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Abstract

This paper addresses patient-reported outcomes (PROs) and telemonitoring in congestive

heart failure (CHF), both increasingly important topics. The interest in CHF trials is shifting

from hard end-points such as hospitalization and mortality, to softer end-points such health-

related quality of life. However, the relation of these softer end-points to objective parame-

ters is not well studied. Telemonitoring is suitable for collecting both patient-reported out-

comes and objective parameters. Most telemonitoring studies, however, do not take full

advantage of the available sensor technology and intelligent data analysis. The Chiron

clinical observational study was performed among 24 CHF patients (17 men and 7 women,

age 62.9 ± 9.4 years, 15 NYHA class II and 9 class III, 10 of ishaemic, aetiology, 6 dilated,

2 valvular, and 6 of multiple aetiologies or cardiomyopathy) in Italy and UK. A large number

of physiological and ambient parameters were collected by wearable and other devices,

together with PROs describing how well the patients felt, over 1,086 days of observation.

The resulting data were mined for relations between the objective parameters and the

PROs. The objective parameters (humidity, ambient temperature, blood pressure, SpO2,

and sweeting intensity) could predict the PROs with accuracies up to 86% and AUC up to

0.83, making this the first report providing evidence for ambient and physiological parame-

ters to be objectively related to PROs in CHF patients. We also analyzed the relations in the

predictive models, gaining some insights into what affects the feeling of health, which was

also generally not attempted in previous investigations. The paper strongly points to the pos-

sibility of using PROs as primary end-points in future trials.

Introduction

Congestive heart failure (CHF) is a chronic condition in which the heart cannot pump

enough blood to meet the needs of organs and tissues for oxygen and nutrients. It can have a

variety of causes, including damaged heart tissue (e.g., due to a heart attack), atherosclerosis,
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hypertension etc. CHF is the most frequent cause of hospitalization in people aged over 65,

and costs the society around 100 billion USD per year [1]. Since it cannot be cured, successful

management of CHF if critical for the health outcomes and quality of life of the patients, as

well keeping healthcare expenses in check.

Telemonitoring appears a promising approach for CHF, with two recent systematic reviews

showing a reduction in mortality and the number of hospitalizations [2, 3]. However, this suc-

cess is not universal, since some large trials showed no benefit from telemonitoring [4]. This

indicates that telemonitoring in CHF deserves further research. One direction of such research

is to include patient-reported outcomes (PROs) such as symptoms or health-related quality of

life, since the quality of life is an important goal independent of “hard” outcomes such as mor-

tality and hospitalizations. Another direction is to improve the telemonitoring technology

using wearable technology and intelligent computer methods, since most telemonitoring trials

so far used relatively simple technology [5].

PROs are valued by patients, clinicians and policy-makers, and they inform therapeutic

choices, disease management practices, reimbursement decisions, and health policy [6]. The

European Society of Cardiology confirmed the importance of PROs in cardiovascular clinical

research by suggesting they should be included in the evaluation of the efficacy of therapeutic

interventions, provided the PROs are assessed scientifically and rigorously [7]. The call for

reducing the burden of disease [8, 9], and not only prolonging the life but also improving its

quality (by using the quality-adjusted life year as a metric [10]) is heard in many places. Unfor-

tunately however, these emerging goals, with a few exceptions in specific areas of transplanta-

tion, have very little on which to rely [11, 12]. Telemonitoring appears to be a suitable solution

to this problem, since it can easily collect PROs together with physiological data.

Wearable technology is currently improving rapidly both in consumer and medical areas.

Unlike traditional telemonitoring, where single daily measurements of parameters such as

heart rate and blood pressure are made, it can generate large amounts of data providing richer

picture of the patient’s condition. It goes hand-in-hand with intelligent computer methods

such as machine learning and data mining, which can interpret these data and support patients

and physicians in disease management and treatment. However, given the relative simplicity

of most past telemonitoring trials, the knowledge on how to interpret data from wearable

devices is underdeveloped.

Tripoliti et al. [13] performed a comprehensive review of machine learning and data mining

applied to all aspects of the management of CHF. Most of the reviewed work used clinical data,

which significantly differs in type and sampling frequency from telemonitoring data. There

were only two cases where telemonitoring data was used [14, 15], both of which predicted re-

hospitalizations. Koulaouzidis et al. [14] built a naive Bayes classifier with blood pressure,

heart rate and weight as features, yielding the area under the ROC curve (AUC) of 0.82. Kang

et al. [15] built a J48 decision tree with PROs and other parameters as features, yielding the

AUC of 0.59. Sudden weight gain in patients living with CHF is often an indication of retain-

ing fluid, which increases the risk of kidney or cardiac failure. Fisher et al. [16] thus developed

a latent variable autoregression model that tracks patient weight and blood pressure over time

to predict weight values and provide early warning of fluid retention. Pecchia et al. [17] pro-

posed a telemonitoring platform that can detect the presence and severity of CHF using a

CART decision tree build on heart-rate variability features from an electrocardiogram (ECG)

monitor. The AUC for the presence was 0.95 and for the severity 0.79. The practical utility of

these results is limited, though, since most people consent to telemonitoring only after they are

diagnosed with CHF.

This paper reports the result of the Chiron clinical observational study performed among

CHF patients in Italy and UK, in whom a large number of physiological and ambient
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parameters were collected by wearable and other devices, together with PROs describing how

well the patients felt, over 1,086 days of observation. The resulting data were preprocessed and

mined for relations between the objective parameters and the PROs. The objective parameters

could predict the PROs quite accurately, making this the first report providing evidence for

ambient and physiological parameters to be objectively related to PROs in CHF patients. Pre-

dicting PROs was not attempted in any of the related work we found, and is probably more

challenging than predicting “hard” outcomes such as hospitalizations. We also analyzed the

relations in the predictive models, gaining some insights into what affects the feeling of health,

which was also generally not attempted in related work.

