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ABSTRACT 
 
8-puzzle is typically solved by heuristic search. Real-time 
heuristic search usually gives better results when searching 
deeper. But sometimes deeper search leads to worse results 
than shallower which is a phenomenon called search 
pathology. In this paper we present the results of our 
investigation of the causes for pathology in 8-puzzle and 
some of its variations. 
 
1 INTRODUCTION 
 
8-puzzle (or 8-tiles sliding game) is a simple game in which 
one has to rearrange 8 tiles on 3 by 3 grid by sliding one tile 
at a time into an empty slot. The objective of the game is to 
rearrange the tiles into given order in as few moves as 
possible. Figure 1 shows how to solve start position (a) in 4 
moves to obtain goal position (e). 
 

  2 3  1 2 3  1 2 3  1 2 3  1 2 3
1 4 6    4 6  4   6  4 5 6  4 5 6
7 5 8  7 5 8  7 5 8  7   8  7 8   

(a)  (b)  (c)  (d)  (e) 
Figure 1: An example of solving 8-puzzle. 

 
A program that is trying to solve a given start position in the 
(8-puzzle) game generates a tree representing all possible 
sequences of moves of a certain length. Nodes of the tree 
represent positions in the game. Two nodes are connected 
with directed edge pointing from position p1 to position p2 if 
a move that transforms p1 into p2 exists. The program 
evaluates the minimal number of moves needed to solve 
positions in the leaves of that tree by using a certain 
heuristic function [4]. The move that leads to the sub tree 
that has the minimal value of the heuristic function in a leaf 
is chosen as the best move. Usually the deeper the tree is 
(the longer the sequence of moves) the more likely it is to 
choose the optimal move. But sometimes deeper trees 
mislead the algorithm into choosing wrong moves, whereas 
shallower trees would suggest correct moves. That is called 
search pathology [1, 3 and 7] and we want to avoid it if we 
can. In this paper we investigate when and why pathology 
happens by varying number of factors that may influence 
pathology and evaluating the correlation between them and 
measured pathology of a certain variation of 8-puzzle solved 
using a certain heuristic function. 

The pathology of minimax search was independently 
discovered by D. S. Nau in 1979 [10] and D. F. Beal in 1980 
[11]. Pathology of single-agent search was discovered much 
later in 2003 by V. Bulitko [7]. The causes for pathology of 
minimax search and their influences on pathology are 
described in [1, 3 and 6] so we studied the influence of the 
same factors and some additional ones in the domain of 8-
puzzle (and its variations) which is known to be pathological 
[9, 2]. We investigate the pathology of single-agent search 
with the assumption that it behaves similarly as pathology of 
minimax search. 

The rest of the paper is structured as follows. In Section 2 
we explain how we modeled heuristic function, how we 
evaluated percent of correct decisions and pathology and 
influence of granularity of heuristic function on pathology. 
In Section 3 we present variations of 8-puzzle and some 
statistic about them. We also describe influence of similarity 
of sibling nodes in the search tree and branching factor of 
the search tree on pathology. In Section 4 we present results 
obtained using some other heuristic functions. Section 6 
gives the conclusions. 

 
2 THE USUAL 8-PUZZLE  
 
It is known that 8-puzzle is pathological [2] so for the first 
part of our paper we use similar heuristic function as 
Sadikov and Bratko did in their paper. To obtain it we first 
calculated the optimal (minimal) numbers of moves needed 
to solve each solvable start position h*(n) with the use of 
retrograde analysis, a technique known from computer 
chess, where it is used to generate endgame databases [8]. 
We started from goal position and expanded the search tree 
in reverse order until depth of 31 where we found all 
solvable positions of 8-puzzle [5]. A solvable position is a 
position that can be solved using the allowed moves of the 
empty slot. There are 9!/2 solvable positions in the usual 
8-puzzle [5].  

Then we simulated the heuristic values h(n) by corrupting 
the optimal values in two steps. In the first step we took 
position’s true value h*(n) and added to it a certain amount 
of Gaussian noise. The added noise caused that some of the 
heuristic values were grater and the others were smaller than 
the true values. Sadikov and Bratko used two different 
heuristic functions one that was pessimistic and the other 
optimistic which means that in the first case the positive 
noise was added to the true values and in the second it was 



subtracted. Results of using pessimistic and optimistic 
heuristic functions are presented in Section 4. 

