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ABSTRACT 

In incomplete single-agent search, it is generally accepted 
that deeper searches produces better results. It has recently 
been discovered, though, that this is not always the case – 
such behavior has been termed pathological. This paper 
identifies two properties of search trees that cause 
pathological behavior and explains how they produce the 
pathology. A number of different heuristic functions were 
also investigated, focusing on admissibility and 
consistency. Consistency was most effective at preventing 
the pathology, while admissibility helped only in some 
cases. 

1 INTRODUCTION 
Search pathology occurs when the quality of a shallower 
heuristic search exceeds the quality of a deeper one. It is 
called pathology [9] because it is the opposite of what 
‘should’ happen, namely that the more effort one puts into 
searching, the better results he gets. This phenomenon has 
been known in minimax search since 1979 [1, 9], but it has 
only been discovered in single-agent (or minimin) search in 
2003 [5]. It does not occur in complete search methods such 
as A* [6], because these, given appropriate heuristics, 
compute the optimal path to the goal, leaving no room for 
the pathology. Where it has been observed is in incomplete 
search methods such as real-time A* [7]. Incomplete search 
methods perform minimin searches to a chosen depth, 
heuristically evaluate the search tree nodes at that depth and 
back their values up to a level below the root. These 
backed-up values are then used to choose the action leading 
from the root to its descendant with the optimal (typically 
minimal) value (typically representing the cost of reaching 
a goal node). We speak of the pathology when the choice of 
the action is more likely to be erroneous after a deeper 
search than after a shallower one.  

There are two possible reasons for pathological behavior of 
single-agent search: the domain (or the nature of the 
problem) and the heuristic evaluation function directing the 
search. The domain is reflected in the distribution of true 
values in search trees. We identify two properties of search 
trees that lead to pathological behavior. The more 
interesting reason for the pathology, however, is the 
heuristic function, because unlike the domain, which is 
given, it can be controlled. The properties of heuristic 

functions that usually concern their designers are 
admissibility and consistency. The pathology turned out to 
be affected by both, by consistency more than by 
admissibility. 

The paper is organized as follows. Section 2 briefly touches 
on the minimax pathology and then reviews the existing 
work on the pathology in single-agent search. Section 3 
describes the properties of the domain that cause the 
pathology. Section 4 deals with heuristic functions. Section 
5 concludes the paper and points out where further research 
is needed. 

2 RELATED WORK 
The minimax pathology was discovered independently by 
Nau [9] and Beal [1]. They set out to determine why 
minimaxing reduces the error of the heuristic evaluation 
function used to evaluate the leaves of the search tree, only 
to find out that on their seemingly reasonable models, it did 
exactly the opposite, i.e. amplify the error. Different 
explanations of this paradox were proposed, the most 
common [2, 3, 10] being that the pathological models 
ignored the similarity of positions close to each other, a 
characteristic of real games. More recent explanations [8, 
11] featured reduced error at lower levels of search trees, 
which was previously dismissed. 

It seems that the pathology in single-agent search was 
investigated only by Bulitko et al. They first demonstrated 
it [5] on a two-level search tree shown in Figure 1; the 
numbers in the figure are the nodes’ true values and the 
letters the nodes’ names. The tree was designed specifically 
to be pathological, but the heuristic function was ‘fair’. 

 
Figure 1. Pathological search tree by Bulitko et al. 



The heuristic value or cost of a node is usually presented as 
f = g + h, where g is the known part and h the heuristic part. 
We will only discuss the cost as a whole: the heuristic cost 
of a node x will be denoted c (x) and the true cost c* (x). In 
the example in Figure 1, c (x) is distributed uniformly 
between c (y) and c* (x), where y is the parent of x. This 
makes is both monotonically non-decreasing (which is 
equivalent to its heuristic part being consistent) and 
admissible. Let Err (x, d) be the probability that among the 
descendants of a node x, one that does not have the lowest 
true value has the lowest heuristic value as returned by a 
search to depth d. In the example in Figure 1, Err (i, 1) = 
0.461 < 0.486 = Err (i, 2). This shows that the pathology is 
possible even with a heuristic function having both 
desirable properties, consistency and admissibility. 

Bulitko later [4] discovered that the pathology can also 
occur outside synthetic search trees. He observed 
pathological behavior when solving the eight-puzzle using a 
heuristic function represented by an artificial neural 
network. 

An issue Bulitko et al. did not address, though, is why the 
pathology occurs. This is what this paper focuses on. 

3 DOMAIN AS A REASON FOR THE PATHOLOGY 
The reasons for the pathology were mostly investigated on 
synthetic search trees with depth 2 and branching factor 2. 
Monte Carlo experiments were used to confirm that the 
conclusions also apply to larger branching factors and 
depths. 