Materials and methods

Observational study

The overall objective of the Chiron project (an Artemis funded European Project) was to

develop a comprehensive framework for personalized health management comprising mobile,

home and hospital services. A part of the Chiron framework intended for CHF patients was a

decision-support system whose objective was to estimate the health risk of the patients [18].

However, since there was not enough knowledge on how to associate the values of the various

measured parameters with the risk, an observational study was carried out in the project with

the intention to generate such knowledge.

Before starting the study, the protocol was submitted to the ethics committes of Umberto

I polyclinic for the Italian part of the study, and South East Scotland Research Ethics Commit-

tee for the UK part of the study. Ethical approval was obtained in each country, and the study

carried out according to the national regulations. All the participants gave written informed

consent.

In the observational study the CHF patients were classified into NYHA class II or III, both

with coronary heart disease and non-ischemic aetiologies. They were all on optimal medical

therapy according to their individual practicing cardiologists, which was stable for six weeks

before recruitment (based on NICE Guidelines). All had sinus rhythm and were without

major cardiac arrhythmias on standard ECG. All had reduced ejection fraction based on 2D

echocardiography and, depending on individual aetiologies, either increased or dilated left

ventricular volumes. There were no patients with plain respiratory insufficiency. The patients

were able to use the telemonitoring devices, had no implanted devices and were not on a

heart-transplant list.

The Chiron patients were equipped with a wearable ECG, activity, body-temperature and

sweat sensors. In addition, their blood pressure, blood oxygen saturation, weight, and ambient

temperature and humidity were measured. The patients were instructed to perform daily mea-

surements with the non-wearable devices, and use wearable devices for two hours in the morn-

ing and twice for one hour in the afternoon. The patients were also provided with a mobile

application for reporting their overall feeling of health with respect to the previous day on a

daily basis. They marked their overall feeling of health as one of the following options: feeling

much worse than yesterday (1 in Fig 1 and elsewhere in the paper), feeling worse than yester-

day (2), feeling the same as yesterday (3), feeling better than yesterday (4) and feeling much

better than yesterday (5). The study also intended to gather data about hospital admissions

and deaths, but no such events occurred during the study period (patients observations lasted

from 1 to 84 days). Therefore, we decided to use the patients’ self-reported feeling of health

(PROs) instead.

The whole study included 38 CHF patients: 19 from the United Kingdom and 19 from

Italy. However, some of the data were incomplete, so only the data of 11 patients from the UK
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and 13 patients from Italy were included in the analysis. Among them were 17 men and 7

women, aged 62.9 ± 9.4 years, 15 belonging to NYHA class II and 9 to class III. 10 had ishae-

mic etiology, 6 dilated, 2 valvular, and 6 multiple etiologies or cardiomyopathy (younger

patients).

These 24 patients together provided a total of 1086 usable recording days. Fig 1 shows how

many observations were obtained on which days of the study, and what the average feeling of

health of the patients was. The bars represent the frequency of obtained observations during

the study and the line represents the average feeling of health of the patients for those observa-

tions. Fig 2 presents the number of observations obtained for each patient, and their average

feeling of health. Bars represent the number of obtained observations for each patient and

point represents their average feeling of health. Most of the observations were obtained in

the middle of the study, the average feeling of health was around 3 (patient feeling the same as

yesterday), and the number of obtained observations varied greatly among the patients. All

patients provided written informed consent for the participation in the study.

Telemonitoring system and parameters

The main wearable device used was a chest strap with a single-lead ECG monitor, body-tem-

perature and body-humidity (sweat) sensors, and an accelerometer. This accelerometer was

complemented by another one on the thigh for activity monitoring. Fig 3 shows the wearable

sensors worn by the patients in the study.

Fig 1. Number of observations obtained on each day of the study.

https://doi.org/10.1371/journal.pone.0190323.g001
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The wearable sensors transmitted their data to a smartphone. A smartphone application was

additionally used to input daily measurements of blood pressure, peripheral capillary oxygen

saturation (SpO2), weight, and ambient temperature and ambient humidity (HumAmbient).

The Falcon algorithm [12] was used to extract fiducial points from the ECG signal, enabling

us to compute the heart rate as well as to describe each heart beat with additional parameters

such as PR interval, QRS duration and QT interval.

Another algorithm [19] was used to recognize the patients’ physical activity based on the

accelerometer signals. The recognized activity together with the accelerometer signals were

further used to estimate the patient’s energy expenditure, which corresponds to the intensity

of their activity.

Some parameters were monitored continuously, some were obtained on a daily basis and

some were taken at the beginning of the study. The following continuously telemonitored

parameters were considered for the analysis:

• Body humidity (sweating)

• Body temperature

• PR interval

• QRS duration

• T-wave amplitude

Fig 2. Number of observations obtained for each patient.

https://doi.org/10.1371/journal.pone.0190323.g002
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• QT interval

• RR interval (and thus heart rate)

• R-wave amplitude

• Duration of physical activity, which could be lying, sitting or moving

• The patient’s energy expenditure

The following parameters were measured on a daily basis:

• Systolic and diastolic blood pressure (SBP, DBP)

• SpO2

• Weight

• Ambient temperature

• Ambient humidity

• How the patient feels compared to the previous day

Fig 3. Chiron wearable sensor platform.

https://doi.org/10.1371/journal.pone.0190323.g003
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In addition to these measured parameters, for each patient, additional static parameters

were taken at the hospital at the beginning of the study. These parameters included general

patient information, current medical treatments, comorbidities and the results of blood analy-

sis. Due to the small amount of patients participating in the study, the data mining algorithms

could use the static parameters to model relations between the patient’s identity (determined

by one or more of these parameters) and how they feel, which was not our objective. Accord-

ingly, the static parameters were not considered for data mining.

