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Abstract

In situations where one needs to make a sequence of decisions, it is often believed

that looking ahead will help produce better decisions. However, it was shown

30 years ago that there are “pathological” situations in which looking ahead

is counterproductive. Two long-standing open questions are (a) what combi-

nations of factors have the biggest influence on whether lookahead pathology

occurs, and (b) whether it occurs in real-world decision-making.

This paper includes simulation results for several synthetic game-tree mod-

els, and experimental results for three well-known board games: two chess

endgames, kalah (with some modifications to facilitate experimentation), and

the 8-puzzle. The simulations show the interplay between lookahead pathology

and several factors that affect it; and the experiments confirm the trends pre-

dicted by the simulation models. The experiments also show that lookahead

pathology is more common than has been thought: all three games contain

situations where it occurs.
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1. Introduction

In situations where one needs to make a sequence of decisions, it is often

believed that looking ahead (to predict the possible results of one’s actions)

leads to better decisions. There have been some dramatic demonstrations of
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this principle in board games such as chess and checkers, where the performance

of computer programs has greatly improved as improvements in computers and

algorithms have made it possible to look farther ahead in the same amount of

time [1, 2].

On the other hand, there are theoretical results saying that looking ahead

does not always lead to better decisions. Thirty years ago a class of games was

discovered [3] having a counterintuitive property called lookahead pathology, in

which searching farther ahead consistently led to worse decisions rather than

better ones. Furthermore, a game-tree model that was considered realistic at

the time turned out to be pathological [4].

Although many explanations of lookahead pathology have been proposed

and several factors affecting it have been found [3, 5, 6, 7, 8, 9, 10, 11, 12, 13,

14, 15, 16, 17, 18, 19], these studies have several limitations:

• They have typically focused on a single factor at a time, without giving

a clear understanding of the interplay among the factors. Consequently,

several researchers have claimed—erroneously, in our view—that one or

another of these factors was the reason for the absence of lookahead pathol-

ogy in most real-world situations.

• Although lookahead pathology occurs in mathematical models and “ar-

tificial” games such as Pearl’s game [5], it has remained unclear as to

whether lookahead pathology occurs in real-world decision-making or is

just a mathematical curiosity.

The purpose of this paper is to resolve the above problems. Our main

contributions are as follows:

1. We use simulations of lookahead search for two- and one-player games to

explore the interplay between lookahead pathology and three major factors

affecting it: the heuristic evaluation function’s granularity (the number of

possible returned values), the game tree’s branching factor (the number

of successors of each node), and the tree’s local similarity (the similarity
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among the values of closely related nodes). The simulations show that the

benefit provided by a deeper search increases with granularity, decreases

with branching factor, and increases with local similarity. Consequently,

lookahead pathology is most likely to occur with a low granularity, a high

branching factor, and a low local similarity.

2. Experimental tests on substantially different games (two chess endgames,

modified kalah,1 and the 8-puzzle) show that the benefit provided by a

deeper search follows the trends predicted by the simulations.

3. The experimental tests also show that even though all three games are

mostly nonpathological, they all contain situations in which lookahead

pathology occurs. This suggests that similar situations may occur in many

decision-making environments; and our models may be useful in helping

to predict what these situations are and how to deal with them.

The paper is organized as follows. Section 2 defines the minimax and min-

imin algorithms, lookahead pathology, and several other terms and quantities

used throughout the paper. Section 3 describes the factors influencing pathol-

ogy that we use as parameters in our game-tree models. Section 4 describes

several other influences on pathology, and explains why we do not include them

as explicit parameters in our models. Section 5 describes simulations showing

how the factors described in Section 3 affect lookahead pathology in three game-

tree models (two for two-player games and one for one-player games). Section 6

explores the influence of these factors in three games: chess, kalah and the

8-puzzle.

2. Definitions

2.1. Two-Player Games

A finite, two-player, perfect-information, zero-sum game can be represented

by a game tree in which the nodes are the states and the edges are the moves.

1We made some simple modifications (see Section 6.2) to ensure a constant branching
factor, strict alternation of play, and a uniform-depth game tree.
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Each terminal node x in the tree is assigned a utility value u(x). This utility

value may be the game’s final score or some other way of expressing which

outcomes are preferable. We follow the usual convention of calling the two

players Max and Min, where Max is trying to maximize the utility value and

Min is trying to minimize it.

From the Minimax Theorem [20] it follows that each node x has a unique

value m(x), which is the utility value that will be obtained if both players play

optimally:

m(x) =


u(x), if suc(x) = ∅,

maxy∈suc(x) u(y), if it is Max’s move at x,

miny∈suc(x) u(y), if it is Min’s move at x,

(1)

where suc(x) is the set of x’s successors.2 Most game trees are so large that

computing m(x) is infeasible, but an approximation me(x, d) can be computed

using the minimax algorithm [21]:

me(x, d) =



u(x), if suc(x) = ∅,

e(x), if d = 0,

maxy∈suc(x)me(y, d− 1), if it is Max’s move at x,

miny∈suc(x)me(y, d− 1), if it is Min’s move at x,

(2)

where d, the lookahead depth or search depth, is a nonnegative integer saying

how far to look ahead from x; and e(x) is a heuristic evaluation function that

computes an approximation of m(x) from various features of the current game

position. In order to clearly differentiate between m(x) and me(x, d), we will

call the former a utility value and the latter a heuristic value.

