.0 4.0 5.0 6.0 1.0 2.0 3.0 4.0 5.0 6.0
Gradient Boosting Classifier/Regressor 1.0 2.0 3.0 4.0 5.0 6.0 1.0 2.0 3.0 4.0 5.0 6.0
Random Forest 1.0 2.0 3.0 4.0 5.0 6.0 1.0 2.0 3.0 4.0 5.0 6.0
Voting Classifier/Regressor 1.0 2.0 3.0 5.0 4.0 6.0 1.0 2.0 3.0 4.0 5.0 6.0

Zero imputation 1.0 2.0 3.0 6.0 5.0 4.0 1.0 2.0 3.0 4.0 5.0 6.0
Multiple imputation 1.0 2.0 3.0 4.0 5.0 6.0 1.0 2.0 3.0 4.0 5.0 6.0

Average rank 1.0 2.0 3.0 4.0 5.0 6.0 1.0 2.0 3.0 4.0 5.0 6.0

4. Discussion

From the results for each target separately, the overall best method and subset were also deduced.
Note that this should not be taken as the ultimate optimal result but more as a suggestion to
consider a machine-learning approach as a way to deal with missing data or a way to omit possible
redundant questions.

It is expected that the statistical methods will work better than machine learning when dealing
with the full questionnaire (set F0), as this is actually the ground truth. Predictive models based on
ML do not work so well because of overfitting, which happens when a model learns the detail and
noise in the training data to the extent that it negatively impacts the performance of the model on new
data. However, the aim of this paper is to show that when only answers are available, the precision of
the scores could be improved by using machine learning. When dealing with full questionnaires, it is
obvious that the conventional calculation of amounts and scores is a more reasonable choice than the
use of machine learning.



Nutrients 2020, 12, 3789 13 of 16

The fact that the best three methods are machine-learning algorithms (see Table 14) suggests that
using a machine-learning approach when dealing with missing data could be of great value. Moreover,
the fact that gradient boosting and voting are among the best three algorithms for the classification
and regression problems could further indicate that using these algorithms could have the greatest
benefit when only a smaller subset of answers to the questions is available. Gradient boosting is an
extremely popular machine-learning algorithm that has been proven successful across many domains
and is one of the leading methods for winning Kaggle competitions [18].

Table 14. Overall ranking of classification and regression models for different feature sets.

Classification Regression

Average Rank Average Rank

Logistic/Linear Regression 5.0 6.0
K-Nearest Neighbors 9.0 7.0
Decision Tree 7.0 9.0
SVM 8.0 8.0
Bagging Classifier/Regressor 1.0 4.0
Gradient Boosting Classifier/Regressor 3.0 1.0
Random Forest 6.0 3.0
Voting Classifier/Regressor 2.0 2.0

Zero imputation 10.0 10.0
Multiple imputation 4.0 6.0

Table 15 shows that the best subset of questions for classification is subset F1. Again, the reader
should note that the conclusion of this should not be that subset F1 could replace the original
questionnaire; instead, it indicates that some of the questions are redundant and could be omitted
without losing much information. To explain—by making sure that the user answers at least the
questions in this subset, we could get enough information to estimate the quality of the user’s nutrition
habits quite well even if he/she does not answer the remaining questions. An additional conclusion
derived from the results would be that the machine-learning approach has proven itself a very useful
approach and its applications could be explored further, even when working with missing data in
FFQs. It outperformed the baseline approach, multiple imputation [19], when dealing with subsets
of questions.

The paper shows that for the classification problem, some targets of the questions could be
redundant. The best results for the classification problem for targets sugar intake, fiber intake and
protein intake were achieved on smaller subsets F1 and F2, which could indicate that some of the
questions are redundant for these targets.

Table 15. Overall rankings of feature sets for different classification and regression models.

Classification Regression

F0 F1 F2 F3 F4 F5 F0 F1 F2 F3 F4 F5

Average rank 2.0 1.0 3.0 4.0 5.0 6.0 1.0 2.0 3.0 4.0 5.0 6.0

Dimensionality reduction, as proposed in the paper, could work even better for more extensive
questionnaires—it is important to point out that the full ESFFFQ was already carefully designed to
cover all the goals and be short at the same time. Therefore, the correlation coefficients between
questions were quite low to begin with. Additionally, when removing the questions, one of the
pairs was removed by no particular criteria. This should generally should not be a problem, but as
correlations were not really high in the first place, we might achieve better results by removing the
other of the two correlated questions. A possible improvement would be to choose additional criteria
for removing one of the two correlated questions or to choose another feature selection method,
for instance, information gain or something similar.
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Nevertheless, the proposed dimensionality reduction approach should be considered another
contribution of this paper. Very extensive questionnaires could lead towards the overestimating
of nutrient values, as shown in [3], and by reducing them through omitting redundant questions,
the results could come closer to the true values. This could be validated using other nutrition
monitoring approaches, for instance, 24 h recalls or laboratory tests.

Choosing the PROMETHEE for evaluation makes the whole comparison more robust—for
different situations, different measures are important, and by considering more measures the results
are more comprehensive.

The findings of the study could be integrated into the WellCo project in the following way.
For instance, if the user does not feel like answering the whole questionnaire every 2 weeks, but would
still like to get some feedback on his nutrition, the system should make sure to ask the questions
starting with those included in subset F5, rather than adding the questions from F4 that are not included
in F5, etc. When the maximum number of questions that the user is willing to answer is reached, one of
the best-performing algorithms on this subset should be used (Table 16) to either predict diet quality
scores or predict nutrient intake.

