
Real-time Alarm Model Adaptation Based on User Feedback 
 

Violeta Mirchevska1, Boštjan Kaluža2, Mitja Luštrek2, and Matjaž Gams2 
 

Abstract. This paper presents real-time adaptation of alarm 
detection models in a remote health monitoring system based on 
user feedback. Real-time adaptation enables systems to fine-tune to 
the needs and preferences of the user and changes in the 
environment. This way, the system performance is improved in 
terms of technical accuracy and subjective user wishes. Two types 
of alarm detection models were used: (1) models in the form of 
rules created by domain expert and (2) models induced by machine 
learning. The problem of adaptation for the rule-based models is 
defined as Markov decision process. Machine-learning models are 
adapted by rebuilding the model every time new data is obtained. 
We tested the adaptation capabilities of the two types of alarm 
detection models based on their accuracy and time-to-alarm (needed 
length of possibly critical activity, such as lying on the ground, 
which causes the models to raise an alarm). Both types of models 
achieved 90% alarm detection accuracy. The rule-based models 
decreased time-to-alarm when user-triggered alarms were raised 
and increased it when the user indicated false alarm. We did not 
observe this process for the machine-learning models. 1 

1 INTRODUCTION 
Remote health monitoring is gaining attention in developed 
countries. One of its main goals is to allow users, particularly the 
elderly, to continue living at home instead of being admitted to a 
nursing home or hospital. On the one hand, this increases 
independence and quality of life, and on the other hand, it 
significantly reduces elderly-support costs. Many research projects 
address the problem of design and development of systems that can 
intelligently, continuously and pervasively monitor the health 
conditions of its user. 

In order for remote health monitoring to achieve its goals, it 
must be highly reliable, which means that it must detect all major 
health problems without raising too many false alarms. Given the 
diversity of users, it is difficult to develop a system that will suit 
each user in each possible circumstance from the start. Therefore, 
real-time system adaptation based on user feedback is an important 
topic of research. 

We have studied the problem of real-time system adaptation 
based on user feedback in Confidence [1], ubiquitous care system to 
support independent living of the elderly. This system is able to 
detect emergency situations such as falls, which result in the user 
lying/sitting at an inappropriate place (e.g. on the ground). The user 
of the system may provide feedback concerning the detection of 
such situations through portable device. Emergency-situation 
detection is performed by rule-based alarm detection agents 
incorporating domain knowledge and machine-learning alarm 
detection agents. In this paper we present and compare the 
adaptation capabilities of the both agent types to user feedback. 
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The paper is organized as follows: Section 2 presents related 
health monitoring systems and adaptation capabilities in the 
intrusion detection domain. In Section 3 we present Confidence. 
The alarm detection system, which constitutes a module in the 
Confidence system, is presented in detail. Section 4 describes the 
procedure for adapting the rule-based and machine-learning alarm 
detection agents. Section 5 presents the experiments for evaluating 
the adaptation of these agents as well as achieved results. Section 6 
concludes the paper and states open problems for future work.  

2 RELATED WORK 
Remote health monitoring systems mainly focus on fall detection in 
domestic environment. Several systems were introduced able to 
detect falls and trigger an alarm. Zang et al. [2], for example, 
designed a SVM-based fall detector using a waist-worn 
accelerometer. Similar functionalities were presented by Kangas et 
al. [3] and also by Bourke et al. [4] using gyroscope, Fu et al. [5] 
using video, and Lustrek and Kaluza [6] using a localization 
system. There are also commercially available products, for 
example, by AlertOne [7] and Zenio [8]. Cesta et al. [9] proposed 
an agent-based approach for detection of inconsistencies in the 
execution of daily activities and reacting to exogenous events. All 
these systems constructed a model from learning data that remained 
unchanged after deployment at a user, meaning that the model was 
not able to adapt to the user and the environment. 

On the other hand, there were several successful applications of 
adaptive incremental learning in intrusion detection. Pietraszek [10] 
introduced an approach for reducing false alarms by having a 
human analyst review the alarms and mark them as true or false, 
after which a new model was built by machine learning. NIDES 
system [11] generates user profiles that are constantly aged, 
meaning that new behavior is compared to the most recently 
observed one. Cannady [12] demonstrated the use of reinforcement 
learning method for adaptation according to user feedback, while 
Hossain and Bridges [13] proposed a fuzzy association rule system 
for adaptive anomaly detection. 

