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Abstract: This paper presents a method for combining domain knowledge and machine learning (CDKML) for 

classifier generation and online adaptation. The method exploits advantages in domain knowledge and machine 

learning as complementary information sources. While machine learning may discover patterns in interest domains 

that are too subtle for humans to detect, domain knowledge may contain information on a domain not present in 

the available domain dataset. CDKML has three steps. First, prior domain knowledge is enriched with relevant 

patterns obtained by machine learning to create an initial classifier. Second, genetic algorithms refine the classifier. 

Third, the classifier is adapted online based on user feedback using the Markov decision process. CDKML was 

applied in fall detection. Tests showed that the classifiers developed by CDKML have better performance than ML 

classifiers generated on a one-sided training dataset. The accuracy of the initial classifier was 10 percentage points 

higher than the best machine learning classifier and the refinement added 3 percentage points. The online 

adaptation improved the accuracy of the refined classifier by additional 15 percentage points. 
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1. INTRODUCTION 

 

The training dataset to which machine learning is applied is often one-sided, not representing all real-life 

cases (Li et al., 2007; Yang & Kecman, 2009). A typical example is medical studies based on laboratory 

samples upon which machine learning methods are applied. There is an important difference between 

laboratory samples that consider a limited number of clear-case scenarios and real life. For a classifier 

induced by machine learning to work in the general case, it must be induced using a sufficiently large and 

representative training dataset. Because such data is not always available, this can be partially countered 

by expert domain knowledge. Expert domain knowledge may be related to examples not present in the 

available domain dataset and thus may improve the generality and robustness of classifiers induced on 

such datasets. This paper addresses the problem of combining domain knowledge (DK) and machine 

learning (ML). It contributes a method for combining DK and ML (CDKML) for classifier generation and 

online adaptation. 

 

We demonstrate our method on a fall detection task. This task is relevant for the elderly and the 

European Union, whose population is rapidly ageing. Predictions made by the Statistical Office of the 

European Communities state that the over-65 population in EU27 expressed as a percentage of the 

working-age population (aged between 15 and 64) will rise from 26% in 2010 to 53% in 2060 (Eurostat, 

2011). This demographic change will make medical and care services scarce, increasing the need to 

motivate and assist the elderly to stay independent as long as possible. Innovative ICT systems can help 
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the elderly live independently for longer and counteract reduced capabilities caused by age. One such 

system, developed as part of a European FP7 project, is the Confidence – Ubiquitous care system to 

support independent living (Confidence, 2011). Confidence aims to develop a system to monitor the 

health conditions of its elderly users in real-time. It detects falls and behaviour changes, including 

limping and physical inactivity. Confidence is based on wearable tags attached to a user reporting x, y 

and z tag coordinates with around 15 cm accuracy. Polls show that, with respect to privacy-violation 

issues, such hardware is more acceptable to users than, for example, video cameras. We used CDKML to 

develop the fall detection classifier in Confidence. 

 

Confidence has three fall detection properties that make it challenging from an ML perspective. First, a 

representative dataset for falls is difficult to obtain because of the variety of fall types (in consultation 

with medical experts, we compiled a list of 18 fall types from over 40 listed in the literature), variations 

depending on the user, as well as ethical issues and injury dangers that prevent collecting large amounts 

of data from healthy persons simulating falls or, even worse, the elderly. Second, developing a classifier 

to suit each user in each possible circumstance from the start is difficult. Confidence detects falls as 

situations in which the user is lying/sitting motionless on the ground for a prolonged period of time. 

However, it is difficult to set a period of time to suit each user. For example, one user might never 

voluntarily lie or sit on the ground because of a physical disability that prevents him/her from getting up 

again, whereas another might exercise regularly on the living room carpet. Therefore, an online classifier 

adaptation is needed. Third, because of noise in the sensor data, misclassifications between similar 

postures occur. For example, sitting on a low chair may be misclassified as sitting on the ground. Such 

misclassifications of the posture directly influence the output of the fall detection model. 

 

Motivation for developing the CDKML method lies in addressing ML shortcomings through DK. Using only 

initial clear-cases of the domain of interest, our method can create classifiers with improved general 

performance than ML classifiers induced on a one-sided dataset. The method also encompasses online 

classifier adaptation using information obtained from user feedback. The feedback is obtained 

occasionally and contains information about false negatives (i.e., the system did not detect the class of 

interest when there was one) or false positives (i.e., the system detected the class of interest when there 

was not one). 

 

The paper is organized as follows. In Section 2, we present related work about combining DK and ML for 

classifier generation. In Section 3, we present the CDKML method for combining DK and ML for classifier 

generation and online adaptation. In Section 4, we present the experiments used to test the proposed 

method and obtained results. Section 5 concludes the paper. 

 

 

2. RELATED WORK 

 

Cognitive psychology research shows that human concept-learning considers both prior DK and interest 

concept examples (Wisniewski & Medin, 1994; Feldman, 1993; Heit, 2000). In principle, one information 

source offsets information missing from another source. DK influences interpreting examples. Before 



3 
 

obtaining a considerable amount of concept examples, humans base their judgements mainly on prior 

DK. Conversely, examples affect DK. As the number of observed items of the interest concept increases, 

judgment relies increasingly on the actual observations and less on prior DK. 