Table 16. Rankings of different classification and regression models for each subset for all targets.

Classification Regression

Logistic/Linear Regression 7.0 2.0 3.0 1.0 5.0 7.0 7.0 6.0 6.0 3.0 2.0 1.0
K-Nearest Neighbors 10.0 10.0 10.0 6.0 6.0 4.0 9.0 8.0 8.0 5.0 3.0 5.5
cDecision Tree 8.0 8.0 7.0 9.0 7.0 1.0 8.0 9.0 7.0 9.0 9.0 8.0
SVM 9.0 9.0 9.0 7.0 8.0 8.0 10.0 10.0 10.0 7.0 6.5 3.0
Bagging Classifier/Regressor 6.0 5.0 4.0 3.0 2.0 2.0 6.0 5.0 5.0 6.0 6.5 5.5
Gradient Boosting Classifier/Regressor 3.0 4.0 5.0 2.0 3.0 3.0 3.0 2.0 1.0 1.5 4.0 4.0
Random Forest 5.0 6.0 6.0 5.0 4.0 6.0 4.0 3.0 3.0 4.0 5.0 7.0
Voting Classifier/Regressor 4.0 3.0 2.0 4.0 1.0 5.0 5.0 4.0 4.0 1.5 1.0 2.0

Zero imputation 1.5 7.0 8.0 10.0 10.0 9.0 1.5 7.0 9.0 10.0 10.0 10.0
Multiple imputation 1.5 1.0 1.0 8.0 9.0 10.0 1.5 1.0 2.0 8.0 8.0 9.0

5. Conclusions and Future Work

This paper explored how the dimensionality reduction of an FFQ affects the predictions
of the nutrient value amounts and diet quality scores. It compared selected machine-learning
algorithms with established statistical methods, zero imputation and multiple imputation. The starting
hypothesis—that machine learning will perform better than statistical methods on smaller subsets of
features—was confirmed. The proposed method for dimensionality reduction provided feature sets,
and the PROMETHEE method was used to rank them by performance. Although this has been done
on a very specific questionnaire, the proposed approach could be used as a method for other FFQs as
well. Although machine learning has proven itself as a very useful approach for optimization of FFQs,
it is also important to choose the methods cautiously by using robust evaluation methods. Therefore,
an additional contribution of this paper is that we proposed to use the PROMETHEE as the evaluation
method for comparing methods and their performances for the optimization of FFQs.

In future work, the usage of machine learning for FFQs will be explored further. By ranking
the questions by importance for each of the targets, we could easily build a smaller questionnaire
specific for a chosen target. The proposed approach could be used on a more extensive questionnaire,
for instance, the FFQ used in National Health and Nutrition Examination Survey (NHANES) [20],
in combination with the 24 h recalls and/or laboratory tests. Predicting diet quality scores or nutrient
intake based on a subset of questions would be one option; however, by using available data from 24 h
recalls and laboratory tests, one could format an FFQ for a specific target. This indicates that machine
learning could be considered for selecting food items when creating new questionnaires targeting
a very specific goal. Machine learning has proven to overtake other methods in many other areas,
and the same could happen for this problem as well.
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Appendix A

Table A1. List of questions and features in the ESFFFQ.

Question Feature

How often do you eat fruit (tinned/fresh)? fruit
How often do you drink juice (not cordial or squash)? juice
How often do you eat salad (not garnish or added to sandwiches)? salad
How often do you eat vegetables (tinned/frozen/fresh, but not potatoes)? veg
How often do you eat chips/fried potatoes? chips
How often do you eat beans or pulses (baked beans, chick peas, dahl. . . )? beans
How often do you eat fiber-rich breakfast cereal (porridge, muesli. . . )? fiber
How often do you eat wholemeal bread or chapattis? wholebread
How often do you eat cheese/yogurt? cheese
How often do you eat crisps/savoury snacks? crisps
How often do you eat sweet biscuits, cakes, chocolate, sweets? cakes
How often do you eat ice cream/Cream? cream
How often do you drink non-alcoholic fizzy drinks/pop (not sugar free or diet? pop
How often do you eat SALTED nuts, peanuts or seeds? nuts_salted
How often do you eat UNSALTED nuts, peanuts or seeds? nuts
How often do you eat grains (pasta, rice, couscous, bulgur. . . )? grains
How often do you eat pre-prepared sauces, gravies, dry soup mixes? pre-prepared
How often do you eat pizza, pasta/noodle dishes with cheese sauce? pizza
How often do you eat bread, buns and other bread pastries (non-sweet)? bread
How often do you eat potato (mashed, baked, cooked; not fried)? potato
How often do you eat eggs (boiled, fried, scrambled,. . . )? eggs
How often do you eat beef, lamb, pork, ham (steaks, roasts, joints, chops. . . )? redmeat
How often do you eat chicken, turkey (steaks, roasts. . . - not in batter/breadcrumbs)? whitemeat
How often do you eat sausages, bacon, corned beef, meat pies/pasties. . . ? sausage
How often do you eat chicken, turkey (nuggets/twizzlers, pies or in batter/breadcrumbs)? nuggets
How often do you eat white fish in batter or breadcrumbs? batterfish
How often do you eat white fish NOT in batter or breadcrumbs or oily fish (salmon, tuna)? fish
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