We were unable to find any paper related to adaptive learning in 
remote care which was partly motivation for our work. Adaptation 
seems a necessity if one wants to build a truly user-friendly system. 
We propose methodology for adaptation of both machine-learning-
based and rule-based systems. The latter is particularly relevant in 
the field of remote health monitoring, since a large number of 
remote health monitoring systems found in literature are based on 
expert knowledge. 

3 ALARM DETECTION IN 
CONFIDENCE 

We have designed the Confidence system as a multi-agent system 
since agents are flexible, adaptive and robust. Figure 1 presents the 
architecture of Confidence. The user is tracked using sensor agents 
part of a localization system. The raw data is filtered by filtering 
agents and the posture of the user is recognized using posture 



recognition agents. History of user posture and movement is used 
for alarm detection by alarm detection agents. When alarming 
situation is detected, it is reported to the user by communication 
agents either over a portable device that is part of the system or by a 
computer screen. In this paper we study real-time adaptation of 
alarm detection agents based on user feedback. Unusual movement 
such as limping is also detected in Confidence by tracking a variety 
of statistics (e.g. walking signature) by statistics agents. In this 
paper we will not present the statistics agents since they are 
independent of the alarm detection agents. 

 

 
Figure 1. Architecture of Confidence. 
 

For localization, we selected the commercially available 
Ubisense system [14], which can determine positions of a set of 
wearable tags using radio technology. Based on studies of posture 
recognition accuracy that can be achieved with different tag number 
and placement configurations [15], we placed wearable tags on the 
following parts of user’s body: chest, belt (optional), left and right 
ankle. In a typical open-environment, the localization accuracy of 
Ubisense is about 15 cm, but in practice it may drop to 200 cm or 
more. What is more, sensor data is not necessarily available at each 
moment in time. Therefore, filtering agents were developed [16] in 
order to tackle the problems with the Ubisense system. 

User’s posture is classified as one of the following 5 postures: 
standing, sitting, lying, on all fours and intermediate states (falling, 
going down and standing up). Posture recognition was performed 
using rule-based and machine-learning agent, whose predicted 
posture is combined using merge agent in order to obtain final 
posture classification.  

The rule-based posture recognition agent is used to reduce the 
gap between real-world and data captured in training phase. It 
consists of a set of rules for posture classification. Attributes that 
need to be included in a rule condition were determined by using 
knowledge extracted from decision trees and human know-how 
[17]. Two approaches for determination of limits for each condition 
in the rules were considered: (1) genetic algorithms and (2) 
approach which computes information gain for each attribute 
included in a particular rule in order to determine the most suitable 
rule condition limit. In this paper we use the information gain 
approach in order to determine the condition limits of the posture 
recognition expert knowledge agent. 

The machine-learning posture recognition agent contains posture 
recognition knowledge captured in training data. It takes 10 
successive sets of attributes computed for successive time frames as 
an attribute vector with the prevailing posture in those frames as the 

class value. We have tested a variety of classifiers, including C4.5, 
Naïve Bayes, SVM, kNN, Bagging and AdaBoost [6]. Based on 
these studies, we selected machine-learning posture recognition 
agent to use the random forest ensemble classifier since it offers the 
highest classification accuracy. 

The posture-recognition-merge agent takes into account the 
ability of the rule-based and machine-learning posture recognition 
agent to correctly classify each posture of interest. This ability can 
be easily determined by exploiting classification’s confusion matrix 
from each of the two agents. In particular, for each posture of 
interest we compute its probability to be the true posture using the 
predictions by both the rule-based and machine-learning agent 
taking into account their ability to correctly classify each posture of 
interest. The posture with the highest probability is considered as 
true. This way the strengths of each agent are exploited when 
determining true user posture. 
 

Table 1. Confusion matrix of joint classification using random forest 
and expert rules. 

 Standing sitting lying 
intermediate 
state 

on all 
fours 

Standing 72 9 0 19 0

sitting 7 83 0 3 7

lying 2 21 63 8 6
intermediate 
state 36 19 6 37 2

on all fours 4 11 9 21 55
 
The confusion matrix of the posture-recognition-merge agent is 

shown in Table 1. The left column shows the label of the correct 
posture, and the top row shows the assigned label. Except 
intermediate state and on all fours, all basic postures are detected 
reliably. Most errors appear on transitions from one state to another. 
These errors do not influence system performance since they 
introduce just time shift.  