We let opt(x, d) be the set of successors of x that look optimal according to

the minimax algorithm, i.e.,

opt(x, d) = {y ∈ suc(x) : me(y, d− 1) = me(x, d)}. (3)

2We use “children” and “successors” synonymously throughout.
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If a player moves to one of these nodes at random, then the probability of

making an optimal move is

Popt(x, d) =
| opt(x, d) ∩ opt(x,∞)|

| opt(x, d)|
. (4)

The minimax algorithm produces optimal play (i.e., Popt(x, d) = 1) if e is com-

pletely accurate (i.e., e = u) or if d exceeds the height of the game tree. Neither

is usually the case in practice, but variants of the minimax algorithm such as

alpha-beta [22] and its derivatives are still widely and successfully used.

The minimax algorithm’s decision error at a node x of a game tree is the

probability of moving to a successor y of x such that m(y) 6= m(x). If the player

to move at x chooses at random from among the nodes in opt(x, d), then the

decision error is

Perr(x, d) = 1− Popt(x, d) = 1− | opt(x, d) ∩ opt(x)|
| opt(x, d)|

. (5)

The degree of pathology at a node x is the ratio between the decision errors

when searching to two different lookahead depths:

p(x, i, j) =
Perr(x, i)

Perr(x, j)
, (6)

where x is a node in the game tree, i and j are the search depths, and i > j.

Values of p(x, i, j) > 1 indicate lookahead pathology; p(x, i, j) = 1 means that

the quality of the decisions will be the same when searching to the depths i or

j; and p(x, i, j) < 1 means that searching deeper is worthwhile. Note that this

definition of the degree of pathology refers to a particular node x and depths i

and j.

A game or a model is considered pathological if p(x, i, j), averaged over x,

is greater than 1.3 When a game or a model is pathological for some values of

i and j, usually it will also be pathological for other values.

3Depending on the game being studied and the objectives of the study, sometimes the
average is over all x, and sometimes it is over a proper subset. For example, in the studies
of Pearl’s game in [5], p(x, i, j) > 1 for all x such that a depth-i search reaches neither the
terminal nodes (all of which are at the same depth) nor their parents.
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2.2. One-Player Games

In one-player games, the algorithm is similar to the minimax algorithm,

except that there is only one player. If the objective is to minimize the cost of

reaching a goal, then the player plays the role of Min at every node, and the

minimum cost at each node is

m(x) =

u(x), if suc(x) = ∅,

miny∈suc(x) c(x, y) + u(y), otherwise,

(7)

where c(x, y) is the cost of the edge from x to y.4 An approximation of m(x)

can be computed using the minimin algorithm [23]:

me(x, d) =


u(x), if suc(x) = ∅,

e(x), if d = 0,

miny∈suc(x) c(x, y) +me(y, d− 1), otherwise,

(8)

where e is an A*-style heuristic function.

If the objective is to maximize a gain, then “min” is replaced with “max” in

the above equations, and the algorithm is referred to as maximax. Maximax is

what we used in the model in Subsection 5.3.

3. Influences on Pathology that Appear Explicitly in our Models

Researchers have investigated many different factors that influence whether

or not lookahead pathology occurs in games. This section describes three factors

that we will use as explicit parameters in our game-tree models in Section 5.

These include the branching factor of the game tree (Subsection 3.1), the gran-

ularity of the heuristic function (Subsection 3.2), and local similarity among

nodes of the game tree (Subsection 3.3).

Later, Section 4 describes several other factors that influence pathology, and

explains why they are not explicit parameters in our game-tree models. Among

4It is conventional to include c(x, y) in one-player games (Eqns. 7 and 8) and omit it in
two-player games (Eqns. 1 and 2), but in principle it could be included in both.
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other things, several of them can be viewed as special cases of the three factors

mentioned above.

3.1. Branching Factor

A game tree’s branching factor, b, is the number of successor nodes at each

node in the tree. In game-tree models, b usually refers to a uniform branching

factor, i.e., exactly b choices at each nonterminal node. In games where the

number of successors may vary, b is the mean number of successors.

Nau [3] showed mathematically that for an infinitely large class of games,

lookahead pathology was inevitable if b was sufficiently large. Intuitively, this

happened because of the minimax algorithm’s tendency to eliminate low values

at Max’s move and high values at Min’s move. Increasing the values of b and d

made it more and more likely that all values but one would be eliminated. This

increased the probability that all successors of the current node would get the

same heuristic value, regardless of which successors were the best moves.

In Nau’s experiments with Pearl’s game, a simple game designed for the anal-

ysis of search algorithms [5], lookahead pathology was indeed more likely with

large branching factors [9]. In Beal’s [4] game-tree models, for large branching

factors, the error at the root of the tree increased by approximately log b with

every additional level of the search.

3.2. Granularity of the Heuristic Function

An evaluation function’s granularity, g, is the size of its range, i.e., the num-

ber of different values that it can return. Luštrek et al. [17] discovered that as

the branching factor increases, the granularity (discussed in the next subsection)

required to avoid lookahead pathology also increases. Intuitively, decreasing the

granularity of an evaluation function makes it less able to distinguish among sit-

uations that are similar but not identical, and makes it more likely that a deeper

search will return the same value for every child of the current node, making it

less likely that the search will tell us which of the children are actually better.

In some of the early research on lookahead pathology (e.g., the work of

Beal [4]), only granularity 2 was considered. Bratko and Gams [6] and Pearl [8]
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compared granularity 2 to higher granularities and concluded that higher granu-

larities do not prevent lookahead pathology. Scheucher and Kaindl [12], however,

considered multi-valued evaluation functions (i.e., high granularities) essential

to the prevention of lookahead pathology. Their work is described in more detail

in Subsection 4.3.

