
Real-time Alarm Model Adaptation Based on User Feedback

Violeta Mirchevska1, Boštjan Kaluža2, Mitja Luštrek2, and Matjaž Gams2

Abstract. This paper presents real-time adaptation of alarm
detection models in a remote health monitoring system based on
user feedback. Real-time adaptation enables systems to fine-tune to
the needs and preferences of the user and changes in the
environment. This way, the system performance is improved in
terms of technical accuracy and subjective user wishes. Two types
of alarm detection models were used: (1) models in the form of
rules created by domain expert and (2) models induced by machine
learning. The problem of adaptation for the rule-based models is
defined as Markov decision process. Machine-learning models are
adapted by rebuilding the model every time new data is obtained.
We tested the adaptation capabilities of the two types of alarm
detection models based on their accuracy and time-to-alarm (needed
length of possibly critical activity, such as lying on the ground,
which causes the models to raise an alarm). Both types of models
achieved 90% alarm detection accuracy. The rule-based models
decreased time-to-alarm when user-triggered alarms were raised
and increased it when the user indicated false alarm. We did not
observe this process for the machine-learning models. 1

1 INTRODUCTION
Remote health monitoring is gaining attention in developed
countries. One of its main goals is to allow users, particularly the
elderly, to continue living at home instead of being admitted to a
nursing home or hospital. On the one hand, this increases
independence and quality of life, and on the other hand, it
significantly reduces elderly-support costs. Many research projects
address the problem of design and development of systems that can
intelligently, continuously and pervasively monitor the health
conditions of its user.

In order for remote health monitoring to achieve its goals, it
must be highly reliable, which means that it must detect all major
health problems without raising too many false alarms. Given the
diversity of users, it is difficult to develop a system that will suit
each user in each possible circumstance from the start. Therefore,
real-time system adaptation based on user feedback is an important
topic of research.

We have studied the problem of real-time system adaptation
based on user feedback in Confidence [1], ubiquitous care system to
support independent living of the elderly. This system is able to
detect emergency situations such as falls, which result in the user
lying/sitting at an inappropriate place (e.g. on the ground). The user
of the system may provide feedback concerning the detection of
such situations through portable device. Emergency-situation
detection is performed by rule-based alarm detection agents
incorporating domain knowledge and machine-learning alarm
detection agents. In this paper we present and compare the
adaptation capabilities of the both agent types to user feedback.

1 Result d.o.o., Bravničarjeva 11, 1000 Ljubljana, Slovenia, e-mail:

violeta.mircevska@result.si
2 Jožef Stefan Institute, Department of Intelligent Systems, Jamova 39,

1000 Ljubljana, Slovenia

The paper is organized as follows: Section 2 presents related
health monitoring systems and adaptation capabilities in the
intrusion detection domain. In Section 3 we present Confidence.
The alarm detection system, which constitutes a module in the
Confidence system, is presented in detail. Section 4 describes the
procedure for adapting the rule-based and machine-learning alarm
detection agents. Section 5 presents the experiments for evaluating
the adaptation of these agents as well as achieved results. Section 6
concludes the paper and states open problems for future work.

2 RELATED WORK
Remote health monitoring systems mainly focus on fall detection in
domestic environment. Several systems were introduced able to
detect falls and trigger an alarm. Zang et al. [2], for example,
designed a SVM-based fall detector using a waist-worn
accelerometer. Similar functionalities were presented by Kangas et
al. [3] and also by Bourke et al. [4] using gyroscope, Fu et al. [5]
using video, and Lustrek and Kaluza [6] using a localization
system. There are also commercially available products, for
example, by AlertOne [7] and Zenio [8]. Cesta et al. [9] proposed
an agent-based approach for detection of inconsistencies in the
execution of daily activities and reacting to exogenous events. All
these systems constructed a model from learning data that remained
unchanged after deployment at a user, meaning that the model was
not able to adapt to the user and the environment.

On the other hand, there were several successful applications of
adaptive incremental learning in intrusion detection. Pietraszek [10]
introduced an approach for reducing false alarms by having a
human analyst review the alarms and mark them as true or false,
after which a new model was built by machine learning. NIDES
system [11] generates user profiles that are constantly aged,
meaning that new behavior is compared to the most recently
observed one. Cannady [12] demonstrated the use of reinforcement
learning method for adaptation according to user feedback, while
Hossain and Bridges [13] proposed a fuzzy association rule system
for adaptive anomaly detection.

