
SEARCH PATHOLOGY OF 8-PUZZLE

Rok Piltaver, Mitja Luštrek, Matjaž Gams
Department of Intelligent Systems

Jozef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia

e-mail: {rok.piltaver | mitja.lustrek | matjaz.gams}@ijs.si

ABSTRACT

8-puzzle is typically solved by heuristic search. Real-time
heuristic search usually gives better results when searching
deeper. But sometimes deeper search leads to worse results
than shallower which is a phenomenon called search
pathology. In this paper we present the results of our
investigation of the causes for pathology in 8-puzzle and
some of its variations.

1 INTRODUCTION

8-puzzle (or 8-tiles sliding game) is a simple game in which
one has to rearrange 8 tiles on 3 by 3 grid by sliding one tile
at a time into an empty slot. The objective of the game is to
rearrange the tiles into given order in as few moves as
possible. Figure 1 shows how to solve start position (a) in 4
moves to obtain goal position (e).

 2 3 1 2 3 1 2 3 1 2 3 1 2 3
1 4 6 4 6 4 6 4 5 6 4 5 6
7 5 8 7 5 8 7 5 8 7 8 7 8

(a) (b) (c) (d) (e)
Figure 1: An example of solving 8-puzzle.

A program that is trying to solve a given start position in the
(8-puzzle) game generates a tree representing all possible
sequences of moves of a certain length. Nodes of the tree
represent positions in the game. Two nodes are connected
with directed edge pointing from position p1 to position p2 if
a move that transforms p1 into p2 exists. The program
evaluates the minimal number of moves needed to solve
positions in the leaves of that tree by using a certain
heuristic function [4]. The move that leads to the sub tree
that has the minimal value of the heuristic function in a leaf
is chosen as the best move. Usually the deeper the tree is
(the longer the sequence of moves) the more likely it is to
choose the optimal move. But sometimes deeper trees
mislead the algorithm into choosing wrong moves, whereas
shallower trees would suggest correct moves. That is called
search pathology [1, 3 and 7] and we want to avoid it if we
can. In this paper we investigate when and why pathology
happens by varying number of factors that may influence
pathology and evaluating the correlation between them and
measured pathology of a certain variation of 8-puzzle solved
using a certain heuristic function.

The pathology of minimax search was independently
discovered by D. S. Nau in 1979 [10] and D. F. Beal in 1980
[11]. Pathology of single-agent search was discovered much
later in 2003 by V. Bulitko [7]. The causes for pathology of
minimax search and their influences on pathology are
described in [1, 3 and 6] so we studied the influence of the
same factors and some additional ones in the domain of 8-
puzzle (and its variations) which is known to be pathological
[9, 2]. We investigate the pathology of single-agent search
with the assumption that it behaves similarly as pathology of
minimax search.

The rest of the paper is structured as follows. In Section 2
we explain how we modeled heuristic function, how we
evaluated percent of correct decisions and pathology and
influence of granularity of heuristic function on pathology.
In Section 3 we present variations of 8-puzzle and some
statistic about them. We also describe influence of similarity
of sibling nodes in the search tree and branching factor of
the search tree on pathology. In Section 4 we present results
obtained using some other heuristic functions. Section 6
gives the conclusions.

2 THE USUAL 8-PUZZLE

It is known that 8-puzzle is pathological [2] so for the first
part of our paper we use similar heuristic function as
Sadikov and Bratko did in their paper. To obtain it we first
calculated the optimal (minimal) numbers of moves needed
to solve each solvable start position h*(n) with the use of
retrograde analysis, a technique known from computer
chess, where it is used to generate endgame databases [8].
We started from goal position and expanded the search tree
in reverse order until depth of 31 where we found all
solvable positions of 8-puzzle [5]. A solvable position is a
position that can be solved using the allowed moves of the
empty slot. There are 9!/2 solvable positions in the usual
8-puzzle [5].

