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a b s t r a c t 

Classification trees are attractive for practical applications because of their comprehensibility. However, 

the literature on the parameters that influence their comprehensibility and usability is scarce. This paper 

systematically investigates how tree structure parameters (the number of leaves, branching factor, tree 

depth) and visualisation properties influence the tree comprehensibility. In addition, we analyse the in- 

fluence of the question depth (the depth of the deepest leaf that is required when answering a question 

about a classification tree), which turns out to be the most important parameter, even though it is usu- 

ally overlooked. The analysis is based on empirical data that is obtained using a carefully designed survey 

with 98 questions answered by 69 respondents. The paper evaluates several tree-comprehensibility met- 

rics and proposes two new metrics (the weighted sum of the depths of leaves and the weighted sum of 

the branching factors on the paths from the root to the leaves) that are supported by the survey results. 

The main advantage of the new comprehensibility metrics is that they consider the semantics of the tree 

in addition to the tree structure itself. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

Classifier comprehensibility, which is sometimes referred to

s interpretability ( Freitas, 2014; Huysmans, Dejaeger, Mues, Van-

hienen & Baesens, 2011; Jin & Sendhoff, 2008; Jin, Sendhoff,

 Körner, 2005; Maimon & Rokach, 2005b ) or understandabil-

ty ( Allahyari & Lavesson, 2011; Pazzani, 20 0 0; Sommer, 1995 ), is

efined as “the ability to understand the logic behind a predic-

ion of a model” ( Martens, Vanthienen, Verbeke, & Baesens, 2011 )

r “how well humans grasp the induced classifier” ( Maimon &

okach, 2005a ). It has been recognised as an important classifier

roperty since the 1980 s ( Michalski, 1983 ) and is continuously

mphasised ( Allahyari & Lavesson, 2011; Freitas, 2014; Huysmans

t al., 2011; Martens et al., 2011; Sommer, 1995; Zhou, 2005; Quin-

an, 1999 ). For example, one of the main features of ID3-like algo-

ithms is their ability to generate easy-to-understand decision trees

 Michie, 1987 ). Similarly, Kodratoff (1994 ) recognises the compre-

ensibility as a decisive factor when machine learning models are

pplied in the industry. Comprehensible classifiers are especially

mportant in domains such as credit scoring, medicine, churn pre-

iction and bioinformatics ( Freitas, 2014 ) because they enable do-

ain experts to classify instances without using a computer, ex-
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lain classifications of individual instances, validate the classifier,

onfirm hypotheses, discover new knowledge and improve or re-

ne classifiers in collaboration with data-mining experts ( Craven &

havlik, 1995; Zhou, 2005 ). 

Classifier comprehensibility depends on the type of knowledge

epresentation that is employed ( Freitas, 2014; Huysmans et al.,

011; Johansson, Niklasson, & König, 2004; Martens et al., 2011;

hou, 2005 ). For example, classification trees and rules are con-

idered to be the most comprehensible ( Freitas, 2014; Johansson

t al., 2004; Martens et al., 2011; Zhou, 2005 ), while support vec-

or machines, artificial neural networks and ensembles of classi-

ers are considered to be the least comprehensible ( Chorowski,

012 ) and, hence, are termed black-box classifiers ( Freitas, 2014;

uysmans et al., 2011; Johansson et al., 20 04; Zhou, 20 05 ). There

re differences in the comprehensibility of the classifiers based on

he same type of knowledge representation as well ( Martens et

l., 2011 ): the complexity of a specific classifier (measured as the

umber of leaves in a tree ( Maimon & Rokach, 2005a ), conditions

n a classification rule set ( Sommer, 1995 ), or connections in a neu-

al network ( Jin & Sendhoff, 2008; Liu & Kadirkamanathan, 1995 ))

s often used as a surrogate metric for classifier comprehensibil-

ty ( Allahyari & Lavesson, 2011; Freitas, 2003; Freitas, 2004; Jin &

endhoff, 20 08; Jin et al., 20 05; Johansson et al., 20 04; Martens

t al., 2011 ); a lower complexity corresponds to a higher compre-

ensibility. However, other properties, such as the structure of the

odel and its visualisation, affect the comprehensibility as well

http://dx.doi.org/10.1016/j.eswa.2016.06.009
http://www.ScienceDirect.com
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( Göpferich, 2009; Huysmans et al., 2011 ), but it is not clear how

and to what extent. Therefore, the main problem with regard to

most classification algorithms is that they do not explicitly con-

sider the comprehensibility ( Huysmans et al., 2011, Johansson et

al., 2004 ), while the ones that do usually simplify it to the classifier

complexity ( Pazzani, 20 0 0 ). This approach has several drawbacks

( Freitas, 2014 ) and could lead to over-simplistic models ( Elomaa,

1994 ) that are neither accurate nor comprehensible. This consider-

ation is the motivation for our systematic empirical study of tree

properties that potentially influence the comprehensibility of clas-

sifiers, in which we tackle classification trees, which are probably

the most commonly used type of comprehensible classifiers. 

We analyse the comprehensibility through the lens of classifier

usability, which is actually the property that is important in prac-

tice: the easier a classifier is to comprehend, the easier it is to use.

Therefore, the classifier comprehensibility and usability can be in-

terchanged in this paper, although in general, the terms are not ex-

act synonyms ( Göpferich, 2009 ). This study is based on data about

the performance of users while solving four types of tasks that in-

volve classification trees and their opinions on the task difficulty

and the tree comprehensibility, which was obtained using a care-

fully designed survey. We collected the answers to 98 questions

from 69 respondents and analysed them with statistically sound

methodology; we provide the interpretation of the results as well

as several empirically supported guidelines on how to construct

more comprehensible classification trees. We focus mainly on the

influence of the tree structure properties (the number of leaves,

branching factor, tree depth) on the comprehensibility, but we also

analyse the influence of several tree visualisation properties. One

of the most important contributions of this study is the investi-

gation of the influence of the question depth, which is equal to

the depth of the deepest leaf that is required to answer a question

about a classification tree. Another improvement over the related

work is the comparison of the performance and opinions about

the tree comprehensibility, from novice versus expert data-miners.

Finally, we propose two new classification-tree comprehensibility

metrics (the weighted sum of the depths of the leaves and the

weighted sum of the branching factors on the paths from the

root to the leaves). Comprehensibility metrics are required to act

as heuristic functions in learning algorithms ( Giraud-Carrier, 1998;

Piltaver, Luštrek, Zupan ̌ci ̌c, Džeroski, & Gams, 2014 ) and to com-

pare the comprehensibility of the classifiers obtained from various

algorithms ( Piltaver, Luštrek, Zupan ̌ci ̌c, et al., 2014; Zhou, 2005 ). 

