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Abstract 

This paper presents a rule engine for classifying human 
posture according to information about the location of 
body parts. The rule engine was developed by enriching 
decision trees with expert knowledge. Results show 5 
percentage points improvement in accuracy compared 
to support vector machines and a significant 11 
percentage points compared to decision trees. The 
incorporation of expert knowledge overcomes the 
problem of classifier over-fitting observed with 
classifiers induced with machine learning. Better 
robustness of the posture classification rule engine is 
expected in real-life tests in comparison to classifiers 
induced with machine learning. 
 

1 Introduction 

The goal of the European FP7 project CONFIDENCE 
– Ubiquitous Care System to Support Independent 
Living [1] is to develop a system that will monitor the 
health conditions of the elderly in real time [2] [3]. The 
reasoning of the system is based on the positions of the 
user’s body parts. Positions are measured solely with 
the use of radio sensors. The key advantage of the 
system is that it guaranties no intrusion in the privacy 
of the user. 
 In order to monitor the health conditions of the 
elderly, the system needs to be able to make 
conclusions about the general state of the person and 
changes in his/her behavior and detect abnormal 
situations that may be caused by health problems. 
Accurate classification of the posture of the human is 
essential in order for these higher level conclusions to 
be valid.  
 Due to the wide variety of body configurations, it is 
difficult to record all possible situations and to obtain 
representative training dataset for posture classification. 
If the training dataset is not a representation of the 
observed problem domain, machine learning models 
may over-fit, because with machine learning techniques 
statistically relevant patterns in the training data are 
extracted. In order to overcome over-fitting, we 
considered enriching machine learning with expert 
knowledge. Since humans are good at imagining body 
structures and postures not represented in the training 
data, application of expert knowledge should improve 
the accuracy and robustness of the classifier. 

In this paper we present a rule engine for 
classifying human posture which combines machine 
learning and expert knowledge. More precisely, we 
present its structure, the methodology according to 
which it was developed and the results achieved. 
Detailed description of posture classification with the 
use of machine learning techniques can be found in [4] 
[5] [6] [7]. 

The paper is organized as follows. Section 2 
presents the architecture of the rule engine and the 
procedure by which rules were extracted. In Section 3 
we present evaluation of the rule engine and compare it 
with other machine learning techniques. Section 4 
concludes the paper with conclusions and open issues 
for future work. 
 

2 Posture classification rule engine 

The posture classification rule engine can recognize six 
postures - standing, sitting, lying, falling, moving 
downwards (normally) and moving upwards.  

The classification is done based on the position of 
the neck and the ankles of the user. More precisely, only 
the Z-coordinate of the neck and ankles is considered. 
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Figure 1: Architecture of the posture classification rule engine 



 
The X- and Y- coordinates are not relevant, because 
they refer to the place in the room where the user is. 
Additionally, the neck-ankle distance in Z-direction and 
its projection on the XY-plane is used. These distances 
are most important for distinguishing between lying, 
sitting and standing. Finally, the velocity of the neck is 
considered. Being one of the topmost body parts, the 
velocity of the neck is highest during falls, moving 
downwards and upwards, making it suitable for 
distinguishing them. 

The rule engine (Figure 1) is composed of three 
types of rules – strict posture rules, weak posture rules 
and default rule. 

The strict posture rules contain precise definitions of 
the body configuration in each of the postures of 
interest. They have been created by enriching rules 
obtained from decision tree models with expert 
knowledge (Section 3). Each instance is first processed 
by the strict posture rules. If it is covered by set of strict 
posture rules describing only one posture class, this 
class in assigned to it. Conflicts when a particular 
instance is covered by rules of more than one posture 
are resolved as presented in Table 1. Conflicts appear 
between rules for adjacent classes, e.g. standing and 
going down. Since the rules for standing, sitting, lying 
and falling were constructed in a way that only pure 
postures are captured, they are chosen when there is a 
conflict with a rule for moving downwards/upwards. 

Table 1: Resolution of conflicts among the posture rules 

Conflict Result 
Standing and moving 
downwards/upwards 

Standing 

Sitting and moving 
downwards/upwards 

Sitting 

Lying and moving 
downwards/upwards 

Lying 

Falling and moving 
downwards/upwards 

Falling 

 
The weak posture rules specify the most probable 

class according to the user’s neck-ankle distance. The 
weak posture rules were created by using expert 
knowledge. Each instance which is not covered by any 
of the strict posture rules is processed by the weak 
posture rules. 

Finally, the default rule is used to assign a class to 
an instance that is not covered by both the strict and the 
weak posture rules. Since the current posture of a person 
is highly correlated with the posture he/she had in the 
previous time interval, the default rule assigns the class 
of the previous time interval to the instance in the 
current time interval. 
 

