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ABSTRACT 

Wearable devices for monitoring players’ movements are heavily 

used in many sports. However, the existing commercial and 

research sports wearables are either not tennis-specific, or are 

worn on the wrist or in the racquet and thus offer too limited 

information. We therefore added tennis-specific information to a 

leading commercial device. Our solution is two-fold. Firstly, we 

developed a model for classifying shot types into forehand, 

backhand and serve. Secondly, we designed an algorithm based 

on multi-objective optimization to distinguish active play from the 

time in-between points. By combining both parts with the general 

movement information already provided by the device, we get a 

comprehensive set of metrics that are used by professional tennis 

players and coaches to objectively measure a player’s 

performance and enable in-depth tactical analysis. 

Categories and Subject Descriptors 

I.2.6. Artificial Intelligence: Training 

General Terms 

Algorithms, Measurement, Experimentation 
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1. INTRODUCTION 
The use of wearable sensors in sport is growing fast and can 

already be considered essential for success in some disciplines. In 

tennis the analytics started with computer vision and sensors for 

measuring shots. However, both of these approaches have 

limitations for professional use. The sensors worn on the playing 

wrist or built into the tennis racquets deliver information about 

the shots [6] or enable the analysis and modeling of different shot 

techniques [7]. However, the problem with this information is the 

lack of context (under what circumstances and where on the court 

did a specific shot occur), so it is not sufficiently actionable, i.e. 

cannot be used for tactical preparations or to significantly improve 

players' game. Video analysis offers better information, and there 

has been a lot of research on this topic [1, 5]. However, cheap 

solutions offer low accuracy, while better solutions are extremely 

expensive because they require advanced cameras with complex 

software for calibration. Additionally, they are bound to a specific 

court, so the information is not available whenever needed by the 

player or coach. 

Due to these limitations, devices worn on the torso, and equipped 

with accelerometers, gyroscopes and GPS receivers are emerging 

as the new approach. These devices are perfect for determining 

the effort, distance covered, sprints analysis and much more. Here, 

the leading provider in the world is Catapult Sports, whose S5 

product is currently used by the best tennis player in the world 

Andy Murray. Nevertheless, the problem with S5 is that it offers 

no tennis-specific metrics. That is why in our research we add 

tennis-specific information to the metrics already available in the 

Catapult S5 system, to produce a comprehensive solution that 

enables professional players to make better tactical preparations 

and to improve their game. 

Our algorithm consists of two parts. In the first part, we detect 

when a tennis shot occurs and which type of shot it is. In the 

second part, we focus on detecting when the players actually play 

points (active play) and when they are in-between points. This 

allows us to determine the actual net playing time and real 

distance covered and also adds context to shots which enable 

complex analysis like “Is the player playing weaker shots, if the 

point is longer than 15 seconds?” With this solution the players 

and their coaches get a continuous comprehensive view of the 

player’s game, both the physical and the tactical part of it. 

2. DATA AQUISITION 
To obtain sensor data we used the commercially available S5 

device from Catapult. The position of the device was high on the 

player’s back attached to a tight shirt. The device contains a 3D 

accelerometer (frequency 100 Hz), 3D gyroscope (frequency 100 

Hz), 3D magnetometer (frequency 100 Hz) and GPS sensor, 

returning latitude and longitude (frequency 10 Hz). 

We recorded 5 different professional tennis players for 6 hours in 

total. Due to the 100 Hz frequency, we obtained 2,172,363 data 

records. In this time, we recorded 1,373 shots. Each shot was 

labeled as a serve, forehand or backhand. As for detecting active 

play, we also manually labeled the beginning and end of each 

sequence of active play. Because we were interested in creating an 

algorithm for detecting shot types and active plays in actual 

matches, all the data were recorded during matches and none 

during predefined situations of practice sessions. 

3. SHOT DETECTION 
For every data point obtained from our device, we extracted a 

number of features used by the shot detection algorithm. We used 

supervised machine learning to train a model to detect shots. With 

this model we classified every data point and evaluated the shot 

detection. 

3.1 Feature Extraction 
To define informative features for shot detection, we visualized 

and examined the traces for the accelerometer and gyroscope. 

Since we saw that every shot is associated with body rotation, our 

main source for feature extraction was the gyroscope - more 

specifically angular speeds on axes 1 (Roll) and 3 (Yaw) - and not 



the accelerometer. Figure 1 shows a typical trace of the gyroscope 

and accelerometer for a backhand shot. 