The paper begins with a review of related work. Section 3 ex-

plains the survey design and implementation by listing the general

design choices, survey bias prevention strategies, analysed classi-

fication tree properties, methods for generating the classification

trees used in the survey and survey question examples. Section 4

presents and discusses the survey results. First, the survey and sur-

vey respondents are described, followed by a discussion on the

performance of different survey respondent groups, the influence

of the classification tree parameters on the comprehensibility for

each of the survey tasks, and the influence of the classification tree

visualisation. The paper closes with a summary of the most inter-

esting findings and suggested directions for further research. 

2. Related work 

Although many papers emphasise the importance of classifier

comprehensibility ( Freitas, 2014; Kodratoff, 1994; Martens et al.,

2011; Michalski, 1983; Michie, 1987; Quinlan, 1999; Sommer, 1995;

Zhou, 2005 ), related work on classifier comprehensibility is rela-

tively scarce ( Allahyari & Lavesson, 2011; Pazzani, 20 0 0 ). The most

general related work comes from the field of cognitive science.

Cognitive load theory ( Sweller, 1988 ) divides the total amount of

mental effort that is used in working memory into three types: the
ntrinsic cognitive load is inherent to the specific topic and cannot

e altered (the complexity of the classification domain); the extra-

eous cognitive load depends on the way that information or tasks

re presented (the classifier representation); and the germane cog-

itive load is devoted to the processing and construction of men-

al structures that organise the categories of information and their

elationships. Research in this field has developed a way of mea-

uring the perceived mental effort ( Paas & Van Merriënboer, 1993 ),

hich motivated us to approach the analysis of the classifier com-

rehensibility with objective measures. Furthermore, it was shown

hat experience with a specific task reduces the cognitive load,

hile the lack of it increases the load ( Murphy & Wright, 1984 ).

his concept is addressed in our study by comparing the perfor-

ance of two groups: data-mining experts (as suggested in Freitas

2014 )) and novice data-miners. 

More specific studies come from the field of text compre-

ensibility, where numerous methods for determining compre-

ensibility have been devised ( Göpferich, 2009 ). Schriver (1989 )

ivides them into three groups and concludes that reader-focused

pproaches provide advantages over text-focused and expert-

udgment-focused approaches. In line with this result, we perform

n empirical study that is based on a user survey instead of sim-

ly measuring the model complexity, as in Allahyari and Lavesson

2011 ), Freitas (2003 ), Freitas (2004 ), Jin and Sendhoff (2008 ), Jin

t al. (2005 ) and Martens et al. (2011 ) or using expert-judgements,

s in Freitas (2014 ). 

In the IT field, there are a considerable number of empirical

tudies that investigate the understandability of conceptual mod-

ls. Our survey design builds upon the following design issues,

hich are summarised in a review of experiments from this field

 Houy, Fettke, & Loos, 2012 ): the research design, the number of

xperiment participants, and the observed dependent variables. In

ddition, our study follows the framework for empirical evaluation

f model comprehensibility ( Aranda, Ernst, Horkoff, & Easterbrook,

007 ) in all of the recommendations, which can be applied to the

lassifier comprehensibility. 

Finally, a few studies address specifically the classification-tree

omprehensibility. Freitas (2014 ) reviews the case for comprehen-

ible classifier models and discusses the advantages and drawbacks

f five types of classification knowledge representations, including

lassification trees. This work motivated us to study the influence

f the question depth on the tree comprehensibility, which has not

een empirically evaluated before. 

The work by Allahyari and Lavesson (2011 ) is probably the

rst empirical study of classification-model comprehensibility.

his study compares the comprehensibility of classifiers that are

earned by three classification-tree and three rule-learning algo-

ithms, based on subjective comparisons of classifier pairs by

0 students. We focus on classification trees because they are

ore comprehensible than classification rules ( Allahyari & Laves-

on, 2011 ). Furthermore, one of our survey tasks follows the de-

ign of their study, comparing classifier pairs. They also report that

he classifier complexity has a negative correlation with the un-

erstandability, and therefore, we extend their work by analysing

he influence of several other tree structure parameters. We also

mprove on their work by using objective measures and additional

urvey tasks, including data-mining experts as survey respondents,

nalysing larger trees and using a domain that is familiar to the

espondents. 

The study by Huysmans et al. (2011 ) empirically evaluates the

omprehensibility of decision tables, trees and rules using subjec-

ive opinions (answer confidence) and objective measures of the

espondent performance (time to answer and answer accuracy) for

hree tasks: classify an instance, verify whether a classifier agrees

ith a statement, and compare two classifiers for their equiva-

ence. The results of this study are in favour of the single-hit de-
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ision tables over the other representation formats, but they are

btained exclusively from business students who have no prior

xperience with any of the representation formats and a domain

ith binary class. Our survey includes both objective measures as

ell as classification and verification tasks. In contrast with their

ork, we analyse the influence of the tree properties (and not the

ype of classifier knowledge representation) on the comprehensi-

ility. Moreover, we extend the survey with additional tasks, with

uestions about the perceived comprehensibility, and by analysing

he influence of classifier visualisation and the user’s background

n data mining. 

In our previous work, we designed a survey ( Piltaver, Luštrek,

ams, & Martinci ́c – Ipši ́c, 2014a ) according to experience from

elated work ( Allahyari and Lavesson, 2011; Aranda et al., 2007;

reitas, 2014; Houy et al., 2012; Huysmans et al., 2011 ); we val-

dated it with a group of data-mining experts and psychologists,

mplemented it as an online survey ( Piltaver et al., 2014a; Piltaver,

uštrek, Gams, & Martinci ́c – Ipši ́c, 2014b ) and tested it with re-

pondents ( Piltaver et al., 2014b ). This paper improves the initial

urvey design based on the results of the validation and thoroughly

iscusses the design choices and bias prevention strategies that are

rucial for the validity of the results. Finally, we conduct a statis-

ical analysis of the obtained data, propose the question depth as

he novel parameter that influences the comprehensibility and in-

roduce two new tree-comprehensibility metrics. 

. Survey design and implementation 

The following four subsections describe the survey design and

mplementation. The first subsection presents the general design

hoices, and the second is dedicated to the prevention of the bias

i.e., avoiding influencing the results of the survey by its design).

he last two subsections present the range of the classification

rees that are used in the survey according to the tree structure

nd visualisation properties. 

.1. General design 

Comprehensibility is inherently subjective ( Huysmans et al.,

011; Martens et al., 2011 ) and hence impossible to measure di-

ectly ( Allahyari & Lavesson, 2011 ). Therefore, we measure it in-

irectly by objective measures of the survey respondents’ perfor-

ance. The decision is based on research that argues that the com-

lexity impacts the task performance ( Campbell, 1988 ). We also

ollect the respondents’ subjective opinions about the tree com-

rehensibility and the question difficulty. 