We were unable to find any paper related to adaptive learning in
remote care which was partly motivation for our work. Adaptation
seems a necessity if one wants to build a truly user-friendly system.
We propose methodology for adaptation of both machine-learning-
based and rule-based systems. The latter is particularly relevant in
the field of remote health monitoring, since a large number of
remote health monitoring systems found in literature are based on
expert knowledge.

3 ALARM DETECTION IN
CONFIDENCE

We have designed the Confidence system as a multi-agent system
since agents are flexible, adaptive and robust. Figure 1 presents the
architecture of Confidence. The user is tracked using sensor agents
part of a localization system. The raw data is filtered by filtering
agents and the posture of the user is recognized using posture

recognition agents. History of user posture and movement is used
for alarm detection by alarm detection agents. When alarming
situation is detected, it is reported to the user by communication
agents either over a portable device that is part of the system or by a
computer screen. In this paper we study real-time adaptation of
alarm detection agents based on user feedback. Unusual movement
such as limping is also detected in Confidence by tracking a variety
of statistics (e.g. walking signature) by statistics agents. In this
paper we will not present the statistics agents since they are
independent of the alarm detection agents.

Figure 1. Architecture of Confidence.

For localization, we selected the commercially available
Ubisense system [14], which can determine positions of a set of
wearable tags using radio technology. Based on studies of posture
recognition accuracy that can be achieved with different tag number
and placement configurations [15], we placed wearable tags on the
following parts of user’s body: chest, belt (optional), left and right
ankle. In a typical open-environment, the localization accuracy of
Ubisense is about 15 cm, but in practice it may drop to 200 cm or
more. What is more, sensor data is not necessarily available at each
moment in time. Therefore, filtering agents were developed [16] in
order to tackle the problems with the Ubisense system.

User’s posture is classified as one of the following 5 postures:
standing, sitting, lying, on all fours and intermediate states (falling,
going down and standing up). Posture recognition was performed
using rule-based and machine-learning agent, whose predicted
posture is combined using merge agent in order to obtain final
posture classification.

The rule-based posture recognition agent is used to reduce the
gap between real-world and data captured in training phase. It
consists of a set of rules for posture classification. Attributes that
need to be included in a rule condition were determined by using
knowledge extracted from decision trees and human know-how
[17]. Two approaches for determination of limits for each condition
in the rules were considered: (1) genetic algorithms and (2)
approach which computes information gain for each attribute
included in a particular rule in order to determine the most suitable
rule condition limit. In this paper we use the information gain
approach in order to determine the condition limits of the posture
recognition expert knowledge agent.

The machine-learning posture recognition agent contains posture
recognition knowledge captured in training data. It takes 10
successive sets of attributes computed for successive time frames as
an attribute vector with the prevailing posture in those frames as the

class value. We have tested a variety of classifiers, including C4.5,
Naïve Bayes, SVM, kNN, Bagging and AdaBoost [6]. Based on
these studies, we selected machine-learning posture recognition
agent to use the random forest ensemble classifier since it offers the
highest classification accuracy.

The posture-recognition-merge agent takes into account the
ability of the rule-based and machine-learning posture recognition
agent to correctly classify each posture of interest. This ability can
be easily determined by exploiting classification’s confusion matrix
from each of the two agents. In particular, for each posture of
interest we compute its probability to be the true posture using the
predictions by both the rule-based and machine-learning agent
taking into account their ability to correctly classify each posture of
interest. The posture with the highest probability is considered as
true. This way the strengths of each agent are exploited when
determining true user posture.

Table 1. Confusion matrix of joint classification using random forest
and expert rules.

 Standing sitting lying
intermediate
state

on all
fours

Standing 72 9 0 19 0

sitting 7 83 0 3 7

lying 2 21 63 8 6
intermediate
state 36 19 6 37 2

on all fours 4 11 9 21 55

The confusion matrix of the posture-recognition-merge agent is

shown in Table 1. The left column shows the label of the correct
posture, and the top row shows the assigned label. Except
intermediate state and on all fours, all basic postures are detected
reliably. Most errors appear on transitions from one state to another.
These errors do not influence system performance since they
introduce just time shift.