Alarm detection agents raise alarms when falls and sudden 
health problems of the user are detected. These are situations which 
are reflected by person lying/sitting at an inappropriate place (e.g. 
on the ground) for a prolonged period of time. Similarly to activity 
recognition, we considered a rule based and machine-learning based 
approach for alarm detection. 

Rule-based alarm detection agents contain rules created by 
domain experts concerning situations in which an alarm should be 
raised. We considered four types of alarm situation (1) falling 
detected and person lying/sitting immovable at inappropriate place, 
(2) falling detected and person lying/sitting movable at 
inappropriate place, (3) person lying/sitting immovable at 
inappropriate place and (4) person lying/sitting movable at 
inappropriate place. Each rule-based alarm detection agent captures 
one type of alarm situation which it gives as output. 

Machine-learning alarm detection agents contain knowledge 
about alarm situations that are induced from available data 
concerning such situations. The alarm detection module in 
Confidence contains two such agents, one containing SVM 
classifier, the other C4.5 classifier. They obtain percentage of all 
observed user’s postures and movement in periods of 5 s, 10 s and 
15 s as input. These intervals are suitable for our experiments 
because we considered a reasonable period of lying/sitting at 
inappropriate place after which an alarm should be raised 
somewhere between 5 and 15 s. In real life a longer period might 



make more sense, in which case the intervals used in attributes 
should be lengthened. The output of the machine-learning alarm 
detection agents, unlike the rule-based agents, is only the presence 
or absence of emergency situation, without any information about 
its type. 

When an alarm is raised, the communication agents notify the 
user either over a portable device that is a part of the system or by a 
computer screen. The user may (1) confirm the alarm (explicitly by 
pressing a button or implicitly by doing nothing), meaning it is true 
alarm and the user needs help, (2) inhibit the alarm, which means 
that this is a false alarm and (3) suspend alarm, meaning that the 
situation was actually a true alarm, but the user can help 
himself/herself. Additionally, the user may trigger alarm by 
himself/herself.   

4 ADAPTIVE ALARM MODEL 
Users behave differently and what might be alarm-worthy for one is 
normal for another. To give two extreme examples, one user might 
never voluntarily lie or sit on the ground because of a physical 
disability which prevents him/her from getting up again, whereas 
another might exercise regularly on the living room carpet. Our 
goal is to automatically adapt the alarm model to such differences, 
fine-tuning it to the needs and preferences of a particular user. This 
section presents the adaptation mechanisms of the rule-based and 
machine–learning alarm detection agents. 

4.1 Rules adaptation 
The problem of adapting the rule-based agents, whose agent 
function is represented in the form of a rule, is defined as a Markov 
decision process (MDP). Each rule can be thought of as a point in 
N-dimensional space, where N is the number of adjustable 
parameters in the rule. For example, the space of the rule »IF 
person lying on the ground P% in T seconds THEN alarm« is two 
dimensional, with one dimension representing the set of possible 
percentage (P) values and the other representing possible time 
interval (T) values (Figure 2). The goal state of the rule-based 
agents is dynamically changing as user's needs change. This adds 
uncertainty to the reward received for each agent action. Available 
agent actions in each state are all combinations of parameter value 
changes. Therefore, agent actions, unlike in problems usually 
modeled with MDP, are deterministic. The rule-based agents must 
determine optimal parameter values under uncertainty about their 
goal state. 

The initial state of each rule-based agent is set to values 
predefined by domain expert. Returning to our example agent 
(Figure 2), using domain knowledge its agent function is initialized 
to »IF person lying on the ground 90% in 8 seconds THEN alarm«. 

The reward matrix is initialized to zero for all states (Figure 2a). 
Without any feedback from the user, we do not have any 
information whether there exists a state which better suits user's 
needs. The agent does not change its state as long as there is no 
state with better utility than the utility of the current state. For 
example, because all states have zero utility at the beginning, the 
agent does not change its state, i.e. rule parameters. When an alarm 
is raised and the user responds with false alarm, the reward of the 
current state and all states that are dominated by it is reduced by 
penalty amount pa, in our case -2. Then the utility of being in the 
current state is reassessed. When the reward matrix is updated after 
the first false alarm (Figure 2b), it is easy to see that the current 
parameter values are no longer optimal. The agent chooses 
randomly one of the states with best possible utility. In the example 
in this figure, after the first false alarm the agent function is 
changed to »IF person lying on the ground 100% in 9 seconds 
THEN alarm«. When the user triggers alarm by himself/herself, the 
reward of all states which are dominated by the current state is 
incremented by reward amount ra, in our case 1 (Figure 2c). Again, 
the utility of being in the current state is reassessed. After the user 
triggered alarm, the agent function of the example agent is changed 
to »IF person lying on the ground 100% in 8 seconds THEN 
alarm«. Notice how the initial state is avoided because of the 
negative reward received during the first false alarm. This way the 
rule-based agents autonomously adapt their parameter values to 
achieve optimal utility in an environment with non-deterministic 
goal state. 