The first design choice is about the objective measures: the re-

pondents’ performance is measured in terms of the time that is

equired to answer a survey question (hereinafter time-to-answer )

nd the probability of the correct answer (hereinafter answer-

orrectness ), which is consistent with the methodology that is

sed in the related work ( Aranda et al., 2007; Houy et al., 2012;

uysmans et al., 2011 ). In general, the shorter time-to-answer

nd the higher answer-correctness correspond to easier questions

nd, therefore, to more comprehensible trees. The survey includes

uestions about a range of trees that have various structure and

isualisation properties to objectively quantify the influence of

ach property on the tree comprehensibility. In addition, the re-

pondents are asked for their subjective opinion about the tree

omprehensibility and the difficulty of each question (hereinafter

uestion-difficulty ). Subjective opinions are used as the gold stan-

ard for the evaluation of the tree comprehensibility metrics, to es-

imate the variability of the respondents’ subjective opinions, and

o verify the correlations between the subjective opinions and the

bjective performance measures. 
The second choice is about the evaluation: paired statistical

ests are used to compare the performance and subjective opinions

f each respondent on different trees. Paired tests are required be-

ause of the limited number of respondents and the high variabil-

ty of their performance (see Fig. 8 ) and subjective opinions. Hence,

ach respondent is required to answer all of the questions, and the

umber of questions must be limited (we set the upper bound to

00) because it is difficult to motivate the respondents to answer

 lengthy survey and because answering too many questions could

nfluence respondent’s performance and expressed subjective opin-

ons. 

The third design choice involves the set of analysed tree pa-

ameters: we consider tree-structure parameters, tree-visualisation

roperties and the question depth. The analysed tree structure pa-

ameters can be computed algorithmically and in turn used for es-

imation of the tree comprehensibility. We analyse the following

arameters, for the following reasons: 

• The number of leaves (i.e., nodes without child vertices) – of-

ten used as a tree complexity metric that approximates the tree

comprehensibility ( Freitas, 2003; Martens et al., 2011 ); 
• The branching factor (i.e., the number of child nodes in the in-

ner vertices) – many tree-learning algorithms enable learning

binary trees ( Demšar et al., 2013 ) and several heuristic func-

tions for choosing the node splitting attribute take into account

the branching factor ( Harris, 2001; Quinlan, 1993 ). 
• The tree depth (the length of the longest path from the root to

a leaf) – a well-defined tree complexity metric, which depends

on the number of leaves and the branching factor. 

We analysed the tree visualisation properties because they

ould influence the comprehensibility ( Göpferich, 2009 ) and to ob-

ain data from which we empirically derived recommendations on

isualising classification trees in a comprehensible way. We con-

idered the following properties: 

• the visualisation style (plain-text, Weka ( Hall et al., 2009 ) and

Orange ( Demšar et al., 2013 ) visualisation styles); 
• explicitly visualised information about the tree (text and

colour-coded information); 
• the tree layout. 

Finally, motivated by our previous research ( Piltaver, Luštrek, &

ams, 2014; Piltaver, Luštrek, Zupan ̌ci ̌c, et al., 2014 ) and related

ork ( Freitas, 2014; Sommer, 1995 ), we investigate the influence

f the question depth , which is equal to the depth of the deepest

eaf that is required to answer a question about a tree. 

The survey is divided into two parts. The first part includes

our tasks ( classify, explain, validate , and discover ), which are dedi-

ated to quantifying the influence of the tree-structure parameters

nd the question depth on the tree comprehensibility based on

he objective measurements and respondents’ subjective opinions

 Table 1 ). Different tasks are used because they can generate dif-

erent evaluation perspectives ( Aranda et al., 2007 ). A uniform tree

isualisation style is used throughout the first part of the survey

as suggested by Allahyari and Lavesson (2011 )), while the tree

tructure parameters and question depth are varied systematically.

he second part includes two tasks ( rate and compare ) that are

edicated to the respondents’ subjective opinions about the in-

uence of both the tree structure and the visualisation properties

 Table 1 ) on the comprehensibility. A thorough description of the

urvey tasks (their design and implementation) is in Piltaver et al.

2014a ) and Piltaver et al. (2014b ) and is here briefly recapitulated

see supplementary material Section 3 for question examples): 

• in the classify tasks , the respondents classify an instance that is

represented with an attribute-value table using a classification

tree shown on the screen; 
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Table 1 

The investigated tree parameters and used measures for each survey task. 

Task Measures (objective, subjective ) Varied tree parameters (tree structure, tree visualisation ) Values 

Classify , explain , validate , discover Time-to-answer, Number of leaves [3–11] 

Answer-correctness, Branching factor [2–4] 

Question-difficulty Question depth [1–7] 

Rate Absolute comprehensibility Number of leaves [3–10] 

Branching factor [2–4] 

Compare Relative comprehensibility Number of leaves (4 vs. 10) 

Branching factor (2 vs. 3) 

Tree depth (2 vs. 4) 

Visualisation style (Plain-text, Weka and Orange default) 

Additional visualised information (Pie charts, meaningful attribute names) 

Tree layout (Ordered vs. random) 
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• in the explain task , the respondents are asked which attribute

values would a) have to stay the same, b) have to be changed

or c) are irrelevant in order to classify an instance into a given

class that is different from the class to which the instance cur-

rently belongs (according to a classification tree shown on the

screen); 
• in the validate task , the respondents check whether a classifi-

cation tree agrees with a statement about the classification do-

main (e.g., “Does the classification tree agree with the follow-

ing statement: for animals from class amphibian it holds that

backbone = yes and breathes = no?”); 
• in the discover task , the respondents discover which property is

unusual for a given class (e.g., flightless bird) based on a classi-

fication tree that divides the majority of instances that belong

to the class into one leaf and the minority with the unusual

property into another leaf (e.g., “Which is the rare property for

the animals from class mammal?”, to which the respondents

should reply with an attribute name and its value); 
• in the rate task, the respondents rate how comprehensible a

tree is on a five-level scale defined in Piltaver et al. (2014b ).

They are asked to rate trees that have a uniform visualisation

style and systematically varied tree-structure parameters (note

that the question depth cannot be varied in this task because

the comprehensibility of the entire tree is rated); 
• in the compare task designed as in Allahyari and Lavesson

(2011 ), the respondents are asked to compare the comprehen-

sibility of two trees shown side by side using a scale defined in

Piltaver et al. (2014b ): we keep the visualisation style fixed and

alter a single tree-structure property or keep the tree structure

fixed and alter the visualisation style. 

To conduct the survey, we implemented a custom on-line sur-

vey engine ( Piltaver et al., 2014a; Piltaver et al., 2014b ), which al-

lows remote participation at a time that is convenient for the re-

spondents. This approach enables accurate measurements of time-

to-answer, the recording of all of the respondents’ actions (e.g., cor-

recting a wrong answer), displaying data about the respondent’s

performance (used as a motivation tool), simple translation of the

survey into different languages and real-time progress monitor-

ing, which was especially useful in the testing phase. More de-

tails on the survey implementation are available in the supplemen-

tary material, and the survey itself is available at http://dis.ijs.si/

classifier-comprehensibility-survey . 