Alarm detection agents raise alarms when falls and sudden
health problems of the user are detected. These are situations which
are reflected by person lying/sitting at an inappropriate place (e.g.
on the ground) for a prolonged period of time. Similarly to activity
recognition, we considered a rule based and machine-learning based
approach for alarm detection.

Rule-based alarm detection agents contain rules created by
domain experts concerning situations in which an alarm should be
raised. We considered four types of alarm situation (1) falling
detected and person lying/sitting immovable at inappropriate place,
(2) falling detected and person lying/sitting movable at
inappropriate place, (3) person lying/sitting immovable at
inappropriate place and (4) person lying/sitting movable at
inappropriate place. Each rule-based alarm detection agent captures
one type of alarm situation which it gives as output.

Machine-learning alarm detection agents contain knowledge
about alarm situations that are induced from available data
concerning such situations. The alarm detection module in
Confidence contains two such agents, one containing SVM
classifier, the other C4.5 classifier. They obtain percentage of all
observed user’s postures and movement in periods of 5 s, 10 s and
15 s as input. These intervals are suitable for our experiments
because we considered a reasonable period of lying/sitting at
inappropriate place after which an alarm should be raised
somewhere between 5 and 15 s. In real life a longer period might

make more sense, in which case the intervals used in attributes
should be lengthened. The output of the machine-learning alarm
detection agents, unlike the rule-based agents, is only the presence
or absence of emergency situation, without any information about
its type.

When an alarm is raised, the communication agents notify the
user either over a portable device that is a part of the system or by a
computer screen. The user may (1) confirm the alarm (explicitly by
pressing a button or implicitly by doing nothing), meaning it is true
alarm and the user needs help, (2) inhibit the alarm, which means
that this is a false alarm and (3) suspend alarm, meaning that the
situation was actually a true alarm, but the user can help
himself/herself. Additionally, the user may trigger alarm by
himself/herself.

4 ADAPTIVE ALARM MODEL
Users behave differently and what might be alarm-worthy for one is
normal for another. To give two extreme examples, one user might
never voluntarily lie or sit on the ground because of a physical
disability which prevents him/her from getting up again, whereas
another might exercise regularly on the living room carpet. Our
goal is to automatically adapt the alarm model to such differences,
fine-tuning it to the needs and preferences of a particular user. This
section presents the adaptation mechanisms of the rule-based and
machine–learning alarm detection agents.

4.1 Rules adaptation
The problem of adapting the rule-based agents, whose agent
function is represented in the form of a rule, is defined as a Markov
decision process (MDP). Each rule can be thought of as a point in
N-dimensional space, where N is the number of adjustable
parameters in the rule. For example, the space of the rule »IF
person lying on the ground P% in T seconds THEN alarm« is two
dimensional, with one dimension representing the set of possible
percentage (P) values and the other representing possible time
interval (T) values (Figure 2). The goal state of the rule-based
agents is dynamically changing as user's needs change. This adds
uncertainty to the reward received for each agent action. Available
agent actions in each state are all combinations of parameter value
changes. Therefore, agent actions, unlike in problems usually
modeled with MDP, are deterministic. The rule-based agents must
determine optimal parameter values under uncertainty about their
goal state.

The initial state of each rule-based agent is set to values
predefined by domain expert. Returning to our example agent
(Figure 2), using domain knowledge its agent function is initialized
to »IF person lying on the ground 90% in 8 seconds THEN alarm«.

The reward matrix is initialized to zero for all states (Figure 2a).
Without any feedback from the user, we do not have any
information whether there exists a state which better suits user's
needs. The agent does not change its state as long as there is no
state with better utility than the utility of the current state. For
example, because all states have zero utility at the beginning, the
agent does not change its state, i.e. rule parameters. When an alarm
is raised and the user responds with false alarm, the reward of the
current state and all states that are dominated by it is reduced by
penalty amount pa, in our case -2. Then the utility of being in the
current state is reassessed. When the reward matrix is updated after
the first false alarm (Figure 2b), it is easy to see that the current
parameter values are no longer optimal. The agent chooses
randomly one of the states with best possible utility. In the example
in this figure, after the first false alarm the agent function is
changed to »IF person lying on the ground 100% in 9 seconds
THEN alarm«. When the user triggers alarm by himself/herself, the
reward of all states which are dominated by the current state is
incremented by reward amount ra, in our case 1 (Figure 2c). Again,
the utility of being in the current state is reassessed. After the user
triggered alarm, the agent function of the example agent is changed
to »IF person lying on the ground 100% in 8 seconds THEN
alarm«. Notice how the initial state is avoided because of the
negative reward received during the first false alarm. This way the
rule-based agents autonomously adapt their parameter values to
achieve optimal utility in an environment with non-deterministic
goal state.