Feature construction

For every parameter that was measured continuously or multiple times per day we calculated

the following features:

• Average value during the whole day

• Average value during each activity (during lying, sitting and moving)

• Standard deviation during the whole day

• Standard deviation during each activity (during lying, sitting and moving)

From the measured parameters described in the previous subsection, we further calculated

additional features:

• Ratios between the durations of the three activities

• Ratio between the average skin and ambient temperature

• Ratio between the average skin and ambient humidity

• Rate pressure product [RPP = SBP � HR]; HR is the heart-rate measurement closest to the

SBP measurement; if there is no HR measurement close to the SBP measurement, the

daily average of heart-rate values

• Double product [DoP = (SBP + DBP)/2 � HR]; (SBP + DBP)/2 is the mean pressure prod-

uct, HR is selected the same way as for the rate pressure product

• Ratio between systolic and diastolic blood pressure

• Differences between the average heart-rate values during all pairs of activities (lying–sit-

ting, lying–moving, sitting–moving)

• Ratios between the average heart-rate values during all pairs of activities

• Fraction of time spent on each of the three physical activities during daily recordings

• Average ratio between the heart rate and energy expenditure, always using the closest

measurements of both values

For all the features we also calculated:

• Change of the feature value in comparison with the previous day (or–if there is no mea-

surement on the previous day–the change of daily value in comparison with the last daily

value, if it is at most 3 days ’old’)

• Personalized (normalized) feature value as the ratio between the daily value of the param-

eter and its average value for the patient over the whole study period.
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Feature selection

We constructed 244 features in total, which is a lot compared to the number of instances (record-

ing days). Therefore we applied several feature-selection approaches and as a result obtained dif-

ferent subsets of features. These subsets of data were then used for building predictive models.

The first approach was to use two known automatic feature-selection techniques called

RelieF [20] and Correlation-based Feature Subset Selection (CFS) [21]. In RelieF, for every fea-

ture, a relevance vector is calculated based on how nearby instances are classified (same class

or not). All the features with their relevance greater than a predefined threshold are selected.

The CFS approach does not evaluate each feature separately, but evaluates subsets of features

on the basis of the hypothesis that good feature subsets contain features highly correlated

with the class value, yet uncorrelated with each other. We tried both methods, but since CFS

approach resulted in better models, we used only subsets obtained with the CFS approach.

This subset is called “CFS_feature_selection”.

Another subset was chosen manually in a medically driven manner. The selection is based

on general medical knowledge and literature, as well as previous experience from the Chiron

project. This subset was called “Expert_selection”.

The features describing the patients’ activities had a lot of missing values, due to, for exam-

ple, patients not wearing the sensors correctly. Consequently all the features related to specific

activities (during lying, sitting and moving) had at least 60% of missing data. So we decided to

choose a subset consisting of all the features excluding the ones related to activities. This subset

was called “No_activities”.

From this set of features without activities, we further constructed three subsets. The first

one consisted only of the average daily values and their standard deviations (called “No_activi-

ties_avg_and_std_dev”). The second one consisted of the personalized patient values (called

“No_activities_personalised”) and the third subset consisted only of the features that describe

the changes between daily values (called “No_activities_changes”). We separated these subsets

because they contain similar information, so they are redundant to some degree.

Many of the features (not just the ones related to activities) had a lot of missing values. Fig 4

shows the features are sorted by the percentage of missing values. In the last two subsets we

included only the features without too many missing values, because features with a lot of

Fig 4. Features sorted by the percentage of missing values, with the two “knees” chosen as thresholds for feature

selection.

https://doi.org/10.1371/journal.pone.0190323.g004
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missing values can add noise to the predictions. To select the percentage of allowed missing

values, we examined Fig 4 and spotted two “knees” in the graph, which are suitable to choose

as thresholds. The subset thus included all the features that had less than 17% of missing values.

The second subset included only the features having less than 27% of missing values. These

feature subsets are called “No_sparse_features_0.17” and “No_sparse_features_0.27”.

Imputation

After we defined the subsets, we performed imputation to fill in the missing data. We tried

three different methods of imputation, k-nearest neighbors (kNN), Multiple Imputation by

Chained Equations (MICE) and Singular Value Decomposition (SVD). Imputation with kNN

[22] calculates missing feature values by finding the k most similar instances to the instance

in question. The similarity is calculated from the other features as the sum of all differences

between the instances in question and others. The missing value is imputed as the average of

the k nearest neighbors’ values.

MICE imputation method [23] first fills the missing values with each feature’s mean values,

but keeps these values marked. Then for each marked value the method creates a regression

model to impute this value from the other features. After the missing value is thus imputed, it

is used in regression model for imputing other missing values. After all the marked values are

imputed, the process is repeated several times. The idea is that in each iteration, the regression

models are better and the imputed values more accurate. In imputation with SVD, we used an

established approach often applied to gene expression data [24]. We deceompose matrix A

containing our dataset into a set of mutually orthogonal expression patterns that can be line-

arly combined to approximate the expression of all features in the data set as shown in the fol-

lowing equation. These patterns are further referred to as eigengenes.