Then we simulated the heuristic values h(n) by corrupting
the optimal values in two steps. In the first step we took
position’s true value h*(n) and added to it a certain amount
of Gaussian noise. The added noise caused that some of the
heuristic values were grater and the others were smaller than
the true values. Sadikov and Bratko used two different
heuristic functions one that was pessimistic and the other
optimistic which means that in the first case the positive
noise was added to the true values and in the second it was

subtracted. Results of using pessimistic and optimistic
heuristic functions are presented in Section 4.

For standard deviation of added Gaussian noise we choose
σ = 2.5 to equal the standard deviation of Manhattan
distance heuristic function [2, 4], which is well known
optimistic heuristic for the 8-puzzle domain. We did not
corrupt the optimal evaluations for the first 7 levels of
difficulty (h*(n) ≤ 7), because few positions belong to these
levels and it is therefore practically impossible to corrupt
them so that they would maintain more or less constant
dispersion [2].

In the second step we limited the number of possible
heuristic values as follows. We limited maximal and
minimal heuristic value so that ∀n: h(n) ∈ [0, M] where
M = maxn{h*(n)} + ⎣σ⎦ + 1. We choose M so that it was
close to maximal heuristic value and that only few heuristic
values of certain positions were greater than M. If h(n) > M
we set it to M and if h(n) < 0 we set it to 0. Then we
multiplied all heuristic values by a certain factor to scale the
interval of possible heuristic values to [0, g] and rounded
them to the closest integer value. We call g granularity of
heuristic function because it denotes the number of possible
values of the heuristic function.

In the next step of our experiment we calculated average
percentage of wrong decisions in the case of 1 and 5 levels
of lookahead among all solvable positions. The percentage
of wrong decisions using d levels of lookahead for given
position m was calculated using the following formula:

)(mintree#
))(*min)((mintree#)(wrong

nh
nhnhm

d

d
d

¬∧
= (1)

Denominator # mintreed h(n) means the number of nodes n
reachable from m in one move that have the smallest value
of h(p) where p is a leaf of the subtree rooted in n with depth
d – 1. In other words, it is the number of sibling nodes that
have the smallest backed-up value of heuristic function. In
case of d = 1 the only node of subtree is its root so the
backed-up value is equal to the value of heuristic function in
the root. Numerator #(mintreed h(n) ∧ ¬min h*(n)) is the
number of positions n reachable from m by one move that
have smallest value of backed-up heuristic function among
sibling nodes and do not have the smallest value of h*(n)
among all their siblings. In other words, the numerator
represents the number of moves that are the best according
to the heuristic function but are not optimal. The formula 1
gives the probability that the search algorithm will choose
the wrong move in a position m if we let it look d levels
deep and if it randomly decides which move to make when
more than one sibling node has the smallest value of backed-
up heuristic function. An example of calculating wrong1(m)
and wrong5(m) is shown in Figure 2 and Figure 3.

Figure 2: Example of calculating wrong1(m)

Figure 3: Example of calculating wrong5(m).

In last step of our expermint we calculated pathology using
the follownig formula:

)1(
)(1/pat

avr
jarvj = ,

SolvPos

iwrong
kavr SolvPosi

k∑
∈=

)(
)((2)

All solvable positions in 8-puzzle compose a set denoted by
SolvPos.

Graph of pat5/1 with respect to g (the granularity of the
heuristic function) is shown in Figure 4. We see that pat5/1
decreases with increasing g and that solving the puzzle is
pathological for g < 10 and is not pathological for g ≥ 10.
Result is qualitatively the same as in min-max search model
described in [6].

0.6

0.7

0.8

0.9

1

1.1

1.2

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 12
8

51
2

20
48

gpa
t 5

/1

Figure 4: Pat5/1 of usaual 8-puzzle.

3 VARIATIOS OF 8-PUZZLE

After experiments on the usual 8-puzzle we tried to vary the
branching factor and similarity of sibling nodes in the search
tree. In order to do so we had to introduce additional moves.
Besides the 4 usual moves we considered 4 additional ones.
All possible moves are shown in Figure 5.