 

ML literature includes examples of concept learning using both prior DK and interest concept examples. 

A comprehensive overview of methods for incorporating prior DK into inductive ML is presented in (Yu, 

2007). Yu categorizes these methods into four groups: (1) methods that use prior DK to prepare training 

examples, (2) methods that use prior DK to initiate the hypothesis or hypothesis space, (3) methods that 

use prior DK to alter the search objective and (4) methods that use prior DK to augment the search. The 

first group of methods incorporates prior DK into the training dataset used for induction by inserting 

virtual examples into the training dataset (Kambar, 2005; Niyogi et al., 1998; Poggio & Vetter, 1992). 

Niyogi et al. (1998) showed that adding virtual examples is mathematically equivalent to incorporating 

the prior DK as a regulariser in function learning in certain restricted domains. In the second group, prior 

DK determines the part of the hypothesis space searched during induction (Zhu & Liu, 2010; Burns & 

Danyluk, 2000; Thrun, 1996). This is achieved by determining which part of the hypothesis space satisfies 

prior DK and using ML to search for a hypothesis in it, or by creating an initial hypothesis from the prior 

DK and using ML to refine it. The third group incorporates the DK into the inductive bias that guides the 

search through the hypothesis space. This is achieved by modifying the goal criterion to satisfy both DK 

and training examples, as in learning with constraints (Sabzekar et al., 2011; Chen et al., 2011; Davidson 

& Ravi, 2005), or by weighting the examples' influence in the training dataset (Brown et al., 2000; Wu & 

Srihari, 2004; Wang et al., 2004). The fourth group produces hypothesis candidates and adjusts the 

hypothesis space using DK during the on-going search (Decoste & Scholkopf, 2002; Pazzani et al., 1991). 

In all cases, incorporating the DK aims to improve the generality of the induced ML model and/or the 

efficiency of the learning process. 
 

The interactive ML field also explores methods for concept learning using both prior DK and interest 

concept examples. Compared to the previously described methods that incorporate DK into the ML 

algorithm, interactive ML is basically an iterative process of classifier generation through human-

computer interaction (Benyon, 2001). Two strategies for model generation using interactive ML can be 

distinguished: (1) iterative improvement of a single model by refining the input information used during 

ML induction (Sun & Hardoon, 2010; Stumpf et al., 2009; Bramer, 2005) and (2) generating multiple 

models to select one or several that are the most relevant from the user's perspective (Vidulin & Gams, 

2011; Osei-Bryson, 2004).  

 

The CDKML method belongs to the group of methods that use prior DK to initiate the hypothesis or 

hypothesis space. The domain expert determines the initial classifier and hypothesis space using DK only 

or using interactive ML. Genetic algorithms then refine the initial classifier using the available training 

dataset. Here, DK is included as a set of constraints on the classifier form (e.g., for a classifier with the 

form of a rule set, relations between rule parameters). Finally, the Markov decision process enables 

online classifier adaptation based on user feedback. DK specifies the mapping from obtained user 

feedback to changes of the state rewards. We are unaware of any work similar to combining the three 

steps. The final step is also novel. 
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3. CDKML METHOD 

 

Figure 1 presents a general CDKML schema – a method for combining DK and ML for classifier generation 

and online adaptation. The schema contains three phases: (1) initialization, (2) refinement and (3) online 

adaptation. In the first phase, the domain expert specifies the hypothesis space and initial classifier. The 

domain expert may apply ML to the available training dataset, generating human-understandable 

classifiers to obtain additional insight in the interest domain (Vidulin & Gams, 2011) and include parts of 

these ML classifiers in the initial classifier. After determining the initial classifier, genetic algorithms 

refine it in the second phase, under expert supervision. The third phase adapts the classifier online using 

feedback information obtained from the user, who may indicate that the output class was incorrect. The 

adaptation is defined as a Markov decision process where user feedback is considered a reward signal 

from the environment. CDKML is not bound to a specific classifier form, but requires a human-

understandable form. In the following subsections, we present each CDKML phase in detail. 
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Figure 1 CDKML – method for combining DK and ML for classifier generation and online adaptation 

 

The CDKML presentation is accompanied by examples from its application in the fall detection domain. 

In this specific domain, we selected the classifiers in the form of a set of disjunctive rules: 

 

IF condition1 AND condition2 AND … AND conditionN THEN class. 

 

We chose this classifier form because it can be constructed manually or with the help of supervised 

learning and modified by genetic algorithms or Markov decision processes. 
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3.1. Initialization 

 

In the first CDKML phase (initialization), a domain expert defines an initial classifier. For example, in the 

fall detection domain, an expert may specify that if an elderly person is lying or sitting on the ground for 

a long period of time, then there is high probability of a fall, as elderly people are unlikely to lie or sit on 

the ground. Figure 2 presents an outline of this phase. 