For standard deviation of added Gaussian noise we choose 
σ = 2.5 to equal the standard deviation of Manhattan 
distance heuristic function [2, 4], which is well known 
optimistic heuristic for the 8-puzzle domain. We did not 
corrupt the optimal evaluations for the first 7 levels of 
difficulty (h*(n) ≤ 7), because few positions belong to these 
levels and it is therefore practically impossible to corrupt 
them so that they would maintain more or less constant 
dispersion [2]. 

In the second step we limited the number of possible 
heuristic values as follows. We limited maximal and 
minimal heuristic value so that ∀n: h(n) ∈ [0, M] where 
M = maxn{h*(n)} + ⎣σ⎦ + 1. We choose M so that it was 
close to maximal heuristic value and that only few heuristic 
values of certain positions were greater than M. If h(n) > M 
we set it to M and if h(n) < 0 we set it to 0. Then we 
multiplied all heuristic values by a certain factor to scale the 
interval of possible heuristic values to [0, g] and rounded 
them to the closest integer value. We call g granularity of 
heuristic function because it denotes the number of possible 
values of the heuristic function. 

In the next step of our experiment we calculated average 
percentage of wrong decisions in the case of 1 and 5 levels 
of lookahead among all solvable positions. The percentage 
of wrong decisions using d levels of lookahead for given 
position m was calculated using the following formula: 
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Denominator # mintreed h(n) means the number of nodes n 
reachable from m in one move that have the smallest value 
of h(p) where p is a leaf of the subtree rooted in n with depth 
d – 1. In other words, it is the number of sibling nodes that 
have the smallest backed-up value of heuristic function. In 
case of d = 1 the only node of subtree is its root so the 
backed-up value is equal to the value of heuristic function in 
the root. Numerator #(mintreed h(n) ∧ ¬min h*(n)) is the 
number of positions n reachable from m by one move that 
have smallest value of backed-up heuristic function among 
sibling nodes  and do not have the smallest value of h*(n) 
among all their siblings. In other words, the numerator 
represents the number of moves that are the best according 
to the heuristic function but are not optimal. The formula 1 
gives the probability that the search algorithm will choose 
the wrong move in a position m if we let it look d levels 
deep and if it randomly decides which move to make when 
more than one sibling node has the smallest value of backed-
up heuristic function. An example of calculating wrong1(m) 
and wrong5(m) is shown in Figure 2 and Figure 3.  

 
Figure 2: Example of calculating wrong1(m) 

 

 
Figure 3: Example of calculating wrong5(m). 

 
 

In last step of our expermint we calculated pathology using 
the follownig formula: 
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All solvable positions in 8-puzzle compose a set denoted by 
SolvPos. 

Graph of  pat5/1 with respect to g (the granularity of the 
heuristic function) is shown in Figure 4. We see that pat5/1 
decreases with increasing g and that solving the puzzle is 
pathological for g < 10 and is not pathological for g ≥ 10. 
Result is qualitatively the same as in min-max search model 
described in [6]. 
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Figure 4: Pat5/1 of  usaual 8-puzzle. 

 
 
 
 



3 VARIATIOS OF 8-PUZZLE 
 
After experiments on the usual 8-puzzle we tried to vary the 
branching factor and similarity of sibling nodes in the search 
tree. In order to do so we had to introduce additional moves. 
Besides the 4 usual moves we considered 4 additional ones. 
All possible moves are shown in Figure 5. 

By selecting all possible subsets of the 8 moves we came up 
with    
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different games. There were 129 games that had only a few 
solvable start positions (less than 202), 31 games with 9!/2 = 
181440 solvable start positions and 95 games with 9! = 
362880 solvable positions. We decided to study only the 
games with many (≥ 9!/2) solvable positions because the 
results from games with less than 202 solvable start 
positions are statistically  much less significant and those 
games are not very playable either.  
 

 
Figure 5: Possible moves in variations of 8-puzzle. 

 
We found out that even some games with only 3 moves 
produce 9! solvable start positions. In the worst case 46 
moves are needed to solve the most difficult start position 
(in a game with 3 moves), whereas in the game with all (8) 
possible moves there are only 20 moves needed to solve the 
most difficult start position. We measured the average 
branching factor of the interesting games and came up with 
13 groups of games with branching factors: 1.56, 1.78, 2, 
2.22, 2.44, 2.67, 2.89, 3.11, 3.33, 3.56, 3.78, 4 and 4.44.  