3.3. Local Similarity

Several researchers have attempted to explain lookahead pathology by means

of local similarity, i.e., similarity among the utility values of nearby nodes in

the game tree [5, 7, 12, 17, 9]. Local similarity is probably the most widely

accepted inhibitor of lookahead pathology; it generally is present in real games

but absent in pathological models such as Pearl’s game [5].

Intuitively, local similarity inhibits pathology in the following manner: if

node a is better than node b, then the higher the amount of local similarity, the

more likely it will be that most of a’s descendants of are better than most of

b’s descendants, making it more likely that a deeper search will return a higher

value for a than for b.

Researchers have introduced local similarity into game-tree models in a va-

riety of ways. Beal [7] included in his game trees a fraction of nodes with all the

successors having the same utility. Several other authors used “incremental”

approaches in which the current position’s utility changes gradually as moves

are made in the game:

• Nau [5, 9] modified Pearl’s game by randomly giving each edge in the

game tree a value of +1 or −1. Each terminal node x was assigned utility

u(x) = 1 if the sum of the values on the path from the root to x exceeded

1, and u(x) = 0 otherwise.

• Game-tree models by Luštrek et al. [17] used real-valued utilities, which

were set in a similar way: instead of assigning +1 or −1 to game-tree

edges, they assigned normally distributed real values; terminal utilities

were then simply the sums of these values.
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• Scheucher and Kaindl [12] also used an incremental approach, which was

inspired by chess programs.

All of the above types of local similarity resulted in the elimination of lookahead

pathology, although it should be noted that in the work of Scheucher and Kaindl,

other factors described in Subsections 3.2 and 4.3 are also important. There is

no standard way to measure local similarity, and in this paper we will use two

different measures:

• In our models (see Section 5), local similarity is expressed as a parameter

0 ≤ s ≤ 1, where s = 0 corresponds to complete independence among sib-

ling nodes’ utility values, and s = 1 corresponds to the maximum amount

of similarity or dependence among sibling nodes that the model allows.

If s = 0, this means that each node’s utility value is in no way affected

by the values of its siblings, as in Pearl’s game where all leaf nodes have

independently assigned random values. If s = 1, this means that the value

of each node is as similar to the values of its siblings as the model allows.

• Although s is useful for expressing local similarity in a game-tree model,

it is not a measure of local similarity in an arbitrary game. In games

we therefore use the game tree’s clustering factor, f , which is the ratio

between the standard deviation of the sibling nodes’ utilities and the stan-

dard deviation of the utilities throughout the tree [15]. If f is low then s

is high, and vice versa, but the precise numeric correspondence between

s values and f values will generally be different in different game-tree

models.

4. Other Factors that Influence Pathology

This section describes several other factors that influence whether or not

lookahead pathology occurs in games, and explains why we do not include them

as explicit parameters in our game-tree model. One factor, graph structure

(Subsection 4.1), can be mapped directly into local similarity. A second factor,
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Figure 1: A game G whose state space is a graph, and the corresponding game tree T . The
number below each node is its utility value.

reliably evaluated nodes (Subsection 4.3), maps into local similarity but only in

an approximate fashion (the mapping involves applying the evaluation function

in cases where one already knows the exact value). A third factor, improved

evaluations deeper in the game tree (Section 4.3), is related (though there is not

a direct mapping) to evaluation-function granularity. The remaining factors

(Subsection 4.4) are specific to one-player games.

4.1. Graph Structure

Pathology has been shown to vanish if there are sufficiently many different

paths to the same position [10]. As we will now explain, this can be viewed as

a special case of local similarity.
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If G is a game whose state space is an acyclic graph, then we can map G into

a game tree T that is an “unfolded” version of G. If ni is a node of G and there

are p paths from G’s root to ni, then there are nodes n
(1)
i , . . . , n

(p)
i in T that

are “duplicates” of ni, and all of these duplicates have the same utility value as

ni. For example, in Fig. 1, the nodes n
(1)
8 , n

(2)
8 , and n

(3)
8 are duplicates of n8,

and u(n8) = u(n
(1)
8 ) = u(n

(2)
8 ) = u(n

(3)
8 ) = 2.

Let ni and nj be sibling nodes in G, and suppose they have duplicates

n
(k)
i and n

(l)
j in T . The more children ni and nj have in common, the more

duplication there will be among the children of n
(k)
i and n

(l)
j , hence the higher

T ’s local similarity will be.

For example, consider Fig. 1 again. No two terminal nodes of G have the

same utility value; but there are multiple paths to nearly every terminal node,

hence T contains many duplicates of G’s terminal nodes. Consequently, in 3 of

the 7 pairs of sibling nodes in T , the siblings have the same the utility value.

4.2. Reliably Evaluated Nodes

If sufficiently many nodes in a game tree are evaluated reliably (i.e., without

error or with a very small error) compared to other nodes on their level, min-

imaxing reduces the heuristic error, which means that a larger search depth is

beneficial. One place where reliable evaluations are likely to occur is in subtrees

with homogenous utilities, in which most of the terminal nodes are either all

lost or all won [6]. It is easy to see that this is a special case of local similarity,

by noticing that for nearly every node in the subtree, most or all of the nearby

nodes will have the same utility (e.g., see the two rightmost subtrees in Fig. 2).