 

Function Initialization 

 

Input: training examples Ex 
 

Output: initial classifier CLinit 
 

begin 

        CLinit := empty_set_of_rules 

 

        add rules in CLinit from domain knowledge 

 

        // Explore human understandable ML models (e.g. decision tree, rule set) 

        ML_ModelType := {decision tree, set of rules, etc.} 

        for each ML_ModelType 

        do 

                create ML model on Ex using different initial parameters and attribute vectors 

                explore patterns from the induced ML model 

                add relevant rules in CLinit 

        end do 

 

end 

Figure 2 Phase 1 – initialization 

 

As an aid for designing the initial classifier, the expert may also examine human-understandable 

classifiers induced by supervised learning on the available training data. An example is presented in 

(Mirchevska et al., 2009), where several decision trees are iteratively created to explore the space of 

possible classifiers. From these classifiers, the expert may obtain additional insight in the domain, modify 

DK, or add extracted patterns in the initial classifier. 

 

In the fall detection example, the starting rule-based classifier contained the following rule types: 

 

1. IF falling activity within T1fall seconds AND the user was lying/sitting on the ground P1activity% of T1activity 

seconds AND the user was not moving P1moving% of T1moving seconds THEN fall 

2. IF falling activity within T2fall seconds AND the user was lying/sitting on the ground area afterwards 

P2activity% of T2activity seconds THEN fall 
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3. IF the user was lying/sitting on the ground for P3activity% of T3activity seconds AND the user was not 

moving P3moving% of T3moving seconds THEN fall 

4. IF the user was lying/sitting on the ground for P4activity% of T4activity THEN fall 

 

The expert specified these types of important fall patterns. However, specifying exact values for the 

parameters in the rules, for example specifying exact values for the parameters P4activity and T4activity in 

the last rule of the fall detection classifier, presented an issue for the expert, as the values may be 

influenced by system features, such as the noise in the sensor data or the ability of the system to 

correctly detect the lying/sitting posture. While the expert specified some initial values, and some values 

were obtained from the generated classifiers, the expert was not confident in them. 

 

3.2. Refinement 

 

The second CDKML phase (refinement) refines the initial classifier set from the domain expert to 

conform to system-related and general-user characteristics evident from the training dataset. As the rule 

structure in the classifier is fixed, standard rule induction methods are unsuitable for the desired 

training. Genetic algorithms (Eiben & Smith, 2003) thus tune the initial classifier parameters to maximize 

its performance on the training dataset. Figure 3 presents an outline of this phase. 

 

We apply genetic algorithms thus: We use the Pittsburgh approach, where each individual in the 

population represents one possible solution. The individual is a vector containing parameters of all rules 

in the rule-based classifier. For example, if the rule-based classifier contains 8 rules with 4 parameters 

each, the individual is 32 elements long. The elements are real values inside an interval defined by the 

expert. The fitness function for evaluating the quality of each individual is accuracy on the training 

dataset. Fitness values fall within the interval [0, 1]. We thus want to tune the parameters of the rule-

based classifier to the training dataset, hopefully avoiding overfitting, as the domain expert defines the 

structure of the rule-based classifier. We used elitism, meaning that the best individual is always 

transferred to the new population. 

 

Using genetic algorithms allows constraining relations between rules and parameters within a rule.  In 

the presented fall detection classifier, rule strictness decreases from rule type 1 to rule type 4. The first 

rule type requires detecting falling activity and the user to be immovable and lie/sit on the ground to 

detect a fall, whereas the fourth rule type requires only the user to lie/sit on the ground. The duration of 

lying/sitting on the ground needed for the first rule type to detect a fall should be the shortest (the 

combination with other evidence more quickly assures that a fall happened) and should increase toward 

rule type 4.  The relation between the required periods of lying/sitting on the ground in the rules is 

expressed through constraints. Additionally, if the rule requires detecting falling activity to detect a fall, 

the falling activity should be detected before the person lied/sat on the ground. This relation is also 

represented as a constraint. The fitness of individuals representing rule-based classifiers that violate the 

constraints is set to minimal fitness. 
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Function Refinement 

 

Input: initial classifier CLinit; constraints between the rule parameters of the initial  

            classifier Constraints; training examples Ex; parameters of the genetic algorithms  

            POPULATION_SIZE, CROSSOVER_RATE, MUTATION_RATE, STOP_CRITERION,  

            MAX_ITERATIONS 
 

Output: refined classifier CLref 
 

begin 

        //Create individual Ibase representing the initial classifier CLinit using the Pittsburgh  

        //approach 

        Ibase := empty_vector 

        for each rule r in CLinit 

        do 

                put the parameters of rule r in a single vector Vecr 

                append Vecr to Ibase 

        end do 

 

        //Create initial population 

        Pinit := empty_set 

        add Ibase to Pinit 

        for i:=1 to POPULATION_SIZE 

        do 

                Ii := create an individual by random changes of Ibase 

                add Ii to Pinit 

        end do 

 

        //Evolve population 

        Ibest:= Find_fittest_individual(Pinit, Constraints, Ex) //function defined below 

        iter := 0, Pnew:= Pinit 

        while ((accuracy(Ibest) < STOP_CRITERION) AND (iter < MAX_ITERATIONS)) 

        do  

                Pold := Pnew, Pnew := empty_set, iter:= iter+1 

                add Ibest to Pnew  //Use elitism 

                for i:=1 to (POPULATION_SIZE/2) 

                do 

                        select two parents from Pold by tournament selection 

                        crossover parents with probability CROSSOVER_RATE 

                        mutate individuals obtained by crossover with probability MUTATION_RATE 

                        add new individuals to Pnew 

                end do 

                Icur_best := Find_fittest_individual(Pnew, Constraints, Ex) 
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                if(accuracy(Icur_best) > accuracy(Ibest) 

                then 

                        Ibest:= Icur_best 

                end if 

        end do 

 