4.2 Machine learning adaptation 
The agent function of the machine learning agents is adapted by re-
inducing the alarm detection classifiers every time new alarm 
situation examples are obtained. User triggered alarms and false 
alarms provide new true or false alarm examples. In the case of a 
user triggered alarm, the instance at the point when the alarm is 
triggered by the user and all following instances that dominate that 
instance with respect to the amount of person lying at an 
inappropriate place are added as true alarm examples. In the case of 
a false alarm, all the instances that were classified as true alarms are 
added as false alarm examples to the dataset. In order to escape 
classifier bias in case of unbalanced dataset, after each addition, the 
weight of the database instances is updated in order to bring the 
ratio of true alarm to false alarm to neutral examples (includes 
standing, sitting and lying on the bed) to 40 to 30 to 30. A new 
machine learning classifier for alarm detection is built on this 
dataset 
. 

Figure 2 Rule-based agent adaptation 



5 EXPERIMENTS 
To design and test performance of Confidence a room resembling a 
studio apartment equipped with a bed, few chairs and tables was set 
up. The apartment was divided into five regions: kitchen, living 
room, toilet, sleeping area (bed) and corridor. 

5.1 Data 
In order to test the adaptation capabilities of the rule-based and 
machine-learning alarm detection agents we created a set of true 
and false alarm scenarios. True alarm scenarios include (1) user 
falling quickly and then lying on the ground moving for 15 s, (2) 
user falling quickly and then lying immovable for 15 s, (3) user 
falling slowly and then lying moving for 15 s and (4) user falling 
slowly and than lying immovable for 15 s. The cases (1) and (2) 
represent tripping; (2) results in an injury that prevents movement. 
The cases (3) and (4) represent falling due to dizziness or fainting. 
In all true alarm scenarios the user raised alarm after lying on the 
ground for 7 seconds. Three types of false alarm scenarios were 
also recorded: (1) user on all fours on the ground for 10 s, (2) user 
on all fours for 5 s, then lying on the ground for 5 s and (3) user 
lying on the ground for 10 s. The user is moving in all three cases. 
These scenarios may represent the user searching for things under 
the table or bed. They differ from the true alarm scenarios by the 
length the user stays on the ground and in some cases the amount of 
movement.  
Each true and false alarm scenario was recorded five times for the 
purpose of training. Additionally, all scenarios were recorded five 
times for testing. 

5.2 Results 
We tested the adaptation capabilities of the rule-based and machine-
learning alarm detection agents based on two measures: alarm 
detection accuracy and time-to-alarm. Each test started with agents 
that are not able to recognize any true alarm situation in the test 
sequences. The training sequences were provided to the agents one 
by one. After each new training sequence, the agents were adapted 
and their alarm detection accuracy and time-to-alarm was tested on 
each of the five test sequences. As previously stated, in all true 
alarm scenarios, the user triggered alarm was raised after 7 seconds. 
Designing true alarm scenarios this way, we intended to force the 
classifiers to reduce their time-to-alarm to 7 seconds or less. 
However, if the agents fire alarm in the true alarm scenarios within 
7 seconds, they will also fire alarms in the false alarm scenarios 
since they last for 10 seconds. Designing the false alarm situations 
this way, we intended to force the classifiers to require longer 
period of person lying on the ground (more than 10 seconds) before 
they raise an alarm. Obtaining information how the alarm detection 
accuracy of the agents changes over time provides information how 
good the agents can distinguish true from false alarm scenarios. 
Measuring the time-to-alarm, on the other hand, provides 
information whether the agents separate true and false alarm 
sequences by the period of user lying on the ground, which we 
consider most relevant for this task. 