4.2 Machine learning adaptation
The agent function of the machine learning agents is adapted by re-
inducing the alarm detection classifiers every time new alarm
situation examples are obtained. User triggered alarms and false
alarms provide new true or false alarm examples. In the case of a
user triggered alarm, the instance at the point when the alarm is
triggered by the user and all following instances that dominate that
instance with respect to the amount of person lying at an
inappropriate place are added as true alarm examples. In the case of
a false alarm, all the instances that were classified as true alarms are
added as false alarm examples to the dataset. In order to escape
classifier bias in case of unbalanced dataset, after each addition, the
weight of the database instances is updated in order to bring the
ratio of true alarm to false alarm to neutral examples (includes
standing, sitting and lying on the bed) to 40 to 30 to 30. A new
machine learning classifier for alarm detection is built on this
dataset
.

Figure 2 Rule-based agent adaptation

5 EXPERIMENTS
To design and test performance of Confidence a room resembling a
studio apartment equipped with a bed, few chairs and tables was set
up. The apartment was divided into five regions: kitchen, living
room, toilet, sleeping area (bed) and corridor.

5.1 Data
In order to test the adaptation capabilities of the rule-based and
machine-learning alarm detection agents we created a set of true
and false alarm scenarios. True alarm scenarios include (1) user
falling quickly and then lying on the ground moving for 15 s, (2)
user falling quickly and then lying immovable for 15 s, (3) user
falling slowly and then lying moving for 15 s and (4) user falling
slowly and than lying immovable for 15 s. The cases (1) and (2)
represent tripping; (2) results in an injury that prevents movement.
The cases (3) and (4) represent falling due to dizziness or fainting.
In all true alarm scenarios the user raised alarm after lying on the
ground for 7 seconds. Three types of false alarm scenarios were
also recorded: (1) user on all fours on the ground for 10 s, (2) user
on all fours for 5 s, then lying on the ground for 5 s and (3) user
lying on the ground for 10 s. The user is moving in all three cases.
These scenarios may represent the user searching for things under
the table or bed. They differ from the true alarm scenarios by the
length the user stays on the ground and in some cases the amount of
movement.
Each true and false alarm scenario was recorded five times for the
purpose of training. Additionally, all scenarios were recorded five
times for testing.

5.2 Results
We tested the adaptation capabilities of the rule-based and machine-
learning alarm detection agents based on two measures: alarm
detection accuracy and time-to-alarm. Each test started with agents
that are not able to recognize any true alarm situation in the test
sequences. The training sequences were provided to the agents one
by one. After each new training sequence, the agents were adapted
and their alarm detection accuracy and time-to-alarm was tested on
each of the five test sequences. As previously stated, in all true
alarm scenarios, the user triggered alarm was raised after 7 seconds.
Designing true alarm scenarios this way, we intended to force the
classifiers to reduce their time-to-alarm to 7 seconds or less.
However, if the agents fire alarm in the true alarm scenarios within
7 seconds, they will also fire alarms in the false alarm scenarios
since they last for 10 seconds. Designing the false alarm situations
this way, we intended to force the classifiers to require longer
period of person lying on the ground (more than 10 seconds) before
they raise an alarm. Obtaining information how the alarm detection
accuracy of the agents changes over time provides information how
good the agents can distinguish true from false alarm scenarios.
Measuring the time-to-alarm, on the other hand, provides
information whether the agents separate true and false alarm
sequences by the period of user lying on the ground, which we
consider most relevant for this task.

In order to test how agent’s alarm detection accuracy changes
after each adaptation step, three test runs were executed. In the first,
all true alarm scenarios were presented to the alarm detection agents
first, followed by all false alarm scenarios. In the remaining two test
runs, the true and false alarm training scenarios were given
randomly to the agents. By adapting the agents by various orders of

training scenarios, we gain information not only how their alarm
detection accuracy improves, but also how much it depends on
particular order of training scenarios.