By selecting all possible subsets of the 8 moves we came up
with

255
88

1

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛∑
=i i

 (3)

different games. There were 129 games that had only a few
solvable start positions (less than 202), 31 games with 9!/2 =
181440 solvable start positions and 95 games with 9! =
362880 solvable positions. We decided to study only the
games with many (≥ 9!/2) solvable positions because the
results from games with less than 202 solvable start
positions are statistically much less significant and those
games are not very playable either.

Figure 5: Possible moves in variations of 8-puzzle.

We found out that even some games with only 3 moves
produce 9! solvable start positions. In the worst case 46
moves are needed to solve the most difficult start position
(in a game with 3 moves), whereas in the game with all (8)
possible moves there are only 20 moves needed to solve the
most difficult start position. We measured the average
branching factor of the interesting games and came up with
13 groups of games with branching factors: 1.56, 1.78, 2,
2.22, 2.44, 2.67, 2.89, 3.11, 3.33, 3.56, 3.78, 4 and 4.44.

We run the same tests as for the usual 8-puzzle on all the
126 interesting games (including the usual 8-puzzle) and
draw the graph of pat5/1 with respect to the branching
factor. We expected to see the influence of branching factor
on pathology [6], but that did not happen. A likely
explanation is that the games differ in many aspects besides
the branching factor: in the number of possible moves, the
number of solvable start positions (two groups with 9! and
9!/2 solvable start positions), the length of optimal solution
for worst-case start position denoted maxOD (21 groups of
games with maxOD ranging from 20 to 46) and the
percentage of the positions in which all possible moves
are optimal (percentage is ranging from 12% to 70.7% but
61% of the games have less then 25% of positions in which
all moves are optimal and only 6% of games have more than
45% of such positions). We were unable to determine the
exact influence of these factors on pathology. But we know
that games with 3, 7 and 8 possible moves are highly

pathological and that pathology of games with the same
branching factor decreases with increasing maxOD.

According to [6] the similarity of sibling nodes is also an
important factor that causes or reduces the pathology so we
calculated the similarity of sibling nodes for all the games
using correlation (which indicates the strength and direction
of a linear relationship between two random variables).
Correlation is calculated for pairs (X, Y), in our case the
pairs were the true value of a position and its descendants
(node, decs1), (node, decs2), ... , (node, decsb). Similarity of
interesting games varied from 0.877 to 0.966. That means
that there is not much difference in similarity, so we did not
expect a strong influence of similarity on pat5/1. Despite
this we noticed that the pat5/1 is slowly decreasing with
increasing similarity (Figure 6). Again result is qualitatively
the same as in min-max search model described in [6].

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0.
88

0.
89

0.
89

0.
89 0.

9

0.
9

0.
91

0.
91

0.
91

0.
91

0.
91

0.
92

0.
92

0.
92

0.
93

0.
93

0.
93

0.
94

0.
94

0.
95

0.
95

0.
95

0.
95

0.
96

0.
97

0.
97

Similarity

pa
t 5

/1

g = 5 g =25 g = 2048

Linear (g = 5) Linear (g =25) Linear (g = 2048)

Figure 6: The influence of similarity on pat5/1 for

g∈{5,25,2048} in variations of 8-puzzle.

4 OTHER HEURISTIC FUNCTIONS

We also studied the influence of σ the standard deviation of
the heuristic error. We run the tests described above on the
usual 8-puzzle (only 4 basic moves of an empty slot
allowed) for a number of different values of σ. The results of
some of the test are shown in Figure 7. We see that higher
values of σ (larger heuristic error) result in higher pat5/1 for
low granularity and lower pat5/1 for high granularity.

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 12
8

51
2

20
48

g

pa
t 5

/1

2 3 4 5

Figure 7: pat5/1 of usual 8-puzzle for σ ∈ {2, 3, 4, 5}.