3.2. Preventing survey bias 

The survey results could be biased by the classification domain

because the respondents perform better when answering questions

about familiar domains compared to unfamiliar domains ( Aranda

et al., 2007; Martens et al., 2011; Sweller, 1988 ). This concern was

prevented by posing questions about a single domain that is fa-
iliar to all of the respondents. The Zoo dataset from the UCI

achine-learning repository ( Bache & Lichman, 2013 ) was used be-

ause it fits the requirement (i.e., requires only elementary biology

nowledge) and enables the construction of a large range of trees

see Table 2 ). This dataset consists of 101 instances, each repre-

enting an animal (e.g., antelope, crow, frog) that belongs to one

f 7 classes ( mammal, bird, fish, amphibian, reptile, mollusc or in-

ect ) and is described with 15 binary ( hair, feathers, eggs, milk, air-

orne, aquatic, predator, toothed, backbone, breathes, venomous, fins,

ail, domestic, cat-sized ) and 1 numeric ( legs ) attribute. 

The second potential source of bias is the learning effect

 Vessey & Galletta, 1991 ): the respondents learn while answering

he survey, and therefore, they perform better at questions that

re posed later in the survey compared with the initial questions.

or example, novice data-miners learn how to use classification

rees efficiently (e.g., use the mouse pointer to mark the current

ode while looking up the value of the node attribute). On the

ther hand, data-mining experts might need a few initial questions

o become accustomed to the classification-tree visualisation style

nd the survey answering form. The learning effect was noticed

hile testing the initial version of the survey, and therefore, sev-

ral precautions were taken: 

• The questions are posed in six groups; each corresponds to one

of the six tasks. All of the questions in a task are posed in ex-

actly the same way: the phrasing of the question, alphabetical

order of the attributes in an attribute-value table that contains

exactly 10 attributes, visualisation style and layout of the clas-

sification tree, and the answer forms are the same. These pre-

cautions shorten the learning period. 
• Instructions on how to answer an example question are pro-

vided before each task, and a test question must be answered

correctly before the respondent is allowed to proceed to the

first question (similar to Vessey and Galletta (1991 )). This ap-

proach verifies that the respondent understands the question

and knows how to answer it. 
• The tasks are ordered from the simplest to the most difficult, to

diminish the learning effect. 
• The Latin-square design ( Box, Hunter, & Hunter, 2005; Vessey &

Galletta, 1991 ) is used for the question order within each task.

This arrangement means that the respondents answer the ques-

tions in different orders and that the frequency of posing each

question at any given position in the question ordering is con-

stant. This approach distributes the remaining learning effect

equally over all of the questions, and therefore, the average re-

sults over all of the respondents are not biased by the learning

effect. 

The respondents’ subjective opinions are biased by their mental

bilities ( Sweller, 1988 ) and data-mining experience ( Murphy &

right, 1984 ) and could have a high variability due to the sub-

ective interpretations of the comprehensibility rating scales. To

http://dis.ijs.si/classifier-comprehensibility-survey
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Table 2 

The structure of the trees used in the survey. 
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revent this type of bias, the two tasks that ask for subjective

pinions are placed at the end of the survey. In this way, novice

ata-miners obtain experience on which they can soundly base

heir subjective opinions. Second, the offered answers to the mul-

iple choice questions are textual (instead of numeric), and their

eaning is explained with at least one sentence and one exam-

le ( Piltaver et al., 2014b ). This approach mitigates subjective inter-

retations of the answers’ meaning. For example, the explanation

hat says: “I can use the knowledge represented by the classification

ree as soon as I read it for the first time; I can easily remember it; I

an explain it to another person without looking at the figure. ” leaves

ewer interpretation possibilities than a mark 2 on a 1 to 5 scale.

inally, the respondents freely select the survey language (English,

lovenian or Croatian), which prevents decreased performance due

o the use of a foreign language. 

Finally, the survey results can be biased by the respondent’s

otivation : well-motivated respondents perform better and rate

uestions as easier and trees as more comprehensible compared to

on-motivated respondents. Instead of offering monetary awards

 Huysmans et al., 2011; Vessey & Galletta, 1991 ), we used a gam-

fication approach ( Zichermann & Cunningham, 2011 ): a table that

ompares the performance of the respondent to the best, average

nd worst respondent is shown after finishing each task. Accord-

ng to the post-survey interviews, the comparison table turned the

urvey into a competition and motivated the respondents to an-

wer quickly and correctly. 

.3. Varying the tree structure 

We systematically varied the investigated tree structure param-

ters, as illustrated in Table 2 , while keeping the other factors

hat might influence the respondents’ answers unchanged. This ap-

roach enables analysing the influence of a single tree structure

arameter on the comprehensibility. The size of the trees is lim-

ted to assure text readability. Note that this sizing limitation is

ot a drawback because large trees are rarely used by humans in

ractice. The tree construction process is described briefly below,

hile the details and figures of all of the trees used in the survey

re given in Piltaver et al. (2014b ). 

The basic classification tree ( Fig. 1 ) was learned using the de-

ault Orange ( Demšar et al., 2013 ) parameters, and larger trees

ere obtained by changing the pruning parameters. The smaller

rees (whose leaves correspond to instance clusters) were con-
tructed manually because pruning resulted in unnatural trees that

ould cause survey bias ( Göpferich, 2009; Martens et al., 2011 ). 

To construct trees with a branching factor that is above 2, addi-

ional attributes were computed as Cartesian products of the orig-

nal attributes. For example, combining the attributes aquatic and

reathes produces a ternary attribute with the values: aquatic-does

ot breathe (e.g., fish ), aquatic-breathes (e.g., amphibian ) and terres-

rial . As a result, the same or at least very similar structure as in

he original binary tree was obtained (e.g., Fig. 2 ). 

For the discover task, special trees were constructed: they split

he majority of instances that belong to a class (e.g., bird) into one

eaf and the minority with an unusual property (e.g., not airborne)

nto another leaf ( Fig. 3 ). The limited number of outliers in the

ataset resulted in 8 questions about 4 binary trees with 3, 5, 7

nd 11 leaves. 

.4. Varying the tree visualisation 

The influence of the tree visualisation is analysed in the com-

are task. The goal is to determine which tree visualisation param-

ters influence the comprehensibility and to assess their relative

mportance; therefore, only a single question per visualisation pa-

ameter is posed. 

First, the plain-text tree visualisation ( Fig. 4 left) and Weka

 Hall et al., 2009 ) default visualisation styles ( Fig. 4 right) were

ompared with the Orange default visualisation style ( Figs. 1–3 ). 

Two options with regard to the information shown in the tree

isualisation were considered: classification trees with ( Fig. 5 a)

nd without pie charts ( Fig. 5 c) and trees with ( Fig. 5 a) and with-

ut meaningful attribute names, attribute values and class names

 Fig. 5 b). 