Another place where reliable evaluations occur is at terminal nodes encoun-

tered by lookahead search, such as early checkmates in chess [8, 24]. Early

terminal nodes may also be considered as a case of local similarity, since they

can be interpreted as the roots of subtrees in which all the nodes have the same

value. This also is illustrated in Fig. 2.
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Reliable:
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Figure 2: A two-player game tree with two types of reliably evaluated nodes: early termina-
tions and roots of homogenous subtrees.

4.3. Improved Evaluations Deeper in the Game Tree

Scheucher and Kaindl [12] proposed a game-tree model in which heuristic

values have a local similarity inspired by chess: after each player’s move, only a

limited change of value in favor of the moving player is possible, reflecting the

change in material caused by that move. The heuristic value of the root of the

tree is set to 0. As the search depth increases, the heuristic values tend to get

ever further apart.

Scheucher and Kaindl observed that a lost position is less likely to be mis-

taken for a won one or vice versa in positions with extreme (strongly positive or

negative) heuristic values, since those positions are more clearly decided in favor

of one of the players. Therefore they introduced a function that determined the

error in each game-tree node such that the probability of mistaking a loss for

a win or vice versa was inversely correlated with the absolute heuristic value of

that node. Since heuristic values lower in the tree tend to be further apart, the

frequency of extreme values increases with the search depth and the probability

of a misevaluation decreases. This depth-related decrease—probably combined

with the effect of local similarity itself—was shown to be sufficient to eliminate

lookahead pathology.

It was later shown that if the heuristic error is modeled appropriately, looka-

head pathology disappears for a similar reason as in the work of Scheucher and

Kaindl even without local similarity [14]. If real-valued utilities drawn ran-
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  Threshold  
Utilities   

Heuristic values 
(probability density)

  Values     

Figure 3: Utilities (circles) and heuristic values (dashed curves showing probability densities)
are more likely on the same side of the threshold lower in the game tree.

domly from a uniform distribution are assigned to terminal nodes of the game

tree, they are also further apart lower in the tree. The mechanism that achieves

this is minimaxing itself: the player who is maximizing the utility eliminates low

values, and the opponent, who is minimizing the utility, eliminates high values.

Moving from terminal nodes towards the root, this results in an ever narrower

range of utilities. The heuristic values are obtained by adding Gaussian noise to

the utilities. If the heuristic values and utilities are mapped to losses and wins

using a threshold, it is more likely that both the heuristic value of a node and

its utility are on the same side of the threshold lower in the game tree. This

happens because utilities lower in the tree are further apart and thus also fur-

ther from the threshold, as is illustrated in Fig. 3. Since a loss is mistaken for a

win or vice versa when a heuristic value is on the opposite side of the threshold

from the corresponding utility, the probability of such a mistake decreases with

the search depth. This decrease is sufficient to eliminate lookahead pathology.

It is clear that sufficiently improved evaluations deeper in the game tree can

reduce or eliminate lookahead pathology. The papers discussed in this subsec-

tion are not trying to show that, but rather how such improved evaluations can

be achieved realistically through increased granularity. For that reason, this

paper does not address improved evaluations, but does address granularity.
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4.4. Influences on Pathology in One-player Games

Lookahead pathology in one-player games has not been studied in as much

detail as that in two-player games, probably because it was discovered more than

20 years later [13]. The factors described in the previous subsections have not

been thoroughly investigated in one-player games (which this paper attempts

to remedy), but some other factors have been investigated.

Search algorithms for one-player games typically use an A*-style heuristic

function h(x) that attempts to estimate the optimal cost of reaching a goal from

the state x. The first factor that influences lookahead pathology in one-player

games is h(x) is optimistic or pessimistic. Pessimistic functions were found to

be less prone to lookahead pathology in synthetic game trees [16], in the 8-

puzzle [25, 18] and in path-finding [19]. Monotonically non-decreasing functions

(the heuristic value of a node is not smaller than the heuristic value of its parent)

were also found to be less prone to lookahead pathology [16].

Two factors were shown to influence lookahead pathology in synthetic trees

[16]: how the utilities of the children of the root node’s optimal successor com-

pared to the utilities of the children of the root node’s other successors, and how

the utilities of the root node’s successors compared to each other. However, the

influence of these two factors seems to be tied to the heuristic function in [16],

which was an artificial one that is only suitable for one-player games.

Finally, there are some results regarding lookahead pathology in path-finding

using the LRTS algorithm [19]. This algorithm learns updates to the heuristic

values during the search. A shallower search benefits more from learning than

a deeper search. This makes decisions based on a shallower search better than

mere depth would suggest and thus closer to a deeper search. Learning was

therefore found to increase the degree of pathology and if turned off, the degree

of pathology decreased (although the quality of decisions also decreased). The

second reason was that after each lookahead search, the player makes a number

of moves equal to the search depth. Thus if a deeper search sends the player in

a wrong direction, the mistake is larger than if a shallower search does so, which

again increases the degree of pathology. These results appear to be specific to
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the LRTS algorithm, which is only one of the algorithms used for the real-time

search in one-player games.

This paper is concerned with factors that influence lookahead pathology

in both one- and two-player games, attempting to present a unified picture of

pathology in both types of games. The factors discussed in this subsection, while

certainly having an influence on lookahead pathology in one-player games, are

either not present in two-player games or are of little interest in that domain.

Therefore we do not address them in this paper.