We repeated the same experiment as in Section 1 for other
heuristic functions. We used optimistic and pessimistic
heuristic functions obtained by corrupting the true values

with either Gaussian noise (as in [2]) or by uniformly
distributed noise (as in [1]). We noticed that pessimistic
heuristic functions cause less pathology than optimistic
ones. Sadikov and Bratko [2] showed that only for heuristic
functions that were obtained by adding Gaussian noise to
true values where as we found out that results are the same if
we use uniformly distributed noise. The pathology in the
case of heuristic function that is neither pessimistic nor
optimistic (the one used in Sections 1-3) is greater than the
pathology in the case of pessimistic and lower than in the
case of optimistic heuristic function. These results can be
seen in Figure 8. We also used some other heuristic
functions but the main result was always the same: the
higher the granularity the lower the pathology.

0.55

0.65

0.75

0.85

0.95

1.05

1.15

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46
12

8
51

2
2048

gpa
t 5

/1

Gaussian Optimistic Gaussian Pesimistic Gaussian
Uniform pessimistic Uniform optimistic Uniform

Figure 8: pat 5/1 for different heuristic functions.

4. CONCLUSION

We showed that higher granularity of heuristic function
causes lower pathology in all interesting variations of
8-puzzle for a number of different heuristic functions (which
can be seen in Figures 4, 6, 7 and 8). We also showed that
higher similarity of sibling nodes slightly decreases
pathology (Figure 6). We were unable to determine the
effect of branching factor on pathology due to differences of
games with different branching factors. Finally we showed
that higher noise produces lower pat5/1 if there are only a
few possible values of heuristic function (granularity) and
higher pathology if there are many possible values of
heuristic function (Figure 8). The influence of noise is the
same for Gaussian and uniformly distributed noise.

The results of our research regarding granularity and
similarity are consistent with the results presented in
[1 and 6]. According to those sources the branching factor
also influences the pathology but as mentioned above we

were unable to determine its effect in the domain of 8-puzzle
and its variations. The advantage of pessimistic heuristic
functions over optimistic ones is consistent with the results
presented in [2]. The influence of amount of noise added to
true values to obtain values of heuristic function is not
studied in related work.

References

[1] M. Luštrek. Patologija v hevrističnih preiskovalnih

algoritmih. Ph. D. thesis, University of Ljubljana,
Faculty of Computer and Information Science, 2007.

[2] A. Sadikov, I. Bratko. Pessimistic Heuristics Beat
Optimistic Ones in Real-Time Search. ECAI, 2006.

[3] M. Luštrek. Pathology in Single-Agent Search.
Information Society conference, 2005.

[4] D. R. Kunkle. Solving the 8 Puzzle in a Minimum
Number of Moves: An Application of the A*
Algorithm. http://www.ccs.neu.edu/home/kunkle/
docs/EightPuzzle.pdf

[5] A. Reinefeld. Complete Solution of the Eight-Puzzle
and the Benefit of Node Ordering in IDA*.
International Joint Conference on Artificial
Intelligence, pp. 248-253, 1993.

[6] B. Kaluža, M. Luštrek, M. Gams, A. Tavčar.
Pathology in Minimax Searching. International
Electrotechnical and Computer Science Conference,
2007.

[7] V. Bulitko, Lihong Li, R. Greiner, I. Levner.
Lookahead pathologies for single agent search.
Proceedings of the Eighteenth International Joint
Conference on Artificial Intelligence, 2003.

[8] K. Thompson. Retrograde analysis of certain
endgames. ICCA Journal, 9(3), 131–139, 1986.

[9] V. Bulitko. Lookahead pathologies and meta-level
control in real-time heuristic search. 15th Euromicro
Conference on Real-Time Systems 13-16, 2003.

[10] D. S. Nau. Quality of decision versus depth of search
on game trees. Ph. D. thesis, Duke University, 1979.

[11] D. F. Beal. An analysis of minimax. V Advances in
Computer Chess 2. 103-109. Edinburgh University
Press, 1980.