Aðm�nÞ ¼ Uðm�mÞ
X

ðm�nÞ

VT
ðn�nÞ

Matrix VT now contains eigengenes, whose contribution to the expression in the eigenspace

is quantified by corresponding eigenvalues on the diagonal of matrix S. We then identify the

most significant eigengenes by sorting the eigengenes based on their corresponding eigen-

value. Once k most significant eigengenes from VT are selected, we estimate a missing value j
in gene i by first regressing this gene against the k eigengenes and then use the coefficients of

the regression to reconstruct j from a linear combination of the k eigengenes. The j-th value of

gene i and the j-th values of the k eigengenes are not used in determining these regression coef-

ficients. It should be noted that SVD can only be performed on complete matrices; therefore

we originally substitute row average for all missing values in matrix A, obtaining A’. We then

utilize an expectation maximization method to arrive at the final estimate, as follows. Each

missing value in A’ is estimated using the above algorithm, and then the procedure is repeated

on the newly obtained matrix, until the total change in the matrix falls below the empirically

determined threshold of 0.01.

For every subset, we compared the results with these three imputation methods and without

imputation. Based on the comparison we chose the most suitable imputation method or chose

not to use the imputation if it did not bring any improvements.

Class definitions

The patients that were participating in this study labelled how they felt with respect to their

health in comparison to the previous day. Table 1 shows the frequency of the labels provided

by the patients.
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If each of the five distinct feelings of health corresponded to one class, the differences

between them would be too small to distinguish well between all classes. Therefore we decided

for the purpose of data mining to use only two classes corresponding to good and bad feeling

of health. Our first objective was to define the two classes in such a way that the difference

between them would be large, so the models built with data mining would be as clear as possi-

ble. Since we wanted to learn the reasons for patients feeling better or worse, the cases where

the patients were feeling the same as yesterday were not interesting and we did not include

them in the data mining. According to all class definitions, the instances where the patients felt

much worse or much better were assigned the bad or good class, because if a patient chose

such a strong label, there was surely a real change in their feeling. Feeling worse or better than

yesterday is sometimes hard for a patient to differentiate from feeling the same. The patients’

labels are subjective and probably inconsistent, so the different class definitions focus on the

instances of feeling worse (2) and better (4). Table 2 shows the nine different class definitions

used for data mining tasks. For each class definition there is a different number of instances

that correspond to the definition. We can see that we have only 70 instances where a patient

labeled his feeling with much worse or much better. Other definitions also include instances

where the patient felt worse or better, in order to obtain a larger dataset to be able to train bet-

ter prediction models.

All the class definitions were used in data mining, although only the one that allowed to

best distinguish between the two classes was utilized in the final steps.

Table 1. Class definitions with number of instances for each.

Class name Number of instances Percentage of all instances

Feeling much worse than yesterday (1) 30 3

Feeling worse than yesterday (2) 73 7

Feeling the same as yesterday (3) 795 73

Feeling better than yesterday (4) 148 13

Feeling much better than yesterday (5) 40 4

https://doi.org/10.1371/journal.pone.0190323.t001

Table 2. Class definitions with their name, the patients’ labels belonging to the classes bad and good, and the

number of instances.

Class definition

name

Class bad Class good Number of

instances

1 vs. 5 Much worse Much better 70

1, 2 vs. 4, 5 Much worse or worse Much better or better 291

1, 2 x (2/3) vs. 4 x (2/

3), 5

Much worse or worse two out of

last three days

Much better or better two out of

last three days

156

1, 2 x (2/4) vs. 4 x (2/

4), 5

Much worse or worse two out of

last four days

Much better or better two out of

last four days

184

1, 2 x (2/5) vs. 4 x (2/

5), 5

Much worse or worse two out of

last five days

Much better or better two out of

last five days

204

1, 2 x (3/4) vs. 4 x (3/

4), 5

Much worse or worse three out of

last four days

Much better or better three out of

last four days

118

1, 2 x (3/5) vs. 4 x (3/

5), 5

Much worse or worse three out of

last five days

Much better or better three out of

last five days

127

1, 2 x 2 vs. 4 x 2, 5 Much worse or worse two days in a

row

Much better or better two days in a

row

129

1, 2 x 3 vs. 4 x 3, 5 Much worse or worse three days in

a row

Much better or better three days in

a row

105

https://doi.org/10.1371/journal.pone.0190323.t002
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Data mining algorithms

For the data mining tasks we used several machine learning algorithms from the Weka suite

[25]. The choice of the algorithms was based on a previous paper on the same topic [18]. In

this paper we showed that Random forest (RF) [26], Naïve Bayes (NB) [27], Decision tree

(DT) [28] and sequential minimal optimization (SMO) [29] obtained the best classification

accuracies. Out of these four algorithms, DT and NB produce understandable classifiers, while

RF and SMO typically excel at accuracy.

DT is a non-parametric supervised learning method used for classification and regression.

It generates a tree-like classifier where leaves represent class labels and branches represent con-

junctions of features that lead to those class labels. The paths from root to leaf represent classi-

fication rules. The goal is to create a classifier that predicts the value of a target variable by

learning simple decision rules inferred from the data features. Since DT is a white box model,

where the reasoning behind prediction is known, it is often used as a visual and analytical deci-

sion support tool.

NB is a simple probabilistic classifier based on applying Bayes’ theorem with strong (naive)

independence assumptions between the features. NB classifier assign class labels to problem

instances, represented as vectors of feature values, where the class labels are drawn from some

finite set. A NB classifier considers each of these features to contribute independently to the

probability that an instance belongs to a specific class.