Rules average alarm detection accuracy

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 4 7 10 13 16 19 22 25 28 31 34

number of train sequences

pe
rc

en
ta

ge %TA
%FA
ACCURACY

ML average alarm detection accuracy

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 4 7 10 13 16 19 22 25 28 31 34

number of train sequences

pe
rc

en
ta

ge %TA
%FA
ACCURACY

Figure 3 Average rule-based and machine learning agent alarm

detection capabilities. %TA presents the percentage of correctly detected
true alarms. %FA presents the percentage of alarms raised for false
alarm test scenario examples. ACCURACY presents the overall achieved
accuracy.

Time to alarm

0

2

4

6

8

10

12

14

START
TA 2

TA 4
TA 6

TA 8
TA 10

TA 12
TA 14

TA 16
TA 18

TA 20
FA 22

FA 24
FA 26

FA 28
FA 30

FA 32
FA 34

training sequence

tim
e

(s
ec

on
ds

)

TA RULES
FA RULES
TA ML
FA ML

Figure 4 Average rule-based and machine-learning agent time-to-

alarm. TA RULES and TA ML present average time-to-alarm for the true
alarm test scenario examples for the rule-based and machine learning
agent respectively. FA RULES and FA ML present their time-to-alarm
for the false alarm test scenario examples.

Figure 3 presents how alarm detection accuracy of the rule-
based and machine-learning based agents changes after each
adaptation step. The %TA line presents the percentage of correctly
raised true alarms in the test alarm sequences. The %FA line
presents the percentage of incorrectly raised false alarms in the test
alarm sequences. The ACCURACY line presents the overall alarm
detection accuracy of the alarm detection agents. From this graph
we can see that both rule-based and machine-learning alarm

detection agents can adapt to reliably detect the alarms presented in
the test sequences, reaching an accuracy of 90%.

We tested how agent’s time-to-alarm changes by presenting all
true alarm scenarios to the agents first, followed by all false alarm
scenarios. Our intention was to: (1) teach the agents to raise alarm
when the user has lied on the ground for a period of 7 seconds or
less after all true alarm scenarios are presented and (2) increase
time-to-alarm to 10 seconds or more when the agents are presented
all false alarm examples.

Figure 4 presents how agent’s time-to-alarm changes in such test
run. The TA RULES line presents average time-to-alarm for the true
alarm examples in the test sequences for the rule-based alarm
detection agent, whereas the FA RULES line presents its time-to-
alarm for the false alarm examples. Time-to-alarm for the true and
false alarm examples of the machine-learning alarm detection agent
is presented with the lines TA ML and FA ML, respectively. Rule-
based agent’s time-to-alarm follows our expectations. It falls to
around 4 seconds after the rules are presented with all true alarm
training scenarios, then raises to 8 seconds after the classifier
receives the false alarm ones. The machine-learning agent, on the
other hand, does not follow our expectations. Its time-to-alarm
stayed fairly constant when the true alarm training scenarios were
presented to the agents, then started to fall when false alarm training
scenarios were presented to it. The time-to-alarm fell to 4 seconds
in the end. This means that machine-learning agents learned to
separate true from false alarm scenarios not according to the length
of person lying on the ground, but by some other attribute. As
future work we need to test if the machine-learning agents have
created alarm detection classifiers that work in the general case and
whether they are not over-fitted to these particular scenarios.

6 CONCLUSIONS AND FUTURE WORK
We presented adaptation of rule-based and machine-learning alarm
detection agents based on received user feedback in Confidence,
ubiquitous care system to support independent living. Markov
decision process formalism was used for adapting the rule-based
agents, whereas machine learning was adapted by re-inducing the
alarm detection classifiers every time new data is obtained.

Experimental results show that both agents are able to adapt
their agent function according to provided user feedback. On
average they both achieved alarm detection accuracy of 90% on the
performed test runs. The rule-based agent followed our expectations
with respect to the length of user lying on the ground (which we
considered as the most relevant for this task) needed in order to fire
alarm. User triggered alarms influenced their time-to-alarm to be
reduced, where as false alarms influenced their time-to-alarm to be
enlarged. On the other hand, machine-learning alarm detection
agents did not follow our expectations. True alarms did not
influence them by reducing their time-to-alarm. What is more, time-
to-alarm was reduced when these agents were presented with false
alarm training sequences. This means that the machine-learning
agents found attribute other than the period of user lying on the
ground for separating true from false alarm examples.