We run the same tests as for the usual 8-puzzle on all the 
126 interesting games (including the usual 8-puzzle) and 
draw the graph of pat5/1 with respect to the branching 
factor. We expected to see the influence of branching factor 
on pathology [6], but that did not happen. A likely 
explanation is that the games differ in many aspects besides 
the branching factor: in the number of possible moves, the 
number of solvable start positions (two groups with 9! and 
9!/2 solvable start positions), the length of optimal solution 
for worst-case start position denoted maxOD (21 groups of 
games with maxOD ranging from 20 to 46) and the 
percentage of the positions in which all possible moves 
are optimal (percentage is ranging from 12% to 70.7% but 
61% of the games have less then 25% of positions in which 
all moves are optimal and only 6% of games have more than 
45% of such positions). We were unable to determine the 
exact influence of these factors on pathology. But we know 
that games with 3, 7 and 8 possible moves are highly 

pathological and that pathology of games with the same 
branching factor decreases with increasing maxOD. 

According to [6] the similarity of sibling nodes is also an 
important factor that causes or reduces the pathology so we 
calculated the similarity of sibling nodes for all the games 
using correlation (which indicates the strength and direction 
of a linear relationship between two random variables). 
Correlation is calculated for pairs (X, Y), in our case the 
pairs were the true value of a position and its descendants 
(node, decs1), (node, decs2), ... , (node, decsb). Similarity of 
interesting games varied from 0.877 to 0.966. That means 
that there is not much difference in similarity, so we did not 
expect a strong influence of similarity on pat5/1. Despite 
this we noticed that the pat5/1 is slowly decreasing with 
increasing similarity (Figure 6). Again result is qualitatively 
the same as in min-max search model described in [6]. 
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Figure 6: The influence of similarity on pat5/1 for 

g∈{5,25,2048} in variations of 8-puzzle. 
 
4 OTHER HEURISTIC FUNCTIONS 
 
We also studied the influence of σ the standard deviation of 
the heuristic error. We run the tests described above on the 
usual 8-puzzle (only 4 basic moves of an empty slot 
allowed) for a number of different values of σ. The results of 
some of the test are shown in Figure 7. We see that higher 
values of σ (larger heuristic error) result in higher pat5/1 for 
low granularity and lower pat5/1 for high granularity.  
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Figure 7: pat5/1 of usual 8-puzzle for σ ∈  {2, 3, 4, 5}. 

 
We repeated the same experiment as in Section 1 for other 
heuristic functions. We used optimistic and pessimistic 
heuristic functions obtained by corrupting the true values 



with either Gaussian noise (as in [2]) or by uniformly 
distributed noise (as in [1]).  We noticed that pessimistic 
heuristic functions cause less pathology than optimistic 
ones. Sadikov and Bratko [2] showed that only for heuristic 
functions that were obtained by adding Gaussian noise to 
true values where as we found out that results are the same if 
we use uniformly distributed noise. The pathology in the 
case of heuristic function that is neither pessimistic nor 
optimistic (the one used in Sections 1-3) is greater than the 
pathology in the case of pessimistic and lower than in the 
case of optimistic heuristic function. These results can be 
seen in Figure 8. We also used some other heuristic 
functions but the main result was always the same: the 
higher the granularity the lower the pathology. 
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Figure 8: pat 5/1 for different heuristic functions. 

 
4. CONCLUSION 
 
We showed that higher granularity of heuristic function 
causes lower pathology in all interesting variations of 
8-puzzle for a number of different heuristic functions (which 
can be seen in Figures 4, 6, 7 and 8). We also showed that 
higher similarity of sibling nodes slightly decreases 
pathology (Figure 6). We were unable to determine the 
effect of branching factor on pathology due to differences of 
games with different branching factors. Finally we showed 
that higher noise produces lower pat5/1 if there are only a 
few possible values of heuristic function (granularity) and 
higher pathology if there are many possible values of 
heuristic function (Figure 8). The influence of noise is the 
same for Gaussian and uniformly distributed noise. 

The results of our research regarding granularity and 
similarity are consistent with the results presented in 
[1 and 6]. According to those sources the branching factor 
also influences the pathology but as mentioned above we 

were unable to determine its effect in the domain of 8-puzzle 
and its variations. The advantage of pessimistic heuristic 
functions over optimistic ones is consistent with the results 
presented in [2]. The influence of amount of noise added to 
true values to obtain values of heuristic function is not 
studied in related work. 
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