RF operates by constructing a multitude of DTs at training time and the outputting class

represents the majority of the classes of the individual trees. RF with the insertion of random-

ness correct for decision trees’ habit of overfitting to their training set.

SMO is used for training a support vector classifier (SVM) with solving the quadratic pro-

gramming (QP) problem that arises during the training of SVM. An SVM classifier is a repre-

sentation of the examples as points in space, mapped so that the examples of the separate classes

are divided by a clear gap that is as wide as possible. New examples are then mapped into that

same space and predicted to belong to a class based on which side of the gap they fall on.

To be able to estimate the quality of the obtained results, we also applied the majority classi-

fier, which classifies all instances to the majority class. This classifier serves as a baseline that

a reasonable classifier should exceed. All algorithms were run with default Weka parameter

values.

Experimental setup

For 9 different feature subset, for 9 class definition, for 4 data mining algorithm, and 4 imputa-

tion methods, we calculated the classification accuracy (CA). This was done by 10-fold cross-

validation, and to minimize the effect of choosing a particular split of the data into 10 folds

(subsets), the cross-validation was repeated 30 times with randomly chosen splits, and the CA

calculated as the average over all the repetitions.

Since there are 1296 combinations of data mining algorithms, feature subsets, imputation

methods and class definitions, we were not able to efficiently present the results for all possible

combinations. So, we decided to first calculate the accuracies for all the combinations. After-

wards, we evaluated each aspect in turn: which data mining algorithm perform best, whether

imputation is needed, and how feature subsets and class definitions compare.

Finally, we built decision tree classifiers and studied the relations in these classifiers through

the lens of expert knowledge on CHF. We annotated the relations as (i) correct, (ii) wrong,

(iii) novel, (iv) unrelated or (v) unknown, which was based on standard medical knowledge

[10, 30–37]. The novel relations could offer new insights into how to improve PROs among

CHF patients.
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Results

We started the analysis of our dataset by comparing different feature subsets with different

data mining algorithms. The result is a big table (presented in S1 Table) presenting the average

classification accuracies over all the class definitions for each of the four selected data mining

algorithm and each of the 36 subsets, including subsets obtained with imputation. The best

result was obtained with the RF on the No_sparse_features_0.17_kNN subset. Additionally, we

calculated the average CA for every data mining algorithm over all the subsets. The results are

presented in Table 3 and the highest accuracy is marked in bold.

We can see that the RF performs best, and that the DT is clearly second while being a white

box model that enables us to understand its predictions. We performed statistical tests to

determine if RF and DT are statistically significantly better than the NB and SMO. For the

comparisons we used the Wilcoxon signed ranked test [38], which is considered the most

appropriate choice when comparing two or more classifiers over multiple data subsets because

it assumes some but limited commensurability, and it is also safer than parametric tests since it

does not assume normal distributions or homogeneity of variance [19, 39]. As such, it can be

applied to classification accuracies (as in our case), error ratios or any other measure for evalu-

ation of classifiers. Empirical results suggest that it is also stronger than other tests particularly

when comparing a pair of classifiers. We pairwise compared RF with NB and SMO and DT

with NB and SMO on all 36 subsets. The results (provided in the S1 Table) show that both

RF and DT are statistically significantly better than NB and SMO over all data subsets. So, for

further calculations we decided that we will only use only RF and DT. Additionally, we also

statistically compared RF and DT and the results obtained by the RF proved to be statistically

significantly better.

Next we wanted to determine if the imputation helps CA or not. So, we compared feature

subsets without imputation with feature subsets obtained with three different imputation

methods. The CA for each imputation approach for every feature subset is presented in S2–S5

Tables. The CA averaged over all nine subsets per each imputation approach for RF and DT is

presented in Table 4. The highest accuracy for each data mining algorithms is in bold.

We can see that the best average CA is obtained without the use of imputation. The most

likely reason is the large amount of missing data. Due to the missing data the imputations

are not accurate and thus add additional noise to the data. But nonetheless the subset that

obtained the best CA over all class definitions and data mining algorithms is No_sparse_fea-
tures_0.17_kNN, obtained with the kNN imputation. This is the only subset where the impu-

tation improves the results, most likely because all the features with many missing values are

removed. Because the best subset is obtained with the kNN imputation, but otherwise the

Table 3. The classification accuracy for each tested data mining algorithm, averaged over all the class definitions and subsets.

Data mining algorithms Random forest Decision tree Naive Bayes SMO Majority

Average CA over all class definitions and subsets 75.9% 74.0% 69.1% 70.0% 66.9%

https://doi.org/10.1371/journal.pone.0190323.t003

Table 4. The classification accuracy for the various imputation approaches, averaged over all the class definitions and subsets.

Algorithms / Imputation method Random Forest Decision tree Average RF and DT

No imputation 77.36 75.75 76.55

Imputation with kNN 76.07 74.66 75.37

Imputation with MICE 74.29 72.54 73.41

Imputation with SVD 75.78 72.92 74.35

https://doi.org/10.1371/journal.pone.0190323.t004
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use of imputation makes the results worse, we decided that for further calculations we will

use the nine subsets without imputation and additionally the subset obtained with the kNN

imputation on the feature subset No_sparse_features_0.17. The CA for each of the retained

subsets for RF and DT is presented in Table 5. The highest accuracy for each data mining

algorithms is in bold.