Finally, the importance of the tree layout was evaluated by

omparing the comprehensibility of a tree with a random layout

 Fig. 6 b) and a tree with a left-to-right layout ( Fig. 6 a and Table 2 ).

he layout is obtained by placing the shallower subtrees on the left

nd the deeper subtrees on the right of the parent node. The ad-

antage is that this layout positions the simpler instances on the

eft side of the tree figure, which is commonly read first (in all

hree survey languages) and makes the tree structure systematic. 

. Results and discussion 

This section presents the survey results and discusses the in-

uence of the classification trees’ properties on their comprehen-

ibility. General information about the survey questions, tasks, the
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Fig. 1. The basic classification tree. 

Fig. 2. Tree with branching factor 3 corresponds to the tree shown in Fig. 1. 

Fig. 3. The tree shows an unusual property for a bird: not airborne . The numbers in 

the nodes correspond to the number of training instances from the class bird that 

belong to each node. 
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respondents and their performances are given in the first two sub-

sections, followed by subsections with the results about the influ-

ence of the tree structure parameters and the question depth, the

influence of the visualisation properties, and the comprehensibility

metrics. 

4.1. General data about the survey 

The survey includes 98 questions: 80% of the questions are

about the influence of the tree structure parameters on their com-
rehensibility, and 20% are on subjective opinions about the tree

omprehensibility. The data about the size of the survey are pre-

ented in Table 3 . The classify task included one question for each

ossible combination of the tree size, branching factor and ques-

ion depth that was available, using the trees in Table 2 . The num-

er of questions in the subsequent tasks was reduced to optimize

he trade-off between the number of questions and the number of

ossible comparisons for the analysis. The compare task included

ne question for each analysed tree property listed in Table 1 . The

ate task included one question for each classification tree illus-

rated in Table 2 . On average, the respondents needed ∼29 minutes

o answer the questions plus ∼26 minutes to rate the question dif-

culty and tree comprehensibility. 

Fig. 7 shows the median time-to-answer and the mean

uestion-difficulty (mapped to integers that range from 1 to 5)

or each question (represented with a circle). The questions in the

lassify task were rated as the easiest (the mean question-difficulty

ver all of the questions 1.6) and the answer times are short com-

ared to the other tasks. The most difficult was the discover task:

he mean question-difficulty over all of the questions is 2.4, and

he median time-to-answer for the easiest question is 14.5, which

s the highest among the four tasks. The explain task required more

ime to answer because the number of clicks needed to answer

 question was equal to the depth of the question, while a single

ouse click was needed in the other tasks. Fig. 7 shows a high cor-

elation between the question-difficulty and time-to-answer, which

onfirms that the time-to-answer is a suitable objective measure

nd that the difficulty scale was well-designed. 
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Table 3 

The statistical data about the size of the survey. 

Task Classify Explain Verify Discover Compare Rate Total 

Number of questions 30 18 23 8 8 11 98 

Number of respondents 69 52 52 52 52 52 

Number of answers 2070 936 1196 416 416 572 5606 

Mean time-to-answer per respondent [s] 17 .8 27 .3 15 .9 25 .9 / / 

Total time-to-answer for all respondents [h] 10 .2 7 .1 5 .3 3 .0 / / 25.6 + ∼24 

Answer-correctness [%] 97 .6 87 .7 96 .0 72 .8 / / 93 .0 

Fig. 4. A tree plotted using the plain-text visualisation (a) and a branch of a tree with the Weka visualisation style (b). 

Fig. 5. Three subtrees that illustrate the information given in each node: the default (a), with meaningless names of attributes/class (b) and without pie charts (c). 

Fig. 6. Two trees with the same structure but different layouts: left-to-right (a) and 

random (b) order. 
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High correlations between the answer-correctness and time-

o-answer (or question-difficulty) were also observed. Graphs

see supplementary material Section 4) show that the answer-

orrectness is constant for the questions that have a low question-

ifficulty or time-to-answer. The answer-correctness starts decreas-

ng when the time-to-answer increases above 10 s or when the

uestion difficulty increases above easy. In the classify task, the

nswer-correctness remains constant because the questions are so

asy that the incorrect answers are due to random errors and not

ue to higher question-difficulty or lower tree comprehensibility. 

.2. Survey respondents and the performance of the respondent 

roups 

The survey respondents are data-mining and artificial-

ntelligence researchers from the Jožef Stefan Institute, Slovenia

nd faculty staff and students from the Department of Informatics

University of Rijeka, Croatia. Because previous studies have

ndicated that past experience, education and individual cognitive

bilities can influence the task performance ( Aranda et al., 2007;
enbasat & Taylor, 1982; Freitas, 2014; Huysmans et al., 2011; Lee,

heng, & Cheng, 2007; Murphy & Wright, 1984; Vessey & Galletta,

991 ), the respondents are divided into three groups according to

heir experience with classification trees: data-mining experts (PhD

n data mining), computer science and informatics students (BsC in

nformatics) who took at least an introductory data-mining course,

nd other IT specialists (MsC or PhD in computer science) with

ery limited or no experience with classification trees. In total,

2 respondents answered all of the questions: 26 students , 19

xperts , and 7 IT specialists , of whom 62% were male. An additional

7 respondents answered only the classify task: 15 students , one

xpert and one IT specialist . The numbers are comparable with

ost of the studies that are reviewed in Houy et al. (2012 ). More

etails on the respondents’ demographic data are available in the

upplementary material. 

The respondent sample enables a comparison of the perfor-

ance of the experts and students . In the classify task, the experts

chieve the shortest median time-to-answer (13 s), the lowest av-

rage question-difficulty (1.4) and the highest answer-correctness

99%) among the three respondent groups. The students perform

he worst: the median time-to-answer is approximately 2 s longer

nd the probability of an incorrect answer is 3 times higher com-

ared to the experts . Nevertheless, the best performing students are

n a level with some of the best experts . 

The comparison of the performance between the respondent

roups in the explain task is the same as in the classify task, with

 few differences. The average answer-correctness of the experts

s 96% and of the students is 83% (this task is more difficult than
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Fig. 7. Median time-to-answer and the mean question-difficulty for the questions in the first part of the survey. 
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the classify task). The difference between the two groups is much

greater in the explain task in both relative and absolute terms. In

the verify task, experts and students perform equally well according

to the time-to-answer, answer-correctness and question-difficulty. 

In the discover task, the experts again perform best: the me-

dian time-to-answer ( ∼20 s) and its variability are the smallest, the

question-difficulty (2.2) the lowest (but comparable to students ),

and the answer-correctness the highest (89%). The s tudents achieve

a slightly longer median time-to-answer ( ∼23 s) but a much lower

answer-correctness (64%). The basic knowledge about classification

trees does not suffice in the discover task; therefore, the experts

have a larger advantage than in the previous three tasks. The dif-

ference in the performance of the respondent groups indicates that

the results of the surveys performed only with students could be

biased. 