5. Game-tree Models

This section describes simulations with synthetic game trees showing how the

degree of pathology varies as a function of three factors: granularity g, branching

factor b, and local similarity s [26]. Three probabilistic game-tree models are

described in the following three subsections. These models were used to build

10,000 trees for each combination of the settings of the three factors of interest:

g = 2, 3, . . . , 60 for the two-player models and g = 2, 3, . . . , 300 for the one-player

model; b = 2, 3, . . . , 10; and s = 0.0, 0.1, . . . , 1.0. The values of g went as high

as was needed to obtain nonpathological trees for most of the settings of the

remaining two factors. We made a simplifying assumption that the branching

factor is uniform within each tree. It was limited to at most 10 because the

size of the tree is exponential in b. Building trees with large branching factors

is thus computationally expensive and the few that we did build exhibited the

behavior one might expect based on the smaller trees.

Each game tree was searched once to depth 1 and once to depth 5 to mea-

sure the degree of pathology p(root, 5, 1). Depth 5 (and not more) was chosen

to ensure that enough trees could be generated in a reasonable time (i.e., a few

weeks), to yield statistically reliable analyses. Depth 1 was chosen as the mini-

mal depth needed for an informed move selection. Some experiments were also

performed with other pairs of depths, such as (6, 2) and (7, 1), giving similar

results. Minimax results with odd and even depths, such as (6, 1), were some-

what different due to one player having one move more. Lookahead pathology

15



was measured in the root of the game tree so that we did not need to build

larger trees than required for searching to the chosen depth. All three models

build subtrees in the same manner as the whole tree, so choosing a non-root

node as the starting point would not give qualitatively different results.

The heuristic evaluation function was the utility of a node corrupted by

Gaussian noise with σ = 0.1. We assumed that no early terminations (such

as checkmates), which could be evaluated perfectly, are encountered within the

searched space. Furthermore, we made the classic assumption that the error of

the evaluation function is the same at all search depths. We also did not attempt

to model any specific phenomena that may appear in a real game tree, such as

a position appearing unattractive in the short run, but eventually leading to

victory. All these phenomena certainly occur in real games, but such detailed

modeling is probably game-dependent and is beyond the scope of this paper.

Despite these limitations, we believe that the chosen evaluation function models

a typical game situation reasonably well. The magnitude of the static heuristic

error was chosen so that the error was not large compared to the utilities. At

the same time, we did not want it to be so small as to produce few wrong

moves, since in that case too many game trees would have to be generated for

statistically reliable analyses.

All three game-tree models model situations that are not strongly in favor of

one of the players. Such situations are of greatest interest and previous work on

lookahead pathology in two-player games was often focused on them [4, 6, 7, 12].

We use two mechanisms to ensure that the probabilities of a victory for both

players are comparable. Each mechanism is explained in the section describing

the model it belongs to.

5.1. Two-Player Top-Down Model

The first step in generating a game tree according to this model is assigning

the utilities to the terminal nodes. There are three cases, depending on what

value we want for the tree’s local similarity s:

• If s = 0 (the “independent” case), the terminal nodes’ utilities are inde-
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Figure 4: Generation of utilities and heuristic values.

pendently chosen from a uniform distribution over the interval [0,1].

• If s = 1 (the “maximally similar” case), the root of the game tree is

first assigned a so-called auxiliary value, which is then propagated to the

terminal nodes. The root node’s auxiliary value is 0. For each non-root

node, the auxiliary value is the sum of its parent’s auxiliary value and a

random value drawn from a Gaussian distribution (if the random value

exceeds 3σ of the distribution, a new value is drawn). The utilities of the

terminal nodes are their auxiliary values normalized to the interval [0,1].

• If 0 < s < 1, the utility of each terminal node is taken with probability s

from a game tree with s = 0, and with probability 1− s from a tree with

s = 1.

The utilities of the internal nodes are computed from the terminal utilities

using the minimax algorithm. When searching to depth d, heuristic utility esti-

mates are assigned to the nodes at level d (the levels are numbered downwards,

starting with 0 for the root). They are generated by corrupting the utilities at

level d with Gaussian noise representing the error of the heuristic evaluation

function. The heuristic values of the nodes above depth d are computed from

the heuristic values at depth d using the minimax algorithm. This is illustrated

in Fig. 4.

The number of possible utility values or heuristic values in a game tree is

called granularity. The initial values during the generation of the tree are real
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Figure 5: Shifting of buckets that ensures that not only a single value appears at the root of
a two-player game tree.

numbers, but we afterwards convert them to g discrete values. The simplest

way to do this is by partitioning the interval [0,1] into g buckets of equal width.

However, in trees with local similarity s = 0, at small granularities there is

a tendency for the values towards the root of the tree to converge to a single

bucket containing the value cb (called wb in [9] and also discussed in [4], [6], and

other studies on lookahead pathology in two-player games). This value is the

solution of the equation cb = (1 − cb)b; c2 ≈ 0.38 and then cb slowly decreases

with increasing b. The convergence to cb happens because the player who is

maximizing the utility eliminates all the low values, and the opponent, who is

minimizing the utility, eliminates all the high values. At the root of such a

tree no meaningful choice of a move can be made. We avoid this phenomenon

by shifting the boundary between the two buckets most likely to appear at the

top of the tree to cb, as shown in Fig. 5. The other bucket boundaries are also

shifted so that all the buckets except for the outermost two retain their original

widths. By doing so, no single bucket contains the value cb and thus at least

the two buckets on each side of cb have a reasonable chance of being represented

at the root. Consequently, the player to move at the root may decide between

at least two different values. We also generalize cb to game trees with the local

similarity larger than 0 by defining it as the value for which the ratio between

the probability of a utility being smaller than cb at one level and the probability

of a utility being larger than cb at the next level is closest to 1. This also achieves

different utility values for the moves available at the root of the game tree.
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5.2. Two-Player Bottom-Up Model

This model differs from the two-player top-down model in two aspects: the

generation of the utilities of terminal nodes, and the mixing of independent and

maximally similar game trees. The generation of nonterminal utilities and all

the heuristic values and the granularization are the same as in the two-player

top-down model.