3.1 The First Reason 
The first property of search trees that affects the pathology, 
property 1, is the difference in true value between the level-
1 node with the lowest value and its descendants, compared 
to the difference in true value between other level-1 nodes 
and their descendants. It can be observed in the example 
from Figure 1, using Bulitko et al.’s heuristic function. To 
do that, we will treat heuristic values as random variables. 
We will write static c (x) as X0, backed-up c (x) when 
searching d levels below x as Xd and c* (x) as X*. fX d (y) is 
the probability density function of Xd. Figure 2 shows the 
probability density functions of J and K from the example 
in Figure 1: on the left side for search to d = 1 and on the 
right side for search to d = 2. The functions are integrated 
over all the possible values of I. 

 

Since J* < K*,  an error occurs when J > K, so we must 
determine why P (J1 > K1) > P (J0 > K0); the left side of the 
inequality is shown in the right side of Figure 2 and the 
right side of the inequality in the left side of Figure 2. A 
node’s backed-up heuristic value is higher than its static 
heuristic value because the static heuristic values of the 
node’s descendants must be higher than the node’s static 
value (due to consistency of the heuristic function) and the 
node’s backed-up value is made up of the descendants’ 
values. This can be seen in Figure 2, where the probability 
density functions on the right have on average a higher 
value than those on the left. If this increase were equal for 
both J and K, there would be no pathology. However, the 
increase is larger for J, which means that J1 is closer to K1 
than J0 to K0, resulting in the pathological P (J1 > K1) > 
P (J0 > K0). To see why J1 is closer to K1 than J0 to K0, we 
must consider that J1 = min (L0, M0) and K1 = min (N0, O0). 
Let us take two random variables X and Y. If Z = 
min (X, Y), Z tends to be lower than both X and Y, because 
for some values of X = x, there is a non-zero probability that 
Y (and therefore Z) is lower than x, and vice versa, for some 
values of Y = y, there is a non-zero probability that X (and 
therefore again Z) is lower than y. If Y is much higher than 
X, than Z will be very similar to X, because Y will have little 
effect on Z. The closer X and Y get, the more effect Y will 
have; its effect can only be to make Z lower, so the closer X 
and Y get, the lower Z will be. Since N0 and O0 are much 
closer to each other than L0 and M0 and since K0 puts an 
upper limit on N0 and O0 in the same fashion as J0 on L0 and 
N0, K1 = min (N0, O0) is lower relatively to K0 than J1 = 
min (L0, M0) relatively to J0. This explains why J1 and K1, 
the descendants of the lower level-1 node, are closer to each 
other than J0 and K0 and hence how property 1 produces the 
pathology in the example in Figure 1. 

To further demonstrate the effect of property 1, let us 
strengthen it (cause it to produce a stronger pathology) by 
increasing M* to 3. Err (i, 1) = 0.461 remains unchanged, 
while Err (i, 2) increases from 0.486 to 0.507. If O* is 
reduced to 1.02, Err (i, 2) increases as well, this time to 
0.492. Property 1 can also be weakened, for example by 
reducing M* to 1 or by increasing O* to 3. This eliminates 
the pathology by reducing Err (i, 2) to 0.426 and 0.391 
respectively. 

3.2 The Second Reason 
The second property of search trees that affects the 
pathology, property 2, is the difference in true value 
between the level-1 node with the lowest value and other 
level-1 nodes relative to the true value of the root. It can be 
explained on the search tree shown in Figure 3, which is 
somewhat related to the tree in Figure 1, but is not 
pathological. Bulitko et al.’s heuristic function is used 
again. 

Figure 2. Explanation of property 1. 



 

Figure 4 shows the probability density functions of J and K 
from the example in Figure 3: on the left side for search to 
d = 1 and on the right side for search to d = 2. The functions 
are integrated over all the possible values of I. 

 

As can be seen in Figure 4, fJ 1 (y) has larger values for y 
close to J* = 1 than fJ 0 (y); fK 1 (y) also has larger values for 
y close to K* = 2.02 than fK 0 (y). This phenomenon was 
already explained in subsection 3.1 when discussing 
property 1. However, the example in Figure 3 has a much 
larger difference between I* = J* and K* than the example 
described in subsection 3.1. This gives fK 1 much more room 
to distance itself from fJ 1 and thus eliminates the pathology. 
Property 2 does not only require level-1 nodes to be far 
away from each other to eliminate the pathology, it requires 
them to be far away from each other relatively to the value 
of one of them (or the root). Why this is necessary can 
easily be seen by proportionately increasing the values of 
all the nodes: this certainly increases the distance among 
level-1 nodes, but does not affect the error, so it cannot 
affect the pathology. 