4.3. The influence of the tree structure parameters and the question 

depth 

The influence of the tree structure parameters on the respon-

dents’ performance was analysed using the Wilcoxon signed-rank
est for time-to-answer and question-difficulty and McNemar’s

est for answer-correctness as well as graphs that show sum-

ary statistics (e.g., Fig. 8 ). Paired tests were used to account for

he differences in the performances between the respondents. We

ested whether increasing a single parameter by one step influ-

nces a performance metric while the two remaining parameters

ere fixed. The Holm-Bonferroni correction for multiple compar-

sons was applied to check for statistical significance. 

Fig. 8 shows the influence of the question depth on the time-to-

nswer. Each subgraph shows a Tukey boxplot for questions with

espect to a given branching factor and number of leaves. It is not

ossible to obtain trees that have some combinations of tree struc-

ure parameter values (e.g., a tree with 3 leaves and a branch-

ng factor of 4), and therefore, the trees that have the most sim-

lar number of leaves were used instead (4 or 10 leaves instead

f 3 or 9, respectively). The time-to-answer has no upper bound,

hich makes it sensitive to outliers (not shown in the figure),

nd hence, the median and quartiles are observed instead of the

ean. The annotations represent the raw p -values of the Wilcoxon

igned-rank tests (a non-parametric version of the paired t -test).

ig. 8 shows that increasing the question depth increases the time-

o-answer. 
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Fig. 8. The influence of the question depth on the time-to-answer a classification question about a tree that has a given branching factor (column) and number of leaves 

(row). The annotations represent the raw p -values of the Wilcoxon signed-rank tests: a minus sign for a p -value above 0.05 and ∗ , ∗∗ , ∗∗∗ or ∗∗∗∗ for p -values below 0.05, 0.01, 

0.001 or 0.0001, respectively. 
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Similar graphs were drawn for each combination of the three

uestion/tree parameters, the three respondents’ performance met-

ics and the four tasks in the first part of the survey. The results of

heir analysis are summarised in Table 4 , while the details are ex-

lained in the supplementary materials in Section 6. Because there

s dense information summarised in the table, an example on how

o read the cell in the classify row and question depth column fol-

ows. Increasing the question depth ( d ) in the classify task signifi-

antly (with very low p -values) increases the time-to-answer in 13

ut of 18 tests (each test corresponds to one star or minus sign

n Fig. 8 ) and significantly (with very low p -values) increases the

uestion-difficulty in 16 out of 18 tests. There is no influence on

he answer-correctness. 

Table 4 shows that increasing the question depth most strongly

ncreases the time-to-answer and question-difficulty; it also con-

istently decreases the answer-correctness (except in the easiest

ask – classify ), albeit not at a statistically significant level. In-

reasing the number of leaves increases the time-to-answer and

uestion-difficulty as well, but only if the questions are not trivial

i.e., a low question depth and/or branching factor). Furthermore,

he p -values are generally higher compared to the corresponding

ests for the question depth. The gap between the influence of the

umber of leaves and the question depth is smaller in the vali-
 h
ate and discover tasks than in the classify and explain tasks be-

ause they require analysing a larger part of the tree and not only

 single path from the root to a leaf. The branching factor does not

nfluence the comprehensibility if a question is trivial, but it does

ave an effect for more complex questions and trees. The p -values

or the influence of the branching factor are lower than those for

he number of leaves in the classify and explain task, but compa-

able in the validate task. The analysis for the discover task is lim-

ted due to the number of available trees and questions, but the

bserved trends are in line with the other tasks. 

.4. The influence of the visualisation properties 

In the compare task, we analyse the influence of the tree vi-

ualisation properties on the comprehensibility. The respondents’

atings on the seven-point scale ( Piltaver et al., 2014b ) are mapped

o integer values between −3 and 3. The rating 3 means that the

isualisation B is much more comprehensible than the visualisa-

ion A, 2 that B is more comprehensible, 1 that B is slightly more

omprehensible, and 0 that they are equally comprehensible. The

egative marks represent the inverse relations: A is more compre-

ensible than B. 
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Table 4 

Each cell lists x / y : the number of significant ( x ) vs. the total number of performed tests ( y ) for three respondent performance parameters: time-to-answer ( ), 

question-difficulty ( ) or answer-correctness (%). Each column shows the results for the studied question parameters: the question depth ( d ), the number of leaves 

( l ) and the branching factor ( b ). Each ratio is accompanied with a comment on the following: the significant tests (i); or the influence of the increased parameter 

values (j); or the data availability (k). 

Fig. 9. The influence of the tree visualisation style on the tree comprehensibility. 
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The respondents’ opinions about the influence of the tree visu-

alisation style on the comprehensibility are shown with histograms

in Fig. 9 . The left histogram compares the plain-text visualisation

( Fig. 4 left), and the right histogram compares the Weka visual-

isation ( Fig. 4 right) with the Orange visualisation of the same

trees. The vertical lines show the average ratings. The respondents

find the plain-text visualisation to be considerably less compre-

hensible than the Orange visualisation: the average rating is 2.31,

which is the highest among all of the questions in the compare

task. Therefore, the plan-text visualisation should be avoided when

analysing the classification trees. The majority of respondents pre-

fer the Orange over the Weka visualisation ( Fig. 9 on the right),

but the average rating of 1.1 is lower than in the comparison with

the plain-text visualisation. This finding shows that the additional

colour-coded information is beneficial. On the other hand, 3 stu-

dents and 1 IT specialist prefer Weka visualisation; they may find

colour-coded information confusing and therefore prefer the sim-

pler visualisation. 
o  
Second, the influence of the pie charts (which represent class

istributions, see Fig. 5 a and c) in the Orange visualisation is com-

ared using the histogram shown on the left of Fig. 10 . The result

s similar to the result above, but the average rating is lower, which

uggests that pie charts are the main but not the only difference

etween the Weka and Orange visualisations. The remainder can

e attributed to minor differences such as colour-coding the num-

er of examples in the leaves, and the respondents’ bias toward

he Orange visualisation introduced by the survey design. 

Third, the importance of the attribute names, attribute values

nd class names is analysed by comparing simple trees with mean-

ngful ( Fig. 5 a) and random ( Fig. 5 b) values and names. The re-

ults are presented in Fig. 10: the average rating (1.54) indicates

hat meaningful names are more important for comprehensibility

han the class-distribution pie charts. This result empirically con-

rms the fact (used in a related survey design ( Allahyari and Laves-

on, 2011 )) that meaningful concept names make information eas-

er to remember and support faster processing and the triggering

f associations with the user’s domain knowledge, which facilitates
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Fig. 10. The influence of visualised information on the tree comprehensibility. 