As future work we need to test whether the machine-learning
alarm detection agents designed in this way work well in the
general case and are not over-fitted to the particular scenarios used
in this test. We also need to develop more intelligent way of
choosing best rule-based agent state when the agent faces a
situation with more than one state with the same highest utility.

ACKNOWLEDGMENTS
This research is partly financed by the European Union, European
Social Fund, partly by the Slovenian Research Agency under the
Research Programme P2-0209 Artificial Intelligence and Intelligent
Systems, and partly from the European Community's Framework
Programme FP7/2007–2013 under grant agreement No. 214986.
We would like to thank Domen Marinčič, Rok Piltaver, Boža
Cvetkovič, Damjan Kužnar and Blaž Strle for suggestions,
discussion and help with programming.

REFERENCES
[1] Confidence. http://www.confidence-eu.org, 2010-05-19.
[2] T. Zhang, J. Wang, L. Xu, and P. Liu, ‘Fall detection by wearable

sensor and one-class SVM algorithm’, Lecture Notes in Control
and Information Sciences, pp. 858–863, (2006).

[3] M. Kangas, A. Konttila, I. Winblad, and T. Jamsa, ‘Determination
of simple thresholds for accelerometry-based parameters for fall
detection’, Proceedings of the 29th Annual International
Conference of the IEEE, Engineering in Medicine and Biology
Society, pp. 1367–1370, (2007).

[4] A. K. Bourke and G. M. Lyons, ‘A threshold-based fall-detection
algorithm using a bi-axial gyroscope sensor’, Medical Engineering
& Physics 30, pp. 84 – 90, (2008).

[5] Z. Fu, E. Culurciello, P. Lichtsteiner, and T. Delbruck, ‘Fall
detection using an address-event temporal contrast vision sensor’,
Proceedings of the IEEE International Symposium on Circuits and
Systems, pp. 424–427, (2008).

[6] M. Lustrek, and B. Kaluza, ‘Fall detection and activity recognition
with machine learning’, Informatica 33(2), pp. 197–204, (2009).

[7] AlertOne Services, Inc. iLife™ Fall Detection Sensor.
http://www.falldetection.com, 2010-05-19.

[8] Zenio, ‘Zenio Fall Detector’, http://www.zenio.be/product/8.html,
2010-05-19.

[9] A. Cesta, and F. Pecora, ‘Integrating intelligent systems for elder
care in RoboCare’, W. C. Mann and A. Helal (Eds): Promoting
Independence for Older Persons with Disabilities, IOS Press, pp.
65-73, (2006).

[10] T. Pietraszek, ‘Using adaptive alert classification to reduce false
positives in intrusion detection’, Proceedings of the Symposium on
Recent Advances in Intrusion Detection, pp. 102-124, (2004).

[11] T. Lunt, ‘Detecting intruders in computer systems’, Proceedings of
the Symposium on Computer Security, Threats, and
Countermeasures, pp. 110–121, (1990).

[12] J. C. Georgia, ‘Next generation intrusion detection: autonomous
reinforcement learning of network attacks’, Proceedings of the 23rd
National Information Systems Secuity Conference, (2000)

[13] M. Hossain, and S.M. Bridges, ‘A framework for an adaptive
intrusion detection system with data mining’, Proceedings of the
13th Annual Canadian Information Technology Security
Symposium, (2001)

[14] Ubisense. http://www.ubisense.net, 2010-05-19.
[15] M. Lustrek, B. Kaluza, E. Dovgan, B. Pogorelc, and M. Gams,

‘Behavior analysis based on coordinates of body tags’, Proceedings
of the European Conference on Ambient Intelligence, pp. 14–23,
(2009).

[16] B. Kaluža, and E. Dovgan, ‘Glajenje trajektorij gibanja človeškega
telesa zajetih z radijsko tehnologijo’, Proceedings of the 13th
International Multiconference Information Society vol. A, pp. 97-
100, (2009).

[17] V. Mirchevska, M. Lustrek, I. Velez, N. G. Vega, and M. Gams,
‘Classifying Posture Based on Location of Radio Tags’, Ambient
Intelligence Perspectives II, pp. 85 – 92, (2009).