2.1 Strict rule extraction procedure 

The strict rules for classifying postures were extracted 
by a procedure similar to the one presented in [8] in the 
following way: 

1. Create one-against-all dataset for a particular 
posture 

2. Create decision trees 
3. Extract rules with high precision and possibly 

high recall 
4. Modify the extracted rules by expert 

knowledge. 
 
 One-against-all datasets were created for each 
posture. The idea is to concentrate on differences 
between a particular posture and all other postures. 
Then, decision trees were generated with the purpose of 
identifying the attributes that best separate the examples 
of this particular posture from all other postures.  

The decision tree induction technique presents only 
the best hypothesis for the problem at hand because it 
performs general-to-specific hill-climbing search 
through the space of possible hypotheses. Because of 
this, relevant information may be hidden behind the best 
hypothesis. We constructed several decision trees using 
different attribute sets in order to overcome this 
problem. A decision tree was first built with all 
attributes. Then, the procedure was repeated by 
removing the attribute at the root node or attribute near 
the root node with the aim of finding relevant hidden 
hypotheses, until the classification accuracy of the 
resultant tree significantly dropped. 

From the decision trees, rules with high precision 
and, possibly, high recall were extracted and modified 
by expert knowledge. The conditions of the extracted 
rules were made stricter, especially for the classes 
standing, sitting, lying and falling, improving their 
precision at the expense of recall. The aim was to 
correctly classifying pure postures, neglecting the 
borderline cases. 
 The rules were added to the set of rules for the 
particular class. 
 

3 Experiments 

The performance of the rule engine was tested and 
compared with four machine learning techniques – 
support vector machines, random forest, bagging and 
decision trees. 

3.1 Data 

Two sets of examples of human behavior were used for 
evaluating the performance of the posture classifiers. 
The first one, containing 135 sequences of behavior of 
three persons, includes examples of standing/walking, 
lying down, sitting down, and falling. The second set, 
which contains 775 sequences of behavior of five 
people, includes the basic behaviors recorded in the first 
set, examples of several kinds of falls and, based on 
discussions with physicians, examples of walking and 
lying of people with different health problems, such as 
Parkinson’s disease, hemiplegia etc.  
 The recordings of human behavior used in these 
experiments were made with the use of the Smart 



infrared motion capture system [9], because the 
CONFIDENCE hardware is not available yet. In these 
recordings, the location of twelve tags was measured, 
one on each shoulder, hip, knee, ankle, elbow and wrist. 
The location of a virtual tag on the neck was computed 
as the middle point between the shoulders due to 
difficulties in attaching a tag there and tracking it during 
forward falls. The coordinates of the tags were sampled 
at a frequency of 60 Hz. This data was processed in 
order to bring it in a form analogous to the data we 
anticipate to obtain with the CONFIDENCE hardware. 
Because the CONFIDENCE hardware will use the ultra- 
wideband technology, the same technology on which 
the Ubisense system [10] is based, we expect its 
properties to correspond to the ones of Ubisense. For 
this reason, we applied two transformations on the 
Smart data in order to make it analogous to the data of 
Ubisense. First, the sampling frequency was reduced to 
10 Hz. Then, Gaussian noise with standard deviation of 
4.36 cm horizontally and 5.44 cm vertically was added 
to the data. The values of the standard deviation of the 
noise in the Ubisense system were obtained 
experimentally. 

Table 2: Distribution of classes per phase 

Posture 
First 
phase 

Second 
phase 

Standing 1544 39070 
Sitting 733 5368 
Lying 1773 5337 
Falling 689 2229 
Moving downwards 1696 5044 
Moving upwards 0 421 
On all fours 0 2183 

 
The experiments presented in this paper use data 

only about the location of the neck and the ankles. The 
posture classification rule engine uses this data as input 
(Section 2) and for the purpose of comparison the 
machine learning models were induced on the same 
data. Each instance, representing the user’s body 
configuration at given moment, contains the following 
attributes:  

• Z-coordinate of the neck and ankles 
• Absolute neck-ankle distance 
• Neck-ankle distance in Z-direction and its 

projection on the XY-plane 
• Absolute velocity and velocity in Z-direction 

of the neck and the ankles. 
The attributes were computed as averages over half 

a second overlapping sequences of behavior. The 
distribution of the classes of interest is given in Table 2. 