        CLref := update the values of the parameters in CLinit with the values in Ibest 

 

end 

 

 

 

Function Find_fittest_individual 

 

Input: population P; constraints between the parameters of the initial classifier          

Constraints; training examples Ex 
 

Output: individual Iresult 
 

begin 

        for each I in P do 

                if I violates Constraints 

                        fitness(I) := 0 

                else 

                        fitness(I) := accuracy(I) on Ex 

                end if 

        end for each 

 

        Iresult := individual in P with highest fitness value 

 

end 

Figure 3 Phase 2 – refinement 

 

The genetic algorithm outputs the final general rule-based classifier. The expert should observe various 

classifiers generated with different input parameters and choose the best one in his/her opinion, not 

solely based on accuracy. 
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3.3. Online adaptation 

 

The third CDKML phase (online adaptation) adapts the general rule-based classifier online using feedback 

obtained from a particular user. We explain the adaptation process using the example rule: “IF the user 

was lying on the ground for Pactivity% in Tactivity THEN fall”. Figure 4 presents an outline of this phase. 

 

Function Initialize_MDPs 

 

Input: refined classifier CLref 
 

Output: set of MDPs 
 

begin 

        for each rule r in CLref 

        do 

                create a MDPR(S, A, P, R) for r 

                initialize the set of states S to a n-dimensional state space, where n is the          

                number of parameters in r 

                initialize the set of actions A to all possible parameter value changes 

                initialize the transition probability P(s, a, s’) to be 0 or 1 

                initialize the elements of the reward matrix R to zero 

                initialize current state MDPR.current to the parameter values of r 

        end do 

 

end 
 

 

Function Update_rules 

 

Input: current classifier CLcurrent; user feedback UF   {false positive, false negative} 

accompanied with the triggering example Ex; penalty amount for false positive PaFp; 

penalty amount for false negative PaFn 
 

Output: adapted rule-based classifier CLadpt 
 

begin 

        if UF= false positive  

        then 

                Rfp := set of all rules of CLcurrent that caused a false positive 

 

                for each rule r in Rfp 

                do 

                        in MDPR reduce the utility of the current state and all states that it 

                        dominates by PaFp 

                        Cstates := set of neighbouring states of MDPR.current with highest utility 
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                        MDPR.current := state from Cstates with maximum distance from Ex 

                end do 

        else // UF = false negative 

                find rule r in CLcurrent with minimum distance from Ex 

                in MDPR reduce the utility of the current state and all states that dominate it by  

                PaFn 

                Cstates := set of neighbouring states of MDPR.current with highest utility 

                MDPR.current := state from Cstates with minimum distance from Ex 

        end if 

 

end 

Figure 4 Phase 3 – online adaptation 

 

The problem of adapting a rule in the rule-based classifier is defined as a Markov decision process 

(Russell & Norvig, 2003), MDPR(S, A, P, R). The state space S of each rule is N-dimensional, where N is the 

number of adjustable parameters in the rule. The example rule space is two-dimensional, with one 

dimension representing the set of possible percentage values and the other representing possible time 

interval values (Figure 5). We use discrete parameters. In each step, we can increase or decrease the 

value of each parameter by one unit. The set of actions A are combinations of such parameter value 

changes. Parameter value changes are deterministic; the values in the transition probability matrix P(s, a, 

s’), denoting the probability of transitioning from state s to s’ when executing action a, are 0 or 1. The 

elements of the reward matrix R reflect the obtained user feedback (a reward signal from the 

environment) and may change. Translating user feedback to the appropriate state reward requires 

information of how each parameter influences the output of the rule, as specified by the domain expert. 

The MDP goal state is the combination of rule parameter values that best separates fall events from non-

fall events and depends on the needs of a particular user and may change through time.  

 

Figure 5 presents the process of adapting the example rule. Current rule parameter values 

(MDPR.current) are highlighted with a black rectangle. First of all, the reward matrix R of MDPR is 

initialized to zero for all states and MDPR.current is set to the rule's values in the refined classifier (Figure 

5a). We assume that, after a certain period of time, a false positive feedback is obtained. In this concrete 

rule, a false positive feedback reduces the current state reward and all states dominated by it (states 

with less strict parameter values than the current state’s parameter values) by a penalty amount paFp, 

which in our example is -1, because a false positive indicates that the parameters of the rule must be 

made stricter (Figure 5b). After obtaining such feedback, the set of neighbouring MDPR.current states 

with the highest utility is determined, and the new MDPR.current value is the state with the maximum 

parameter distance from the example that caused the false positive. In the example rule, the distance 

from a state s to an example Ex that triggered user feedback is calculated thus:  
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where T is the set of possible time interval values in the rule, stimeInterval and spercentage represent the rule 

parameter values represented by state s, and Expercentage(t) represents the amount of lying on the ground 

in time interval t in Ex. The new MDPR.current value in Figure 5b has stricter values for both the time and 