There are again three cases for the generation of terminal utilities:

• Is s = 0, the terminal utilities are chosen in the same way as in the top-

down model: they are independently chosen from a uniform distribution

over the interval [0, 1].

• If s = 1, bh uniformly distributed random numbers in the interval [0,1] are

generated. They are sorted and assigned to the terminal nodes starting

with the lowest number at the leftmost node and finishing with the highest

number at the rightmost node.

• If 0 < s < 1, in principle the bottom-up model could use the same proce-

dure as in the top-down model, i.e., randomly mixing terminal nodes from

a game tree with s = 0 and a tree with s = 1. We tried this method and

the relations among lookahead pathology, granularity, local similarity and

branching factor were qualitatively similar to the other models presented

in the paper. However, the maximally similar tree often seemed to over-

whelm the independent one at relatively low values of s, because inserting

even a small number of utilities into a tree – if those are the ones that are

actually propagated to the root – may completely change the situation at

the root. Because of that we modified the mixing procedure by increasing

the probability of taking a low or high utility from the maximally simi-

lar tree. This softened the impact of the maximally similar tree because

most of the low and high utilities are not propagated to the root. As

mentioned before, this happens because the player maximizing the util-

ity eliminates most low values, and the opponent, who is minimizing the

utility, eliminates most high values.
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5.3. One-Player Model

We designed the model for one-player games similarly to the bottom-up

model for two-player games, but it differs from the two-player bottom-up model

in two aspects: the procedure for backing up (i) the utilities and heuristic values

and (ii) the granularization. The generation of the utilities of terminal nodes

and the mixing of independent and maximally similar game trees are the same

as in the two-player bottom-up model.

The utilities of the nonterminal nodes are computed from the utilities of the

terminal nodes using the maximax algorithm. The same backing-up procedure is

used for computing the heuristic values above depth d from the depth-d heuristic

values.

The problem of the convergence of the utilities toward the root of the game

tree to a single value is even more pronounced in one-player games than in

two-player games. The phenomenon occurs as soon as every decision at the

root of the tree leads to at least one terminal node with the maximal utility,

which is quite likely if the granularity is not large. We solve this by limiting the

probability of the maximal utility being reached by each decision at the root

to at most 50%, which ensures some variation in the values from among which

the player is choosing. Let x be a direct successor of the root, h be x’s height

(i.e., the path length from x to a terminal node), Pmax(x) be the probability of

x having the maximal utility, and Pmax(t) be the probability of a terminal node

having the maximal utility. Since x does not have the maximal utility only if

none of the terminal nodes of the subtree rooted in x have the maximal utility,

the following equations describe the relation between Pmax(x) and Pmax(t):

1− Pmax(x) = (1− Pmax(t))b
h

Pmax(t) = 1− bh
√

1− Pmax(x)

In order to limit Pmax(x) to 50%, we allow Pmax(t) to be at most 1 − bh
√

0.5

This is accomplished by limiting the size of the bucket containing the largest

utilities. If the bucket is too large, its lower boundary is increased as shown in
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Figure 6: Shifting of buckets that ensures that the probability of the maximal utility being
reached by each decision at the root of a one-player game tree is at most 50%.

Fig. 6. The other bucket boundaries are again shifted so that all the buckets

except for the outermost two retain their original widths.

5.4. Results from the Models

We used all three models to compute the granularity needed to avoid looka-

head pathology, as a function of the branching factor b and the local similarity

s. Figs. 7, 8, and 9 show the surfaces corresponding to p(root, 5, 1) = 1 for

all three models. In each case the results are qualitatively similar: the granu-

larity needed to avoid lookahead pathology decreases with local similarity and

increases with the branching factor. We also tried varying the granularity, the

branching factor, the lookahead depth, the way that local similarity was intro-

duced, and other parameters, such as the magnitude and distribution of the

heuristic error, but the results were still qualitatively similar to those in the

three figures [14, 17].

One can study not only whether lookahead pathology occurs in a given

situation, but more generally how beneficial or harmful it is to search deeper.

Fig. 10 shows the degree of pathology (the smaller it is, the more beneficial a

deeper search is) with respect to the granularity, local similarity, and branching

factor. We can observe the same relations among the factors affecting lookahead

pathology as in Figs. 7, 8, and 9. In addition, Fig. 10 reveals that the branching

factor has two different effects on the degree of pathology. One effect is that as

b increases, the size of the pathological region also increases. This is consistent
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Figure 7: Amount of granularity needed to avoid pathology in the two-player top-down model.
The space below the surface is pathological, the space above it is nonpathological.
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Figure 8: Amount of granularity needed to avoid pathology in the two-player bottom-up
model. The space below the surface is pathological, the space above it is nonpathological.
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Figure 9: Amount of granularity needed to avoid pathology in the one-player top-down model.
The space below the surface is pathological, the space above it is nonpathological.
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Figure 10: The degree of pathology p(root, 5, 1) measured using the two-player top-down
model, as a function of branching factor b, granularity g, and local similarity s. The color of
each point in the graph shows the value of p(root, 5, 1). The regions below the curved black
lines are pathological, and the regions above those lines are nonpathological.

with the results of related studies described in Subsection 3.1. The other effect

is that large values of b amplify the difference in the degree of pathology between

the pathological and nonpathological regions. For example, consider any two

points x and y that are close to the boundary between the pathological and

nonpathological regions, and on opposite sides of the boundary. As b increases,

the difference between x’s degree of pathology and y’s degree of pathology also

increases.