3.2 Results 

The performance of the rule engine was compared with 
the performance of four machine learning techniques –
support vector machines, random forest, bagging and 
decision trees (Table 3). The machine learning 
techniques were evaluated with the use of Weka [11]. 
The support vector machines, random forest and 
bagging classifier were induced with the default Weka 
setting. The decision tree classifier was induced with the 
minimal number of instances per leaf set to 2% of the 
training dataset. The performance of the machine 
learning techniques was evaluated with 10-fold cross 
validation on the data from both phases and with three 
separate training and test set scenarios. In the first and 
second separate training and test set scenario, the 
classifier was induced on data from one phase of 
recordings and tested on the other. In the third scenario, 
the classifier was trained on recordings of two persons 
from both phases and tested on recordings of a third 
person. The performance of the rule engine is presented 
with its accuracy on the test dataset for each separate 
training and test set scenario. 

Examination of the classification accuracy of the 
machine learning techniques in the different evaluation 
scenarios suggests a certain degree of over-fitting. The 
accuracy of these classifiers is highest when evaluated 
with 10-fold cross validation. The random selection of 
training and test dataset in 10-fold cross validation leads 
data about the behavior of concrete person in a concrete 
phase to be present in both the training and test dataset. 
Therefore, over-fitting is most likely to be present in 
this evaluation scenario. The classification accuracy 
falls when the classifiers are induced on data about two 
persons and tested on data of a third person. In this case, 
the training dataset does not contain data about the 
behavior of the person on which the model is tested. 
However, since all persons were instructed to behave in 
the same way in both phases of recordings and they 
were able to observe and copy each other, the models 
induced in this evaluation scenario are likely over-fitted 
to this particular behavior of the persons. The most 
significant drop in accuracy happens when the 
classifiers are induced on one phase of recordings and 
tested on the other. In this case, the training and test 
dataset contain different behavior and there are persons 
for which recordings were only made in the second 
phase. The fall of classification accuracy in this scenario 
confirms that the models induced with machine learning 
get over-fitted to the persons and behavior present in the 
training dataset.  

As seen in Table 3, the classification accuracy of 

Evaluation 

Training dataset Test dataset 
Support vector 

machines 
Random forest Bagging 

Decision 
trees 

Rule engine 

First phase Second phase 84.68% 74.01% 74.76% 79.92% 90.91% 

Second phase First phase 77.96% 79.63% 79.25% 70.78% 81.76% 
Two persons Third person 86.89% 85.99% 86.52% 87.24% 89.42% 
10-fold cross validation  89.51% 95.85% 94.91% 87.66%  

Table 3: Comparison of the classification accuracy among the rule engine and four machine learning techniques 



 
the decision trees techniques in the different 
evaluation scenarios is more than 10 percentage 
points lower than the classification accuracy of the 
rule engine when the classifier is trained on one 
phase of recordings and tested on the other. There 
was no significant difference in accuracy between the 
decision tree and the rule engine when the trees were 
trained on the data of two persons and tested on a 
third. This shows that the incorporation of expert 
knowledge in the knowledge obtained by inducing 
decision trees increased the generality of the posture 
classifier.  
 The accuracy of the other three machine learning 
techniques is also smaller when training is done on 
one phase of recordings and testing on the other. The 
difference is especially significant for the random 
forest and bagging classifier, where the drop in 
accuracy is more than 15% when the classifier is 
induced on the data from the first phase of recordings 
and tested on the data from the second phase. The 
difference in classification accuracy between the 
machine learning techniques and the rule engine is 
not significant when the classifiers are trained on data 
about two persons and tested on a third person. 
Nevertheless, the higher classification accuracy of the 
rule engine still suggests that the incorporation of 
common sense improved the generality of the 
classifier. 
 

4 Conclusion 

This paper presented a rule engine for classifying 
posture which was developed by combining machine 
learning and expert knowledge. In particular, the 
architecture of the rule engine and the procedure for 
rule extraction was described.  
 The approach achieved 5 percentage points 
increase in classification accuracy compared to 
support vector machines with only three tags on 
user’s body. Compared to the decision trees, the 
improvement was a very significant 11 percentage 
points. Combining machine learning technologies 
with expert knowledge proved to be successful at 
least in the experiments performed. We expect that 
the constructed posture classification rule engine will 
be even more robust than the machine learning 
models in real-life circumstances. 
 Having identified the relevant attributes for each 
of the postures of interest, the next step for 
development of the posture classification rule engine 
is to automate the determination of the limits in the 
conditions of the rules. What is more, since they 
depend on the body configuration of the user, the 
automation must encompass adaptation to the user. 
 The procedure for enriching knowledge extracted 
from decision trees with expert knowledge is not 
limited to posture classification. It can be applied to 
any area in which representative training dataset is 
not available or is difficult to obtain.  
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