As indicated before, we can see that the No_sparse_features_0.17_kNN subset returns the

best results with both RF and DT. The CAs for different class definitions for this subset are pre-

sented in Table 6. The highest accuracy for each data mining algorithms is in bold.

The average CAs in Table 6 are quite close to each other, which shows that the carefully

chosen class definitions are not the reason for good results. According to all the definitions,

the instances when the patients felt much worse (value 1) than the previous day were included

in the bad class, and the instances when the patients felt much better (value 5) in the good

class. We can see that the accuracy is the lowest when all the instances when the patients felt

worse (2) or better (4) for just one day were included additionally (Class 1,2 vs. 4,5). Moder-

ately high CAs were achieved when the instances when the patients felt worse or better for two

out of the last two to five days were included (Class 1, 2 x (2/3) vs. 4 x (2/3), 5; Class 1, 2 x (2/4)
vs. 4 x (2/4), 5; Class 1, 2 x (2/5) vs. 4 x (2/5), 5; Class 1, 2 x 2 vs. 4 x 2, 5). Such instances repre-

sented a more marked worsening or improvement of health, and were thus easier to distin-

guish. The results were similar when no instances when the patients felt worse or better were

included (Class 1 vs. 5). These instances were the easiest to distinguish, but there were relatively

Table 5. The classification accuracy for various feature subsets, averaged over all the class definitions.

Algorithms /Subsets Random forest Decision tree Average RF and DT

All 74.97 75.58 75.27

CFS_feature_selection 80.32 78.96 79.64

Expert_selection 80.58 79.12 79.85

No_activities 77.34 77.18 77.26

No_activities_avg_and_std_dev 79.65 75.36 77.51

No_activities_changes 67.97 70.79 69.38

No_activities_personalised 72.04 67.72 69.88

No_sparse_features_0.17 83.11 78.46 80.79

No_sparse_features_0.27 80.21 78.56 79.39

No_sparse_features_0.17_kNN 84.21 81.67 82.94

Average 78.04 76.34 77.19

https://doi.org/10.1371/journal.pone.0190323.t005

Table 6. The classification accuracy for all nine class definitions on the No_sparse_features_0.17_kNN subset.

Algorithms / Class definitions Random forest Decision tree

Class 1 vs. 5 80.48 77.71

Class 1, 2 vs. 4, 5 71.35 69.82

Class 1, 2 x (2/3) vs. 4 x (2/3), 5 82.94 78.14

Class 1, 2 x (2/4) vs. 4 x (2/4), 5 79.51 76.89

Class 1, 2 x (2/5) vs. 4 x (2/5), 5 78.95 77.78

Class 1, 2 x (3/4) vs. 4 x (3/4), 5 86.78 86.10

Class 1, 2 x (3/5) vs. 4 x (3/5), 5 85.18 83.04

Class 1, 2 x 2 vs. 4 x 2, 5 83.45 81.54

Class 1, 2 x 3 vs. 4 x 3, 5 86.46 83.47

Average 81.68 79.39

https://doi.org/10.1371/journal.pone.0190323.t006
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few, so the dataset was too small. The best CAs were achieved when the instances when the

patients felt worse or better for three out of the last three to five days were included (Class 1, 2
x (3/4) vs. 4 x (3/4), 5; Class 1, 2 x (3/5) vs. 4 x (3/5), 5; Class 1, 2 x 3 vs. 4 x 3, 5), out of which the

class definition Class 1, 2 x (3/4) vs. 4 x (3/4), 5 distinguished best between patients feeling bad

and feeling good. For this class definition on the No_sparse_features_0.17_kNN subset a calcu-

lated the ROC curve [40] for RF presented in Fig 5. The AUC [41] is 0.835. For the comparison

we also calculated the ROC curve for the DT (Fig 5). The AUC for the DT is 0.674.

Since all the class definitions exclude the PRO of feeling the same as yesterday (3), we

checked whether the instances in the good and bad classes are indeed distinct from the

instances when the patients felt the same as yesterday. We used the best subset No_sparse_fea-
tures_0.17_kNN, and first standardized the features (subtracted the mean and divided by the

standard deviation). For each pair of instances when the patients felt the same as yesterday, we

then computed the average difference between all the features–this provided a measure of vari-

ation between the days when feeling the same as yesterday. Finally, we did the same for each

pair of instances where one instance corresponded to feeling the same as yesterday, and the

other belonged to the class good or bad according to the best class definition 1, 2 x (3/4) vs. 4 x
(3/4), 5 –this provided a measure of difference between days when feeling the same as yester-

day and days when feeling good or bad. Fig 6. presents probability densities of these differ-

ences, showing that the variation between days when feeling the same as yesterday is smaller

than the difference between days when feeling the same as yesterday and days when feeling

good or bad. The features are from the subset No_sparse_features_0.17_kNN, and the class is

defined as 1, 2 x (3/4) vs. 4 x (3/4), 5. The differences are divided in 10 bins, and the counts the

bins are normalized so that the area under the histogram for each difference sums to 1.

After having established how high CA accuracy distinguishing bad and good feeling of

health of CHF patients can be achieved by mining our data, we studied decision trees to under-

stand which features affect the feeling of health. We present two trees here, while the others are

in S1–S10 Figs. The trees are presented for the class definition Class 1, 2 x (3/4) vs. 4 x (3/4), 5.

Fig 7 presents the decision tree obtained on the No_sparse_features_0.17_kNN subset that

Fig 5. The ROC curves for RF and DT for class definition Class 1, 2 x (3/4) vs. 4 x (3/4), 5 on the

No_sparse_features_0.17_kNN subset.

https://doi.org/10.1371/journal.pone.0190323.g005
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returned the best CA of 86% and Fig 8 shows the decision tree obtained on the Expert_selection

feature subset with the CA of 83%.