percentage parameters. We again assume that, after a certain period of time, a false negative feedback 

is obtained. A false negative feedback reduces the reward of the current state and all states that 

dominate it (states with stricter parameter values than the current state’s parameter values) by a 

penalty amount paFn, which in our example is -1, because a false negative indicates that the parameters 

of the rule are too strict and must be relaxed (Figure 5c). Again, the set of neighbouring MDPR.current 

states with the highest utility is determined, and the new value of MDPR.current is the state with the 

minimum parameter distance from the example that caused the false negative. Figure 5c presents a case 

where the feedback result reduced the strictness of the percentage parameter of MDPR.current, while 

the time parameter remained unchanged. The initial state was avoided because of the negative reward 

received during the first false positive. Rule parameters values are adapted in this way after each 

obtained user feedback. 

 

 
Figure 5 Online classifier adaptation using user feedback 
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User feedback does not affect all rules in the rule-based classifier. If false positive feedback is obtained, 

only the rules that incorrectly classified the concrete example as positive are adapted. If false negative is 

obtained, only the rule that needs the least change to cover the concrete example is adapted. 

 

 

4.  EVALUATION 

 

This section evaluates CDKML on the fall detection task. We used CDKML to build a rule-based classifier 

for fall detection as part of the fall detection module in the Confidence system. We first describe the fall 

detection module in the Confidence system. We then present the data on which the rule-based fall 

detection classifier was evaluated. Finally, we comment on the obtained results.  

 

4.1 Fall detection in Confidence 

 

This section presents the fall detection module of the Confidence system by which CDKML was 

evaluated.  

 

Figure 6 presents a simplified version of the part of the Confidence system related to fall detection. 

Detailed system descriptions can be found in literature (Lustrek et al., 2011; Kaluza et al., 2010) and a 

detailed description of the fall detection module in (Mirchevska et al., 2010). 
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Figure 6 Fall detection in the Confidence system 
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In the Confidence system, the user is equipped with wearable tags whose coordinates are detected by 

radio sensors. The experiments presented in this paper used the real-time localization system (RTLS) 

Ubisense (Ubisense, 2011) for this purpose. In a typical open-environment, the localization accuracy of 

Ubisense is on average about 15 cm but in practice may occasionally drop to 200 cm or more. The raw 

RTLS data is first preprocessed to reduce noise. The preprocessed RTLS data is then given as input to the 

attribute computation module. This module computes characteristics of the user's body, including tag 

velocity and amount of movement, and relations between body parts, including the distance between 

tags. The activity recognition module uses these characteristics to classify the user’s activity into one of 

seven classes: standing, sitting, lying, standing up, going down, falling, or on all fours. Additionally, if the 

system detects lying or sitting, it determines whether these activities are done at appropriate places, 

including a bed for lying or chair for sitting, or at inappropriate places, such as on the ground. The activity 

recognition module's output is given as input to the fall detection module. 

 

The fall detection module uses data concerning user activity history and user movement levels to detect 

falls, using the four rule types shown in Section 3.1, which mostly depend on whether an elderly person 

is lying or sitting at an inappropriate place (e.g., on the ground) for a long period of time, resulting in a 

high probability of a fall. Fall detection does not rely only on detecting the falling activity (high 

acceleration toward the ground), as it always lasts a very short time and is thus difficult to recognize. 

Compared to detecting falling activity, lying and sitting on the ground are easier to detect, which makes 

them convenient for fall detection. However, this approach has certain issues. Activity on all fours may 

be misclassified as lying on the ground. Because lying on the ground indicates a fall, such 

misclassifications may lead to false positives. However, activity on all fours that occurs when a person is 

searching for something on the ground is shorter than the period of lying/sitting on the ground that 

follows a fall and includes more movement. Another common misclassification occurs when a person is 

sitting on a low chair. Sitting on a low chair may be misclassified as sitting on the ground because of the 

noise in the localization system measurements and may cause false positives. However, the amount of 

sitting on the ground recognized when the person is sitting on a low chair should be lower than the 

amount of this activity recognized when the person is sitting on the ground. Therefore, the main 

challenge faced when developing the fall detection classifier is providing reliable and robust fall 

detection even in various complex real life circumstances. 

 

4.2 Data 

 

We designed a test scenario to investigate the generality and robustness of the developed rule-based 

classifiers, as well as their adaptation capabilities. The scenario (Table 1) contains two types of events: 

straightforward and complex events. 

 

Straightforward events represent typical fall and non-fall events. Both fall events (1 and 2) involve high 

acceleration toward the ground during the falling activity. High acceleration during the falling activity is a 

characteristic feature of falls, and setting thresholds for it is a common way of detecting falls. The user 

lands lying (1) or sitting (2) on the ground after the fall. Non-fall events contain activities commonly done 
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at home, including walking, sitting on a chair, or lying in bed (3). Additionally, searching for something on 

the ground on all fours or lying (4) is added as a non-fall event. 

 

Complex events represent atypical falls and non-fall events that may be particularly easily misclassified. 

One type of non-fall event is lying down quickly on a bed or sitting down quickly on a chair (7). This event 

includes high acceleration during the lying/sitting down activity, which is a characteristic feature of falls. 