 Figure 1: Gyroscope and accelerometer traces for backhand 

shot marked with the vertical line. 

As our main feature, we calculated a feature called Peak_strength 

as follows: 

- Calculate absolute sum of angular speeds on axes 1 and 

3  

- Raise it to the power 4, to emphasize higher values 

- Apply Butterworth band-pass filter with high and low 

cutoff frequencies of 1.5 and 25 Hz. 

- To get the final Peak_strength value, set the lower peak 

to zero when two peaks are too close (the distance was 

set by a domain expert to 1.3 s) 

High Peak_strength values calculated in this way mark potential 

shots. Additionally, we calculated several other features. We set 

two different window sizes (0.8 s and 1.2 s) and calculated the 

average values, variances and standard deviations for each 

accelerometer and gyroscope axis. We added the sums of and 

differences between all pairs of gyroscope axis values and also 

between accelerometer axis values. We also calculated the speed 

of movement from the GPS coordinates. To illustrate its 

importance, Figure 2 shows how the combinations of 

Peak_strength and speed of movement separates shots and shot 

attempts (high Peak_strength values that are not shots). 

3.2 Experimental Setup 
We divided the evaluation in two parts. Firstly, we evaluated how 

well we can detect if a shot has occurred, and secondly, we tried 

to detect which type of shot was made.  

For building the models, after empirical comparison of several 

algorithms, we chose the Random Forest (RF) [2] algorithm. Each 

RF consisted of 10 decision trees, the minimum number of 

samples required to split an internal node was 8, and the minimum 

number of samples required at a leaf node was 4. 

We evaluated the models in two ways. Firstly, we performed 10-

fold cross validation using Stratified shuffle split [3]. This 

procedure ensured equal class distributions between training and 

test sets. Secondly, we used the leave-one-player-out approach 

(LOPO), where we used one player’s data for testing and the data 

from the other players for training. This approach enables us to 

estimate the accuracy of the models for previously unseen players 

with different shot techniques. 

When evaluating the models, we classified each data entry (10 

ms) as a shot or no-shot, and the type of shot. With this approach 

almost all the data points were classified as no-shots, so 

calculating the classification accuracy would be useless. We 

therefore focused on the precision and recall. 

3.3 Results 
The results for detecting shots and shot types for the cross-

validation and for the LOPO approach are presented in Tables 1 

and 2. 

 Cross-validation LOPO 

Precision 97.3% 

34% 

97.3% 

Recall 96.6% 

35% 

96.5% 

Table 1: Precision and recall for detecting tennis shots 

 
Cross-validation 

Foreh. Backh. Serve All 

Precision 95.3% 94.3% 99.1% 96.2% 

Recall 91.4% 90.2% 99.3% 93.6% 

 
LOPO 

Foreh. Backh. Serve All 

Precision 91.5% 93.6% 99.8% 95.0% 

Recall 90.5% 90.6% 98.2% 93.1% 

Table 2: Precision and recall for detecting types of tennis shots  

As we can see, the precision and recall obtained with cross-

validation and LOPO are very similar. This means that the built 

models are relatively independent from the type of player or his 

technique or style of play. 

The main sources of errors are fast unnatural body rotation 

movements and special events that occur during the play. An 

example from our data set is a player warming up doing very 

similar body movements as during shots, or a player throwing his 

racquet at the fence with the same body movement as when 

serving. 

4. DETECTING ACTIVE PLAY 
The algorithm for detecting active play during a tennis game 

could only be developed after we have detected the shots. The 

reason is that we want our algorithm not only to have a high 

classification accuracy, but also to include as many shots as 

possible in the detected active play. In other words, misdetection 

of active play is less undesirable when no shots are made. So due 

to having two objectives, the detection was formulated as a multi-

objective optimization problem. 

4.1 Feature Extraction 
The main idea when detecting the starting (end ending) point of a 

sequence of active play (rally) was that at this point the difference 

between the activity before and after would be the largest. 