To further demonstrate the effect of property 2, let us 
strengthen it (cause it to produce a stronger pathology) on 
the tree from Figure 1. This can be done by reducing K* 
and N* to 1.01 and O* to 1.02. On the unmodified tree, the 
increase in error when increasing the depth of search from 1 
to 2 is 5.4 %. On the modified tree, it is 8.4 %, which is 
more pathological. Property 2 can also be weakened, for 
example by increasing K* and N* to 1.03 and O* to 1.04. 
This reduces the increase in error to 2.9 %, which is less 
pathological. 

4 HEURISTIC FUNCTION AS A REASON FOR THE 
PATHOLOGY 

The two properties of the heuristic function that will be 
considered in this section are admissibility and consistency. 

If a heuristic function is admissible, the corresponding cost 
function will be called optimistic, because admissibility of c 
means c (x) ≤ c* (x), i.e. that the true value of x is always 
underestimated. If a heuristic function is consistent, the cost 
function is monotonically non-decreasing, which means 
c (x) ≥ c (y), where y is the parent of x. In complete search, 
the former implies the latter, but we are investigating 
incomplete search, where this is not the case, so we can 
deal with each property separately. 

We will investigate uniformly and normally distributed cost 
functions. The cost function can be plain (the heuristic 
value of a node is simply distributed around its true value), 
optimistic, pessimistic (the opposite of optimistic, i.e. c (x) 
≤ c (y), where y is the parent of x), monotonic 
(monotonically non-decreasing), Bulitko (distributed as 
described in section 2) or a combination thereof. 

Figure 3. Search tree to explain property 2. 

The cost functions were compared in Monte Carlo 
experiments. 100,000 search trees with depth 2 and 
branching factor 2 were built and 100 sets of heuristic 
values were generated for each tree. Some experiments with 
larger depths and branching factors were also performed, 
yielding similar results. The percentage of pathological 
search trees is denoted Pat. However, different cost 
functions cause errors with different probabilities, so Pat 
might not be best suited to comparing them. For example, if 
one function causes very few errors, it will also be 
pathological on very few trees, even though it might be 
pathological on every tree where it causes an error. 
Therefore another measure is needed: relative pathology 
RPat. RPat is defined as Pat divided by the probability of a 
deeper search being beneficial compared to a shallower 
one. Both Pat and RPat for different cost functions are 
shown in Figure 5 and Figure 6. 

Figure 4. Explanation of property 2. 
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Figure 5. Pathology of cost functions with uniform 

probability distributions. 
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Figure 5 and Figure 6 lead to the following conclusions: 
• if the cost function is monotonic, the pathology is less 

likely; 
• if the cost function is non-monotonic, the pathology is 

hardly affected by whether the function is optimistic or 
pessimistic; 

• if the cost function is monotonic and distributed 
uniformly, the pathology is also hardly affected by 
whether the function is optimistic or pessimistic; 

• if the cost function is monotonic and its distribution is 
based on normal, the pathology is less severe if the 
function is optimistic. 

These conclusions do not appear to be very exciting: it is 
accepted that a cost function should be optimistic and 
monotonically non-decreasing. However, it should be noted 
that if a cost function is effective at leading an agent to 
desirable actions, that does not prevent it from being 
pathological. A good cost function can still be more 
effective when used in shallower searches than when used 
in deeper ones. So it is reassuring to know that the two 
properties already considered desirable also help with the 
pathology. Perhaps somewhat surprising is the discovery 
that it is more important that the function is monotonically 
non-decreasing than that it is optimistic, since usually more 
attention is paid to the latter. This is probably the legacy of 
complete search, where an optimistic cost function 
guarantees an optimal solution. 

5 CONCLUSION 
Unlike the minimax pathology, the pathology in single-
agent is not very well understood. This paper sheds some 
light on why it occurs by identifying two properties of 
search trees that cause pathological behavior and explaining 
how they cause it. The effect of these two properties is 
undeniable on synthetic search trees, but it also needs to be 

verified on a practical example. This is one area where we 
will direct our future research. 

The distribution of true values in the search tree is only one 
reason for the pathology – the other is the heuristic 
function. We showed that to avoid the pathology, the 
heuristic function should first be consistent and then 
admissible. However, since pathological behavior has been 
observed even with consistent and admissible heuristic 
functions, there are probably other characteristics of 
heuristic function that cause the pathology. They also need 
to be verified on a practical example. This is the other area 
where additional research is required. 
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