Fig. 11. The influence of the tree structure on the tree comprehensibility. 
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omprehension. Therefore, we suggest using meaningful names in

ree visualisations whenever possible, and we warn against using

isleading or ambiguous names. 

Fourth, we analyse the influence of the tree layout on its com-

rehensibility. A tree shown in Fig. 1 is compared with the same

ree when drawn using the same visualisation style but a random

ayout – with random relative horizontal positions for the sibling

odes. The layouts of both trees are illustrated in Fig. 6 . Although

lmost half of the respondents rated the trees as equally compre-

ensible, 42% preferred the tree with the left-to-right layout (sug-

ested in Section 3.4 ), and less than 10% preferred the random lay-

ut. The average rating (0.56) is the lowest among all of the results

resented in this section; nonetheless, we believe that the impor-

ance of the tree layout should be investigated further, especially

n larger trees and for users whose native reading direction is not

rom left to right. 

Finally, we analyse the influence of the tree structure param-

ters on the tree comprehensibility. Over 90% of the respondents

ound a tree with 4 leaves to be more comprehensible that a tree

ith 10 leaves ( Fig. 11 on the left), which is in line with the results

rom the previous tasks and related work ( Allahyari and Lavesson,

011; Huysmans et al., 2011 ). The average rating was 1.92, which

s more than the influence of meaningful names but less than the

ifference between plain-text and Orange visualisation. 

Comparing a tree with 9 leaves and a branching factor of 3 with

ts a binary version ( Table 2 , bottom row left and middle) exhibits

n inconclusive but interesting result shown in Fig. 11 on the right.

e cannot say which tree is more comprehensible: while 42% of

he respondents think that there is no difference or only a slight

ifference, the majority think that one or the other tree is more

r much more comprehensible. However, the preferences of these
 s  
espondents are opposing: one half prefers the deeper tree with

inary splits, while the other half prefers the shallower tree with

 branching factor of 3. This finding could explain why a limited

nfluence of the branching factor is observed in the previous four

asks. The influence of the branching factor on the comprehensi-

ility should be investigated further in domains in which there are

ultiple values of nominal attributes, which naturally yield trees

hat have higher branching factors. 

Finally, the influence of the tree depth is analysed by compar-

ng trees with 9 leaves and a branching factor of 3: one with a

epth of 2 and the other with a depth of 4 ( Table 2 , bottom middle

ell). The average rating is 0.15. No difference in the comprehensi-

ility is noticed by 35% of the respondents, and only 29% noticed

ore than a slight difference: approximately half of them prefer

he shallower tree, and the other half prefer the deeper tree. We

onclude that the tree depth itself does not have an important in-

uence on the comprehensibility, which is the reason why we de-

ided to omit an in-depth analysis of the tree depth for the first

our survey tasks in this paper. The other reason is that the num-

er of tree pairs with different tree depths but no difference in

he other tree structure parameters is very limited. Hence, similar

rees with different depths would have to be compared, but the

mall influence of the tree depth on the comprehensibility would

hen drown in the influence of the other parameters. 

.5. The comprehensibility metrics 

The comprehensibility ratings of the 11 trees (illustrated in

able 2 ) obtained in the rate task are used to analyse the match be-

ween various tree comprehensibility metrics and the respondents’

ubjective opinions and to suggest new comprehensibility metrics.
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Fig. 12. Correlations between comprehensibility metrics and the average respondent ratings (1: very easy to comprehend, 5: very difficult to comprehend). 
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The respondents’ opinions about the tree comprehensibility differ

but are generally within ± 1 of the average answer (see supple-

mentary material, Section 7). This finding suggests that the used

rating scale is valid. Furthermore, the opinions show that trees

with more leaves are more difficult to comprehend. More leaves in

turn causes a higher tree depth, and therefore, increasing the tree

depth appears to decrease the tree comprehensibility. However, the

tree depth and branching factor do not have an obvious (or con-

sistent) effect on the comprehensibility if the number of leaves is

fixed. These results agree with the results obtained in the first part

of the survey. 

Note that the complexity/comprehensibility of the analysed

trees is limited: the average ratings of all of the trees are be-

low difficult to comprehend . The results are therefore valid for trees

that have modest complexity and should not be overgeneralised to

more complex trees. 

Finally, we evaluate several tree complexity metrics that are be-

ing used as surrogates for the comprehensibility metrics. They are

evaluated based on the Pearson correlation coefficients with the

average comprehensibility ratings ( Fig. 12 ). The correlations are as

follows: 0.97 for the number of leaves; 0.88 for the number of

nodes; 0.57 for the tree depth; and 0.17 for the branching factor.

This finding confirms that the number of leaves is a valid metric

for the tree comprehensibility in trees that have modest complex-

ity. 

Finally, we defined two new comprehensibility metrics that can

be weighted by the parameter w l , which is defined in each leaf l .

The weighting is important because it enables specifying user pref-

erences that are related to the semantics of a classification tree,

rather than relying solely on the tree structure to estimate its com-

prehensibility. For example, weighting by the number of instances

in a leaf (mentioned in Sommer (1995 )) corresponds to preferring

the trees that classify the most instances with shallow leaves (i.e.,

simple classification rules). Another example is weighting by the

importance of a class, which corresponds to preferring the trees

that classify instances that belong to the important class(es) with

short rules. Both comprehensibility metrics account for the ques-

tion depth, which is defined per leaf and has the highest influ-

m  
nce on the question-difficulty and time-to-answer among all of

he analysed tree structure parameters. The first metric c 1 ( Eq. 1 )

s the weighted sum of the depths d l over all n leaves in a tree

nd has a correlation coefficient of 0.74 ( p -value below 0.01). The

econd metric c 2 ( Eq. 2 ) is the weighted sum of the branching fac-

ors b i on the paths from the root of the tree to a leaf l over all

 leaves and has a correlation coefficient of 0.90 ( p -value below

.001). The Pearson correlation coefficients were obtained using

he default weights w l =1. 

 1 = 

n ∑ 

l=1 

w l d l (1)

 2 = 

n ∑ 

l=1 

w l 

∑ 

i ∈ path ( root,l ) 

b i (2)

The correlation coefficient of the metric c 2 is comparable to

he best correlation coefficient among the previously mentioned

imple comprehensibility metrics. Furthermore, its correlation in-

reases to 0.94 if the weighting is set by the number of instances

n a leaf n l divided by the number of all instances n ( w l =n l / n ). 