All the obtained decision tree classifiers (not only those two in Figs 4 and 5) were systemati-

cally analyzed to see how they match the current medical knowledge and whether they contain

new knowledge. Table 7 presents the relations that occur in the ten classifiers more than once

(the list of all the relations is provided in S6 Table). They were mostly studied qualitatively,

which means that we considered whether a high or low value of each parameter should be

associated with good or bad feeling. The exact cut-off values were considered less important as

they are heavily dependent on the patients and their environment (e.g., we can expect different

humidities and the patients’ responses to them in our Italian and British data compared to the

published data from Hong Kong of Australia [42, 43]). Most tree nodes were considered in iso-

lation, which means that we studied the parameter in each node and the distribution of the

classes in the subtrees rooted in that node’s descendants. In some cases, however, the relations

to nodes above were considered as well–we used expert judgement in this. The table provides

references that support the relations when we could find them, while further interpretation is

presented in the Discussion section.

Fig 6. Probability densities of the average feature differences between the classes feeling the same as yesterday,

good and bad.

https://doi.org/10.1371/journal.pone.0190323.g006

Fig 7. Decision tree for the class definition Class 1, 2 x (3/4) vs. 4 x (3/4), 5 built on the

No_sparse_features_0.17_kNN subset.

https://doi.org/10.1371/journal.pone.0190323.g007
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Discussion

The first important finding of this paper is that objective telemonitored parameters can predict

subjective feeling of health. This result is the first one, to our knowledge, to connect objective

parameters to PROs, and thus enables the possibility of using PROs as primary end-points in

future trials. The highest accuracies achieved using machine learning were over 86%, and the

AUC was 0.79 (which was obtained by RF, see Table 6, Fig 3). This is comparable with the

AUC of 0.82 from related work [14] achieved for the prediction of hospitalizations, which

appears to be an easier problem because hospitalization are typically preceded by more pro-

nounced physiological changes. While two significantly different experiments cannot be

directly compared, we can still speculate that the parity between the results is due to the richer

features enabled by wearable devices in our case.

The highest accuracy for predicting the feeling of health was achieved by carefully defining

the class (what it means to feel bad or good). However, the accuracies for all the considered

class definitions were above 79% with one exception. This shows that telemonitored parame-

ters can predict the feeling of health under a relatively wide range of conditions, confirming

the validity of this finding. The exception was the definition that required the weakest expres-

sion of bad or good feeling of health, which shows that either the patients’ subjective experi-

ence is more sensitive than what intelligent computer methods can extract from telemonitored

parameters, that patients cannot highly reliably distinguish feeling bad or good for reasons of

health vs. for other reasons, or that there are simply some inconsistentcies and biases in the

PROs.

Fig 8. Decision tree for the class definition Class 1, 2 x (3/4) vs. 4 x (3/4), 5 built on the Expert_selection subset.

https://doi.org/10.1371/journal.pone.0190323.g008

Table 7. An overview of the relations between the features and the feeling of health occurring more than once in the decision trees for all the feature subsets.

Relation Cut-off Occurrences Supporting references

Ambient humidity (avg and chg) small: good, large: bad 49 to 50 and –0.13 to –0.0674 12 In favor [42, 43]

Ambient humidity small: bad, large: good 39 3 In favor [43]

Weight small: bad, large: good 86.2 to 87 7

Weight change small: good, large: bad 0 2 In favor [32]

Systolic BP (avg and pers) small: good, large: bad 120 and 1.10 6 Against [44]

Systolic BP (avg and chg) small: bad, large: good 127 and –0.11 2 In favor [44]

Humidity ratio (avg and pers) small: good, large: bad 0.74 to 0.75 4 In favor [46, 47]

Ambient temperature (avg and chg) small: bad, large: good 24 and 0 3 In favor [32, 46, 47]

QRS duration (pers and chg) large: good, small: bad 1.03 and 0.01 3 Against [49]

SpO2 small: bad, large: good 97 2 In favor [51]

SpO2 small: good, large: bad 95 2 Against [51]

https://doi.org/10.1371/journal.pone.0190323.t007
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The other important findings of the paper concern the relations in the DTs, which provide

an insight into which features make CHF patients feel bad or good. The accuracy of DTs is

admittedly lower than of RFs, so RF should be used when the objective is to simply predict

the feeling of health, but for the analysis of the relations, DTs are most suitable since they are

understandable and only 2.29 percentage point less accurate than RFs on average. The most

often occurring relation in our DTs concerns ambient humidity: when it is high or increasing,

the patients feel bad, and sometimes when it is low (below 39%), they also feel bad. A high

(and low) humidity is known [42, 43] (albeit not widely accepted) to be problematic for CHF

patients, so these two relations are on one hand reasonable, and on the other suggest ambient

humidity should be investigated prospectively among CHF patients.

A very prominent relation is also that the patients weighing more than 86.2 to 87 kg feel

good. Since a relatively modest number of patients were included in the study, one patient

could skew the results. Patient 56 (see Fig 2) was such a case–he/she labeled the feeling of

health as good much more often than other patients, and was at the same time heavier than

others. A positive weight change is associated with feeling bad, which is expected as it signifies

fluid retention–a common problem in CHF patients [32].