However, the lying/sitting that follows is on the bed/chair, enabling the rule-based classifier to 

differentiate falls from non-falls. The other non-fall event is sitting on a low chair (8). Five non-fall events 

of sitting on a low chair are present in the scenario. They differ in the position of the user’s body on the 

chair: the user sits straight or leans forward, backward, to the left, or to the right. In complex fall events 

(5 and 6), the user slowly descends to the ground, trying to hold onto nearby furniture. However, after 

the falling activity, the user lands lying/sitting on the ground. 

 
Table 1 Test scenario 

STRAIGHTFORWARD EVENTS COMPLEX EVENTS 

 Description Fall  Description Fall 

1 Tripping, landing flat on the ground Yes 5 

Falling slowly (trying to hold onto 

furniture), landing flat on the 

ground 

Yes 

2 
Falling when trying to stand up, 

landing sitting of the ground 
Yes 6 

Falling slowly when trying to stand 

up (trying to hold onto furniture), 

landing sitting on the ground  

Yes 

3 

Normal everyday behaviour, such as 

walking, sitting on a chair, lying in 

bed 

No 7 
Lying down quickly on the bed / 

Sitting down quickly on the chair 
No 

4 
Searching for something on the 

ground on all fours and lying 
No 8 Sitting on a low chair No 

 

We selected the falls in the test scenario from a list of 18 fall types, compiled in consultation with 

medical personnel. The falls were demonstrated by a physician, who also provided guidance during initial 

recordings.  

 

All events present in the test scenario were recorded in single recordings interspersed with short periods 

of walking. Each recording lasted around 20 minutes. The recordings were made by 5 healthy volunteers 

(3 male and 2 female), 5 times by each. Figure 7 presents the total number of fall and non-fall examples 

in the recorded data. The large number of non-fall events among the complex events is due to the 

examples of sitting on a low chair. We recorded many such examples because the adaptation (in the 

third phase) primarily occurred on them. 
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Figure 7 Total number of fall and non-fall examples in the recorded data 

 

4.3 Results 

 

We evaluated the first and second CDKML phases as follows: The domain expert first specified the initial 

classifier. Genetic algorithms then refined the initial classifier based only on examples of straightforward 

events (to demonstrate laboratory testing). We used leave-one-person-out evaluation, where the 

refined classifier was generated from examples of four people and tested on examples of the fifth, which 

was excluded from the training dataset. This was repeated five times, using a different person for testing 

each time. The accuracy of the refined classifier was tested on both straightforward and complex events 

of the person excluded from the training dataset, thus illustrating real-life performance, which includes 

both clear and complex cases. The test on the straightforward events shows how well the classifier 

performs on events present in the training dataset. The test on the complex events, conversely, tests the 

generality and robustness of the generated classifier, as the complex events are not present in the 

learning process. 

 

We evaluated the online classifier adaptation part, i.e., phase 3 of CDKML, thus: The refined classifier 

was adapted to a concrete user using examples of both straightforward and complex concrete user 

events, because we wanted to test the ability of the method to learn new cases while preserving its 

performance on the cases present in the training dataset in phase 2 of CDKML. Four of the five concrete 

user scenario recordings were randomly presented one by one to the fall detection classifier. The fall 

detection classifier classified each event as fall or non-fall, then feedback was provided and the fall 

detection classifier was adapted, as necessary, before the next event. The final adapted classifier 

evaluation was done on the recording, which was not used in the adaptation phase. 

 

For comparison, fall detection classifiers were induced using ML only. The attributes were the time since 

detecting the last falling activity, the amount of each type of activity in time intervals from 5 to 15 

seconds, and the amount of user movement in this interval range. The attributes are equivalent to the 

parameters of the rules in the rule-based fall detection classifier. We used the following ML algorithms: 

decision trees (J48), rules (JRip), support vector machines (SMO), random forest (RandomForest), and 

Naïve Bayes (NaiveBayes). In brackets, we give the Weka implementation (Hall et al., 2009) for these 

algorithms. 
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We evaluated fall detection classifier performance using two measures: accuracy on a subset of events 

ACCevents and F-measure on a subset of events FMevents. The accuracy on a subset of events ACCevents is 

 

           
                                            

                             
 

 

The F-measure on a subset of events FMevents is 

 

          
                 

                
 

 

where Pevents is the precision and Revents is the recall of the classifier of events E belonging to the set 

events. 

 

Table 2 presents the performance of the induced fall detection classifiers on straightforward events only, 

on complex events only, and on the whole sequence with respect to the accuracy on fall examples ACCf, 

accuracy on non-fall examples ACCnf, overall accuracy ACCall and overall F-measure FMall. Table 3 presents 

the accuracy of the induced classifiers on each event in the test scenario separately ACCe. The measures 

were computed for each person separately, and the values in Tables 2 and 3 represent the averages. 

Additionally, the refinement CDKML phase was performed five times in each test run, because of the 

stochastic nature of the genetic algorithm and the average value was considered. 