. Discussion and conclusions 

This paper analyses how tree structure parameters and visuali-

ation style influence the comprehensibility of classification trees.

he results are based on empirical data obtained using a carefully

esigned survey with 98 questions answered by 69 respondents.

he survey design allows detecting relatively small differences in

he comprehensibility even with a limited number of respondents.

urthermore, the survey implementation enables analysing the ef-

ect of a single tree-structure parameter independently of the other

arameters. The 11 trees used in the survey have 3 to 11 leaves, 4

o 20 nodes, branching factors between 2 and 4, and tree depths

etween 2 and 7. Therefore, the conclusions are valid for trees that

ave modest complexity (commonly used in practice) and should

e generalised to large trees with caution. The respondents’ perfor-

ance is measured as the time-to-answer and answer-correctness
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n four tasks: classify an instance, explain the classification of an

nstance, validate that the tree agrees with a domain-knowledge

ule, and discover new knowledge about unusual instances. The

urvey measures the tree usability directly and objectively, while

he tree comprehensibility is measured objectively but indirectly

through its usability). In addition, the respondents’ subjective

pinions about comprehensibility are collected by asking how dif-

cult each question is in the first four tasks (question-difficulty),

ow comprehensible the tree is (the rate task) and by comparing

he comprehensibility of pairs of trees (the compare task) that dif-

er in their visualisation properties. 

The main contributions of this paper are the quantification and

nalysis of the influence of (i) the tree structure parameters, (ii)

he question depth, (iii) the tree visualisation properties, (iv) data-

ining experience on the tree comprehensibility, and (v) definition

f two new classification-tree comprehensibility metrics that con-

ider the structure and semantics of the tree. 

The time-to-answer is highly correlated to the question-

ifficulty, and therefore, the two metrics are well suited for mea-

uring the classification tree comprehensibility in the absence of

irect and objective measures. This finding also confirms that the

uestion-difficulty scale is well-designed. The variability of subjec-

ive opinions is considerable, which emphasises the subjective na-

ure of comprehensibility. Data mining experts perform better than

tudents, which shows that more experienced classification tree

sers comprehend the trees faster and better. The classify task is

he easiest, and the discover task is the hardest (of the four tasks),

ccording to the question-difficulty, answer-correctness and time-

o-answer. 

Tree-structure properties clearly influence the time-to-answer

nd question-difficulty, but they have a limited effect on the

nswers-correctness. Increasing the number of leaves (which in

urn increases the number of nodes and the tree depth) increases

he time-to-answer and question-difficulty. The result is statisti-

ally significant in the classify and explain tasks for non-trivial

uestions. The influence on the time-to-answer is also significant

n the validate task. The same trend is observed in all of the other

ases, but the results are not statistically significant. Increasing the

umber of leaves clearly makes a tree less comprehensible, as con-

rmed by the rate and compare tasks. The result empirically sup-

orts that the number of leaves is a usable tree comprehensibility

etric, but only if leaves with sufficiently high depths and trees

ith branching factors of greater than 2 are considered. Although

he number of leaves and the tree depth corresponds well to the

omprehensibility of the entire tree, they are not relevant if the

eeded information is close to the root of the tree. Finally, the re-

ults show that the number of leaves has a greater influence on the

ree comprehensibility in the discover task compared to the other

hree tasks because discovering new knowledge from the tree re-

uires at least scanning through if not reading and understanding

he entire tree. 

Increasing the branching factor increases the time-to-answer

or non-trivial questions in the classify, explain and validate tasks

not analysed in the discover task). Increasing the branching factor

lso increases the question-difficulty; however, the result is statis-

ically significant only in the classify task. Higher branching factors

hould be investigated further because there are two types of re-

pondents that have opposite preferences: half of them prefer a

inary tree, while the other half prefer a tree with a branching fac-

or of 3 (according to the compare task). This finding could explain

hy a limited influence of the branching factor is observed in the

rst part of the survey. In addition, further work should focus on

rees that have non-uniform branching factors. 

The tree depth itself does not have an important influence

n the tree comprehensibility and strongly depends on other tree

tructure parameters (the number of leaves and branching factor);
herefore, its influence on the comprehensibility cannot be system-

tically analysed. 

Increasing the question depth , which corresponds to the depth

f the deepest leaf that is required to answer a question, increases

he time-to-answer and question-difficulty. The influence is statis-

ically significant in almost all of the comparisons. Although this

nding is intuitively expected, the contribution of our study is that

t empirically proves the result even for a simple task such as clas-

ification. In addition, increasing the question depth decreases the

nswer-correctness in all of the tasks except for the easiest task

 classify ), although this result is not statistically significant. Increas-

ng the number of respondents would clarify the observed trend.

he question depth has the highest influence on the comprehensi-

ility among all of the observed parameters and is overlooked in

he related work. 

The results on the question depth suggest that users prefer

rees that follow the following principle: the most important infor-

ation and information about the most common instances should

e given at the top of the tree, i.e., with short rules, while the re-

aining instances can be classified with deeper leaves. The rela-

ive importance and distribution of the instances according to the

epth of the leaves to which they correspond should be accounted

or by the tree comprehensibility metrics and tree learning heuris-

ics. 

Verifying negated statements increases the time-to-answer

nd question-difficulty and reduces the answer-correctness com-

ared to verifying positive statements. Therefore, negated state-

ents should be avoided in classifier representations whenever

ossible. The effect of negating a statement is greater than the ef-

ects of increasing the question depth, number of leaves or branch-

ng factor. 

The tree visualisation style has an important influence on the

ree comprehensibility and usability. Plain-text visualisation should

e avoided while colour-coded information is beneficial. Meaning-

ul attribute names, attribute values and class names should be

sed in tree visualisation whenever possible, while misleading and

mbiguous names should be avoided. 

The results also indicate that the tree layout is important

or many users, and thus, its influence on the comprehensibility

hould be verified with objective measures. The tree layout algo-

ithm introduced in this paper can be used as a starting point for

urther research and to improve the visualisation of classification

rees. 

Finally, this paper defines two new classification-tree compre-

ensibility metrics that are in line with the survey results: the

eighted sum of the depths of the leaves and the weighted sum

f the branching factors on the paths from the root to the leaves.

oth metrics can be weighted by a parameter that is defined in

ach leaf, which enables specifying user preferences that are re-

ated to the semantics of a classification tree rather than relying

olely on the tree structure to estimate its comprehensibility. 

In future work , we plan to study the influence of the num-

er of leaves in larger (binary) trees and the branching factor in

rees with higher (and non-uniform) branching factors, which re-

ults from nominal attributes with more than two possible val-

es. Studying trees with higher complexity as well as increasing

he number of respondents will clarify the results about the influ-

nce on the answer-correctness. Another promising direction for

uture study is analysing the influence of the visualisation proper-

ies, especially the tree layout, using the objective measures (time-

o-answer, answer-correctness). Including respondents form vari- 

us cultures (e.g., who differ in the reading direction of their lan-

uages) will confirm whether the reported results are culture spe-

ific. Finally, the results of this study should be confirmed in real-

ife domains that involve strong numeric components, such as in

edical applications (e.g., stress level and activity monitoring), and
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insurance or bank loans, for example. A deeper investigation of the

influence of the question depth could ultimately lead to learning

algorithms that will produce more comprehensible trees. 
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