In order to test how agent’s alarm detection accuracy changes 
after each adaptation step, three test runs were executed. In the first, 
all true alarm scenarios were presented to the alarm detection agents 
first, followed by all false alarm scenarios. In the remaining two test 
runs, the true and false alarm training scenarios were given 
randomly to the agents. By adapting the agents by various orders of 

training scenarios, we gain information not only how their alarm 
detection accuracy improves, but also how much it depends on 
particular order of training scenarios.  
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Figure 3 Average rule-based and machine learning agent alarm 

detection capabilities. %TA presents the percentage of correctly detected 
true alarms. %FA presents the percentage of alarms raised for false 
alarm test scenario examples. ACCURACY presents the overall achieved 
accuracy. 
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Figure 4 Average rule-based and machine-learning agent time-to-

alarm. TA RULES and TA ML present average time-to-alarm for the true 
alarm test scenario examples for the rule-based and machine learning 
agent respectively. FA RULES and FA ML present their time-to-alarm 
for the false alarm test scenario examples. 

Figure 3 presents how alarm detection accuracy of the rule-
based and machine-learning based agents changes after each 
adaptation step. The %TA line presents the percentage of correctly 
raised true alarms in the test alarm sequences. The %FA line 
presents the percentage of incorrectly raised false alarms in the test 
alarm sequences. The ACCURACY line presents the overall alarm 
detection accuracy of the alarm detection agents. From this graph 
we can see that both rule-based and machine-learning alarm 



detection agents can adapt to reliably detect the alarms presented in 
the test sequences, reaching an accuracy of 90%.  

We tested how agent’s time-to-alarm changes by presenting all 
true alarm scenarios to the agents first, followed by all false alarm 
scenarios. Our intention was to: (1) teach the agents to raise alarm 
when the user has lied on the ground for a period of 7 seconds or 
less after all true alarm scenarios are presented and (2) increase 
time-to-alarm to 10 seconds or more when the agents are presented 
all false alarm examples. 

Figure 4 presents how agent’s time-to-alarm changes in such test 
run. The TA RULES line presents average time-to-alarm for the true 
alarm examples in the test sequences for the rule-based alarm 
detection agent, whereas the FA RULES line presents its time-to-
alarm for the false alarm examples. Time-to-alarm for the true and 
false alarm examples of the machine-learning alarm detection agent 
is presented with the lines TA ML and FA ML, respectively. Rule-
based agent’s time-to-alarm follows our expectations. It falls to 
around 4 seconds after the rules are presented with all true alarm 
training scenarios, then raises to 8 seconds after the classifier 
receives the false alarm ones. The machine-learning agent, on the 
other hand, does not follow our expectations. Its time-to-alarm 
stayed fairly constant when the true alarm training scenarios were 
presented to the agents, then started to fall when false alarm training 
scenarios were presented to it. The time-to-alarm fell to 4 seconds 
in the end. This means that machine-learning agents learned to 
separate true from false alarm scenarios not according to the length 
of person lying on the ground, but by some other attribute. As 
future work we need to test if the machine-learning agents have 
created alarm detection classifiers that work in the general case and 
whether they are not over-fitted to these particular scenarios. 

6 CONCLUSIONS AND FUTURE WORK 
We presented adaptation of rule-based and machine-learning alarm 
detection agents based on received user feedback in Confidence, 
ubiquitous care system to support independent living. Markov 
decision process formalism was used for adapting the rule-based 
agents, whereas machine learning was adapted by re-inducing the 
alarm detection classifiers every time new data is obtained.  

Experimental results show that both agents are able to adapt 
their agent function according to provided user feedback. On 
average they both achieved alarm detection accuracy of 90% on the 
performed test runs. The rule-based agent followed our expectations 
with respect to the length of user lying on the ground (which we 
considered as the most relevant for this task) needed in order to fire 
alarm. User triggered alarms influenced their time-to-alarm to be 
reduced, where as false alarms influenced their time-to-alarm to be 
enlarged. On the other hand, machine-learning alarm detection 
agents did not follow our expectations. True alarms did not 
influence them by reducing their time-to-alarm. What is more, time-
to-alarm was reduced when these agents were presented with false 
alarm training sequences. This means that the machine-learning 
agents found attribute other than the period of user lying on the 
ground for separating true from false alarm examples. 

As future work we need to test whether the machine-learning 
alarm detection agents designed in this way work well in the 
general case and are not over-fitted to the particular scenarios used 
in this test. We also need to develop more intelligent way of 
choosing best rule-based agent state when the agent faces a 
situation with more than one state with the same highest utility. 
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