 

Table 2 shows that the best overall accuracy among ML classifiers was obtained by support vector 

machines with an ACCall of 53 percentage points. The ML classifiers tended to be biased towards fall 

recognition. They had maximal ACCf; however, they raised many false positives, as indicated by the low 

ACCnf values. The overall accuracy of the initial classifier was 10 percentage points higher than support 

vector machines. It slightly decreased on the ACCf, from 100 to 98 percentage points, but increased 

greatly on the ACCnf from 30 to 46 percentage points. The refinement of the initial classifier based on 

straightforward-event examples contributed to a 3 percentage point increase in accuracy. The ACCnf 

increased to 53 percentage points at the cost of a slight decrease in ACCf, which was 93 percentage 

points. The adapted classifier outperformed the refined classifier in accuracy by 15 percentage points; 

however, as mentioned above, it had an advantage over the previous classifiers, because it obtained 

examples of both straightforward and complex events during learning, and the examples came from the 

concrete user on which the tests were made. The adapted classifier had the highest ACCnf, 85 percentage 

points, whereas its ACCf had 71 percentage points. The tests concerning F-measure, which compensates 

for uneven class distribution, also confirmed the performance improvement.  
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Table 2 Classifier comparison using accuracy on the fall examples (Accf), accuracy on the non-fall examples (ACCnf), overall 
accuracy (ACCall) and overall F-measure (FMall).

1)
 

CLASSIFIER 

ML CDKML 

J48 JRip SMO 
Random 

Forest 

Naïve 

Bayes 

Initial 

classifier 

Refined 

classifier 

Adapted 

classifier 

Training  

dataset 

SF 

events 

SF 

events 

SF 

events 

SF 

events 

SF 

events 

SF 

events 

SF 

events 

All 

events 

Te
st

in
g 

d
at

as
et

 

St
ra

ig
h

tf
o

rw
ar

d
 

ev
en

ts
 o

n
ly

 

ACCf 1.00 1.00 1.00 1.00 1.00 0.98 0.91 0.71 

ACCnf 0.68 0.68 0.68 0.70 0.30 0.82 0.94 0.99 

ACCall 0.84 0.84 0.84 0.85 0.65 0.90 0.92 0.85 

FMall 0.86 0.86 0.86 0.87 0.74 0.91 0.92 0.83 

C
o

m
p

le
x 

ev
en

ts
 

o
n

ly
 

ACCf 1.00 1.00 1.00 1.00 1.00 0.98 0.96 0.72 

ACCnf 0.15 0.12 0.17 0.14 0.04 0.34 0.39 0.81 

ACCall 0.37 0.34 0.38 0.36 0.28 0.50 0.53 0.79 

FMall 0.44 0.43 0.45 0.44 0.41 0.49 0.51 0.63 

A
ll 

ev
en

ts
 

ACCf 1.00 1.00 1.00 1.00 1.00 0.98 0.93 0.71 

ACCnf 0.28 0.26 0.30 0.28 0.10 0.46 0.53 0.85 

ACCall 0.52 0.51 0.53 0.52 0.40 0.63 0.66 0.81 

FMall 0.58 0.57 0.59 0.58 0.53 0.64 0.65 0.71 

 

Table 3 compares the performance of the induced classifiers on each event separately. As mentioned 

above, the ML classifiers detected all fall events; however, they performed poorly on all non-fall events. 

Introducing domain knowledge to the initial classifier significantly improved the ACCe on the normal 

behaviour non-fall event. The refinement improved ACCe on the non-fall event searching on the ground. 

This event was included in the training data for the refinement phase, so increased performance was 

expected; it was achieved at the cost of neglecting certain fall events. The adapted classifier correctly 

recognized almost all falls after which the user lay on the ground, but it had difficulties with falls after 

which the user sat on the ground. Sitting on the ground is a rare event in real life. Sitting on a low chair, 

an event for which ACCe significantly increased, is a much more common real life event. The classifier 

frequently confused these two activities for one another. Not only is the user’s posture similar, but they 

can both last a long time, during which the user is immovable. Some examples of sitting on a low chair 

are in fact undistinguishable from falls because of the noise in the measurements of the sensors used. 

Adapting the fall detection classifier establishes a tradeoff between these events. As sitting on a low 

chair is far more frequent then falls after which a user sits on the ground in a normal sitting position, 

                                                           
1)

 The abbreviation SF stands for straightforward events. 
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misclassifications of this event are more costly. The adapted classifier is thus inclined to reduce 

misclassifications during sitting on a low chair at the cost of not detecting certain falls after which the 

user lands sitting on the ground. In any case, user immovability after falls for additional or prolonged 

time should enable detecting these false negatives; however, because of practical reasons, we could not 

capture this in the recordings.  

 
Table 3 Classifier comparison using the accuracy on each event (ACCe) in the test scenario 

CLASSIFIER/

ACCe 

STRAIGHTFORWARD TESTS  COMPLEX TESTS  

FALLS NON-FALLS FALLS NON-FALLS 

Tripping 

(1) 

Falling 

landing 

sitting 

(2) 

Normal 

behavi-

our (3) 

Searching 

on the 

ground 

(4) 

Falling 

slowly 

(5) 

Falling 

slowly 

landing 

sitting 

(6) 

Lying/ 

Sitting 

down 

quickly 

(7) 

Sitting 

on low 

chair(8) 

-avg. 