The relations concerning systolic BP are conflicting, but large (above 120 mmHg) or

increasing BP is more often associated with feeling bad, which is unusual, as low BP is more

often a problem in CHF than high BP [44]. However, in these unusual cases the BP relation

splits 2–4 instances of feeling good from a much larger number of instances of feeling bad, so

they are probably coincidental (one example of this is in Fig 4). The opposite relation, which is

expected in CHF patients, is shown in Fig 5. The right side of the decision tree states that sys-

tolic BP above 127 mmHg leads to feeling good, which is reasonable since 127 mmHg is not

too high in itself. Systolic BP under 127 mmHg–as long as diastolic BP is under 79 mmHg–is

also good, while systolic and diastolic pressure being close to each other, which indicates poor

heart function in CHF patients, lead to feeling bad [45].

Humidity ratio is the ratio between the skin and ambient humidity, so it indicates sweating

corrected for the ambient humidity. Since the study took place in the cold part of the year,

sweating is probably not due to high ambient temperatures. It can thus be explained as a prob-

lem with the sympathetic neural system and as such may deserve further study [46, 47].

High and increasing ambient temperature is associated with feeling good. This can be

explained by CHF patients feeling cold in the extremities due to poor blood circulation [48],

and the literature also reports increased hospitalizations and mortality during cold weather

[32]. Cold extremities are also related to sympathetic over-activation [46, 47]. The effect of

ambient temperature is not often studied in CHF patients, so this finding is interesting and

may deserve further investigation.

Our decision trees suggest that large or increasing QRS-interval duration leads to feeling

good, which is difficult to interpret. QRS prolongation has been shown to signify worse out-

comes in CHF patients [49], which seems to contradict our findings. However, unlike the liter-

ature on QRS prolongation, we studied short-term changes in QRS-interval duration, which

may be related to QRS fragmentation [50], erroneous ECG analysis by the Falcon algorithm,

or some other phenomenon. More investigations are needed in this area to clarify the relation

between QRS duration, whether related to QRS fragmentation or not, and PROs.

We have conflicting relations concerning SpO2, but high SpO2 leading to feeling good (as

expected [51]) occurs in considerably more instances than the opposite. The relation of low

SpO2 leading to feeling good is thus probably spurious–the patients felt good for reasons unre-

lated to SpO2.

In Fig 7 it is also interesting that high standard deviation of heart rate is good, which may

suggest that the heart can adapt to the demands of the users’ activities. This is similar to the
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finding that a large range of heart rate leads to fewer hospitalizations and mortality [52]. The

relation appears only in this decision tree, which is why it is not included in Table 7.

Finally, there is a relation that is interesting because of its absence: low heart rate is generally

considered an indicator of good outcomes in CHF, but is not present in any decision tree. The

average heart rate among the instances of feeling good [53, 54] is in fact substantially lower

than of feeling bad (68 vs. 74 beats per minute), but the machine-learning algorithm still found

other relations to produce more accurate decision trees.

Conclusion

This paper presents the results of mining the data collected during a telemonitoring study of

CHF patients. The study included 24 patients, who used a range of wearable and other sensing

devices, and provided information on how they felt each day. Such PROs are increasingly seen

as crucial for the management of CHF and other incurable diseases, where the quality of life is

an important goal independent of “hard” outcomes such as mortality and hospitalizations. We

constructed a large number of features from the telemonitored parameters and built classifiers

that predicted how the patients feel. To this end, we systematically analyzed various data min-

ing algorithms, feature imputation methods, feature subsets and the definitions of the class to

predict. We achieved prediction accuracies up to 86% and AUC up to 0.83, demonstrating that

the telemonitored parameters contain valuable information about the patient’s health-related

quality of life.

We also studied the relations contained in the decision tree classifiers to understand the

effect of the telemonitored parameters on the quality of life. We found several relations that

agree with the current medical knowledge: systolic BP above 127 mmHg and SpO2 above

97% often lead to feeling good, while increasing weight (probably due to fluid retention)

leads to feeling bad. This can be seen as a confirmation of the validity of our data and the

data-mining approach. We also found some relations that are known but less well estab-

lished: high (and low) ambient humidity, low temperature and sweating lead to feeling bad.

These findings can contribute to better management of CHF in the future, since at least the

humidity and temperature are not difficult to monitor and control. Some relations in the

classifiers disagree with the current medical knowledge, which is most likely due to having

insufficient data.

While the size of Chiron telemonitoring study in terms of the number of patients is

modest, the level of detail is very high due to the large number of monitored parameters,

including continuous ECG, as well as the additional parameters extracted via advanced

ECG and activity analysis. Because of this, we decided for an exploratory approach to

the analysis of the collected data using data mining methods. Such an approach can

provide a broader range of insights than the more traditional statistical approaches, albeit

with fewer guarantees regarding significance. The findings reported in this paper will serve

as inputs to another–more extensive–study of CHF patients planned in the ongoing Heart-

Man project.

The predictive models presented in this paper are interesting not only for the insights into

the relations between the telemonitored parameters and the quality of life, but also as a founda-

tion for an intelligent system that can provide advice on how to improve CHF patients’ quality

of life. To do so, we would first have to identify parameters that are modifiable by the patients

(e.g., temperature, humidity and exercise-related parameters). Afterwards, we could use

computational methods to identify parameter values that are expected to lead to an improved

feeling of health, and advise the patients to modify the relevant parameters accordingly. This is

the subject of our ongoing research.
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18. Luštrek M, CvetkovićB, Bordone M, Soudah E, Cavero C, Rodrı́guez JM, et al., editors. Supporting clin-

ical professionals in decision-making for patients with chronic diseases. Proc 15th Int Multiconf Inf Soc;

2012.
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