The findings from the experiments with these models are consistent with

the early pathological models of two-player games [3, 4, 5, 6, 7, 8, 9]: lookahead

pathology occurs when s = 0 and g = 2. As shown in the following section, the

findings are also consistent with real games and game-playing programs.

6. Games

The simulations described in the previous section predict how the degree

of pathology depends on the granularity, local similarity, and branching factor.

23



This section presents experimental tests of those predictions in three real-world

games: chess, kalah, and the 8-puzzle.

6.1. Chess

The relation between lookahead pathology and granularity was studied in

the KBBK (king + bishop + bishop vs. king) and KQKR (king + queen vs.

king + rook) chess endgames [15]. Following the example of [15], the heuristic

estimate of a move’s utility was defined as the number of moves on the shortest

path to the end of the game from the resulting position, corrupted by Gaussian

noise with σ = 2. To reflect the fact that the state space is a graph rather

than a tree, the evaluation function cached each node’s corrupted value, so that

whenever a node is reached along more than one path in the search space, it

would return the same corrupted value for that node every time.

It may be argued that distance to win is a rather artificial evaluation function

because in chess the task is just to win, and not necessarily to win in the

quickest way. As Sadikov et al. (2005) argued, an appropriate interpretation

of a heuristic evaluation function is that such a function roughly indicates, for

a given position, the chances of a (fallible) player winning the position against

another (fallible) player. Distance to win can be interpreted as such an indicator.

Although virtually all the positions in, say, KBBK are won for the stronger side,

a fallible player may have difficulties in actually mating in 50 moves (the number

of moves to mate allowed by the rules of chess). Such an imperfect player will

have much better chances to win in a position where mate is possible in two

moves, than in a position that requires 20 moves. Natural heuristic functions

for playing a specific endgame also typically exhibit preference for shorter wins

and should thus also have some correlation with our distance to mate. For

controlled simulation experiments, distance to win has the advantage that it is

a perfect evaluation which can be corrupted in a controlled way by our usual

introduction of Gaussian noise.

The granularity was varied by partitioning the interval in which the heuristic

estimates lie into g buckets of equal width. For each of the two endgames, Fig. 11
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Figure 11: Degree of pathology as a function of granularity in KBBK chess endgames (average
b = 13.52 and f = 0.58) and KQKR chess endgames (average b = 16.93 and f = 0.37).

shows the degree of pathology p(x, 5, 1) as a function of granularity, averaged

over every position x in the endgame database that is more than 5 moves away

from a checkmate. Since different positions had differing branching factors and

clustering factors, the figure’s caption gives the average values of each. For

g ≥ 10, an increasing granularity increases the benefit of a deeper search, which

is consistent with the predictions of the simulations described in the previous

section. Some pathology can be observed at granularities up to 10, but this

depends on the depths of search i and j used to measure the degree of pathology

p(root, i, j). The boundary between the pathological and nonpathological parts

of the space in Fig. 10 is also around g = 10.

Fig. 10 also illustrates that in cases where b and f have opposite effects,

it can be hard to say much about either of them individually. The KBBK’s

average branching factor (b = 13.52) is lower than the KQKR’s (b = 16.93),

which might lead one to expect KBBK to be less pathological than KQKR. But

the KBBK’s average clustering factor (f = 0.58) is higher than the KQKR’s

(f = 0.37), which might lead one to expect the opposite. In Fig. 11, sometimes

KBBK is less pathological than KQKR, and sometimes the reverse.

Apparently it is quite rare for an entire game to be pathological, but looka-
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head pathology in some game positions is more common. We analyzed 1092

chess positions from world championship matches [27]. Several chess programs

searching to different depths were compared to Rybka (the strongest program

available for our experiments) at depth 12. In 5.5% to 9.2% of the positions

(depending on the program), we observed that the other programs chose Ry-

bka’s move at their smallest search depths but chose other moves at depth 5.

Assuming that these other moves were worse than Rybka’s (which seems likely

since Rybka is a better player and is searching considerably deeper), this sug-

gests that lookahead pathology occurred for these programs in 5.5% to 9.2% of

positions. It should be noted, though, that Rybka’s move is not guaranteed to

be correct, and that occasionally several moves are all roughly comparable and

can thus be considered equally best; so these results are not entirely conclusive.

Having pathology in some positions is not nearly as alarming as it would

be to have pathology most positions, or to have larger average errors at deeper

search depths than at shallower search depths. However, pathological positions

are still of interest—firstly, because they are undesirable if unrecognized, and

secondly, because we could select the best move with less effort than required

by a default-depth search if we were able to recognize them.5

6.2. Kalah

Kalah is an ancient African game [29] played on a board with a number of

pits, each containing a number of seeds, in which the objective is to acquire

more seeds than the opponent, either by moving them to a special pit (called a

“kalah”) or by capturing them from the opponent’s pits. For our experiments,

we made the following modifications to produce a “regularized” version of the

game:

• The game is normally played until no seeds are left on the board, but

computability requires limiting the game to a small number of moves (in

our case, 8 moves).