We used accelerometer values because they better represent the 

players’ movement then gyroscope values, which primarily spike 

when making shots. From these values, we calculated a modified 

variance that gives more emphasis to the largest variations in data 

traces: 



  

So for each data point, we calculated three additional features 

based on var*: the back overall variance (BV), the forward overall 

variance (FV) and the difference between these two (DV = BV – 

FV). FV and BV are calculated as the sum of the var* for each of 

the three acceleration axes, on the sequences immediately before 

(BV) and after (FV) a potential beginning or end of a rally (the 

size of the sequences was subject to optimization).  

To be able to truly detect the best point describing the beginning 

or end of each rally, we also calculated peaks on the DV feature. 

Calculating the peaks was done the same way as for the shot 

detection. The minimum distance between peaks was subject to 

the optimization. 

4.2 Problem Formulation 
For each data point we calculated the previously described 

features, and set a rule for detecting the beginning of a rally and a 

rule for detecting the end of a rally. A data point is marked as the 

beginning of a rally if it satisfies the following rule: 

. 

A data point is marked as the end of the rally if it satisfies the 

following rule: 

, 

where parameters p1, p2, p3, p4 were determined through 

optimization. Both rules consist of two parts. The first part 

determines the threshold for the change in activity before and after 

a potential beginning or end of a rally. For the beginning of a 

rally, this difference is usually larger because a rally often starts 

explosively and ends gradually, so the thresholds p1 and p2 can 

be different. The second part is the same for both rules and serves 

to remove false detections due to the variation in intensity during 

the rally by specifying that the activity, either before or after the 

beginning or end of a rally, should be low. 

So altogether we optimized six input parameters: sequence size, 

minimum distance between peaks, p1, p2, p3 and p4. 

4.3 Experimental Setup 
To optimize the two objectives – classification error and the 

number of shots not inside the detected rallies – we used the well-

known evolutionary multi-objective optimization algorithm called 

NSGA-II [4]. The population size was set to 25, the stopping 

criterion was set to 10,000 solution evaluations, and the 

tournament selection was used. 

4.4 Results 
The final front of the optimization can be seen in Figure 3. We 

can see a typical result for a multi-objective optimization problem, 

a non-dominated front showing a tradeoff between objectives. We 

can also see a knee on the front labeled with a circle. In this 

solution six shots are missed, since they occurred without the 

surrounding intense activity which accompanied other shots. An 

example is a player hitting the ball out of court after the rally 

finished. To include even such shots in the detected rallies, we 

would need to sacrifice a lot of classification accuracy.  

    
Figure 3: The final front showing the best solutions based on the 

classification error and the number of shots outside of detected 

active play. 

Since our objective was to accurately detect the duration of the 

rallies, we chose one solution from the middle of the front and for 

this solution, we calculated the distribution of the durations of the 

rallies. The comparison with the manually labeled rallies can be 

seen in Figure 4.  

Figure 4: Comparing manually labeled (left) and automatically 

detected distributions for play durations. 

We can clearly see the similarities between the distributions. The 

reason for the detected distribution having more very short rallies 

is that the algorithm detects even small starts of movement that we 

did not label as rallies because they were too short. For example, a 

server hitting the net with the first serve results in the returner 

making just a small movement. 

By combining the classified shot types, detected active playing 

phases and locations from the GPS, we can calculate several useful 

metrics that help remove subjectivity from the game and allow for 

objective evaluation of different tactical approaches and training 

routines. An example of such a view can be seen in Figure 5, where 

we present the heat map of a player’s position during active play and 

combine it with forehand and backhand shots as points of different 

color and size. We also included a dashed line that separates part of 

the court where more backhands are played from the one where 

more forehands were played. We can see that the player played more 

aggressively on the left side, thus his heat map is closer to the 

baseline. On the right side, a less aggressive approach allowed him 

to play more forehands and thus he dictated play by playing more 

often with his better shot. 



  Figure 5: Heat map of a player’s position during active play 

combined with shot locations (blue = forehand,  

red = backhand) and their Peak_strength (size of points).  

 

5. CONCLUSION 
In this article we presented a two-part algorithm for analyzing 

wearable sensor data for professional tennis players. Firstly, we 

detected and classified different shot types, and secondly, we 

distinguished the active playing phases from the time in-between 

points. By combining the procedures, players can get a unique 

perspective on their game which enables objective analysis in the 

tactical and physical sense. 

For the future, we plan to equip both players with the same type 

of sensor, and by measuring the time difference between their 

shots and by calculating the distance between them, we will be 

able to calculate the average speed of ball and thus additionally 

quantify the quality of each shot. 
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