5Some work has been done on heuristic techniques for recognizing such positions, but the
work is still at an early stage [28].
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• To ensure a uniform branching factor, we allowed players to “move” from

an empty pit; such a move has no effect on the board. We obtained

different branching factors by varying the number of pits.

• We eliminated the “move-again” rule, where a player can move a second

time when the last seed placed lands in their own “kalah”.

In our experiments, we generated random initial boards by distributing seeds

across the available pits, and averaged our results over these initial boards. The

utility of a terminal node was the difference in the numbers of seeds captured

by each player, and the utilities of the internal nodes were computed using

the minimax algorithm from the terminal utilities. The heuristic evaluation

function was the node’s utility corrupted by Gaussian noise with σ = 0.9. The

same caching and granularity techniques were used as in the chess experiments.

As shown in Figs. 12 and 13, our experimental results with modified kalah

are qualitatively consistent with the predictions produced by the simulations in

the previous section. Fig. 12 shows that lookahead pathology (i.e., p(x, 5, 1) > 1)

occurs at most granularities when the branching factor b = 6, at small granu-

larities when b = 5, and at granularity 3 (the smallest we tried) when b = 4.

In general, when the granularity g is small, increases in g cause sharp decreases

in p(x, 5, 1), but when g is large, increases in g have little effect. Fig. 13 shows

that p(x, 5, 1) decreases with increasing local similarity, which is again consis-

tent with the simulations. This figure also shows that lookahead pathology is

stronger when b is large, as expected.

6.3. The 8-puzzle

A similar relation between lookahead pathology and granularity to that in

chess and modified kalah was observed in the 8-puzzle [25]. This is a one-player

game that is played on a grid of numbered tiles with one tile missing. The goal

of the puzzle is to arrange the tiles sequentially by sliding them into the empty

space, in turn revealing another empty space in the position of the tile moved.

For our experiments we used two heuristic evaluation functions: the number

of moves to the solution, corrupted by Gaussian noise as described earlier, and
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Figure 12: The degree of pathology in modified kalah as a function of granularity, at several
different branching factors.
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Figure 13: The degree of pathology in modified kalah as a function of clustering factor, at
several different branching factors. The higher clustering factor, the lower the local similarity.
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Figure 14: Degree of pathology as a function of granularity in the 8-puzzle, using two different
heuristic functions. On average, b = 2.67 and f = 0.73.

the Manhattan distance of the tiles from their final positions (commonly used

in search analyses).

Fig. 14 shows the degree of pathology p(x, 5, 1) with respect to the granu-

larity g. Both functions exhibit an increased benefit of a deeper search with

increasing granularity, which agrees with the simulations in the previous sec-

tion. According to Fig. 14, on average the 8-puzzle is pathological only at small

granularities and only if the Gaussian-noise evaluation function is used.

We also investigated how many positions in the 8-puzzle are pathological.

With the Manhattan-distance heuristic evaluation function, in 31.0% of posi-

tions a search to depth 5 gives better decisions than a search to depth 1, in

19.7% depth 1 is preferable, and in 49.3% it does not matter. Other pairs of

depths give different percentages, but the observation that the advantage of a

deeper search is not overwhelming is true quite generally in the 8-puzzle.

7. Conclusions

Two models of game trees for two-player games and one model for one-

player games were constructed. Simulations with them showed similar behavior

for both minimax and maximax: lookahead pathology was more likely when the
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granularity was low, the branching factor was high, and the local similarity was

low. Furthermore, large branching factors amplified the difference in the degree

of pathology between pathological and nonpathological regions.

In several substantially different games—two chess endgames, modified kalah,

and the 8-puzzle—our experiments confirmed that increasing the granularity

generally increases the benefit of a deeper search. This effect of granularity

was observed for many different combinations of the branching factor b and

clustering factor f .

In modified kalah, we performed additional experiments that confirmed two

more of the simulation results: the degree of pathology (measured as p(x, 5, 1))

decreased when the local similarity was high, and increased when the branching

factor was large.

In modified kalah when the branching factor was sufficiently high, lookahead

pathology occurred (i.e., p(x, 5, 1) > 1 on average) at almost every granularity.

To the best of our knowledge, this is the first known game (other purely artificial

games such as P-games [5, 9]) where lookahead pathology occurs throughout

most of the game. Apparently such games are quite rare.

On the other hand, our experiments suggest that local pathologies, i.e., game

positions where pathology occurs even though the game may be nonpathological

on average, may be much more common. For example, in the chess champi-

onship matches, 6.9% to 8.5% of the positions were very likely pathological, and

in the 8-puzzle, pathology occurred in 19.7% of the positions (i.e., p(x, 5, 1) > 1

at those positions). Thus in many games it might be useful to look for ways to

detect and overcome local pathologies [28].

Generalizing beyond board games, we suspect that in many decision-making

problems there may be particular kinds of situations where lookahead pathology

is likely to occur. If so, then our experiments may have a practical utility in

suggesting what those situations are, so that decision-makers can recognize such

situations and take appropriate measures to deal with them. For example, one

should be cautious about lookahead pathology when the branching factor is

high and the local similarity is low, and in such situations one might consider
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modifying the heuristic evaluation function to do finer-grained evaluations that

capture more properties of the domain.
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