value 

M
ac

h
in

e 
Le

ar
n

in
g 

J48 1.00 1.00 0.68 0.68 1.00 1.00 0.64 0.06 

JRip 1.00 1.00 0.76 0.60 1.00 1.00 0.60 0.02 

SMO 1.00 1.00 0.76 0.60 1.00 1.00 0.88 0.03 

Random 

Forest 
1.00 1.00 0.76 0.64 1.00 1.00 0.76 0.02 

Naïve 

Bayes 
1.00 1.00 0.12 0.44 1.00 1.00 0.20 0.01 

Initial 

classifier 
1.00 0.96 0.96 0.68 0.96 1.00 0.96 0.22 

Refined 

classifier 
0.96 0.86 0.96 0.92 0.96 0.96 1.00 0.27 

Adapted 

classifier 
0.96 0.46 1.00 0.98 0.84 0.60 1.00 0.77 

 

 

5. CONCLUSION 

 

We presented the CDKML – method for combining DK and ML for classifier generation and online 

adaptation. The method has three phases: initialization, refinement, and online adaptation. The domain 

expert specifies the initial CDKML classifier in the first phase. The expert may also use hypotheses 

induced by ML as help. In the second phase, genetic algorithms adjust the initial classifier to suit system- 

and general-user characteristics. Tests show that the classifiers developed after the first two phases are 

already more reliable and robust than ML classifiers built from limited examples from the domain of 

interest. In addition to general classifier generation, in the third phase, we presented a method for 



19 
 

online classifier adaptation based on specific user feedback indicating incorrect system output. Tests 

show that, during online adaptation, the classifier is adjusted to correctly recognize events not present in 

the training dataset, making tradeoffs between contradictory examples based on the cost of each 

misclassification. 

 

The method is suitable for domains that have limited obtainable training data and available domain 

knowledge. Online adaptation is essential if specific characteristics of the objects of interest must be 

accommodated; the user must be able to give feedback about misclassifications to allow the online 

adaptation. One such domain is fall detection, on which we evaluated the method. The method is 

suitable for modelling behaviour in general and for studies in the medical or biological fields, for which 

large, representative training datasets are typically difficult to obtain. 

 

ACKOWLEDGEMENTS 

 

This research is partly financed by the European Union, European Social Fund and partly by the European 

Community's Framework Programme FP7/2007–2013 under grant agreement No. 214986. 

 

References 

 

BENYON, D. (2001) The new HCI? navigation of information space, Knowledge-Based Systems, 14(8), 425-

430. 

BRAMER, M. (2005) Inducer: a public domain workbench for data mining, International Journal of 

Systems Science, 36(14), 909-919. 

BROWN, M., GRUNDY, W., LIN, D., CRISTIANINI, N., SUGNET, C., FUREY, T., et al. (2000) Knowledge-based 

analysis of microarray gene expression data by using support vector machines, Proceedings of the 

National Academy of Sciences, 97, 262-267. 

BURNS, B. D., and DANYLUK, A. P. (2000) Feature Selection vs Theory Reformulation: A Study of Genetic 

Refinement of Knowledge-based Neural Networks, Machine Learning - Special issue on multistrategy 

learning, 89-107. 

CHEN, M.-C., CHAO, C.-M., and WU, K.-T. (2011) Pattern filtering and classification for market basket 

analysis with profit-based measures. Expert Systems. 

CONFIDENCE. (2011) Confidence, Retrieved August 23, 2011, from http://www.confidence-eu.org/ 

DAVIDSON, I., and RAVI, S. S. (2005) Hierarchical clustering with constraints: Theory and practice, 

Proceedings of the Nineth European Principles and Practice of KDD (PKDD), 59-70. 

DECOSTE, D., and SCHOLKOPF, B. (2002) Training invariant support vector machines machine learning, 

Machine Learning, 46, 161-190. 

EIBEN, A. E., & SMITH, J. E. (2003) Introduction to Evolutionary Computing, Springer-Verlag. 



20 
 

EUROSTAT. (2011) Eurostat, Retrieved August 23, 2011, from 

http://epp.eurostat.ec.europa.eu/tgm/table.do?tab=table&init=1&language=en&pcode=tsdde511&plugi

n=1 

FELDMAN, R. S. (1993) Understanding Psychology, New York: Mc Graw-Hill. 

HALL, M., FRANK, E., HOLMES, G., PFAHRINGER, B., REUTEMANN, P., and WITTEN, I. H. (2009) The WEKA 

Data Mining Software: An Update, SIGKDD Explorations, 11(1) , 10-18. 

HEIT, E. (2000) Background Knowledge and Models of Categorization, In U. Hahn, & M. Ramscar, 

Similarity and Categorization, 155-178. 

KALUŽA, B., MIRCHEVSKA, V., DOVGAN, E., LUŠTREK, M., and GAMS, M. (2010) An agent-based approach 

to care in independent living, Proceedings of Ambient Intelligence, 177-186. 

KAMBAR, S. (2005) Generating synthetic data by morphing transformation for handwritten numeral 

recognition (with ν-svm) (Master thesis).  

LI, D.-C., YEH, C.-W., TSAI, T.-i., FANG, Y.-H., and HU, S. C. (2007) Acquiring knowledge with limited 

experience, Expert Systems, 24(3), 162-169. 

LUŠTREK, M., GJORESKI, H., KOZINA, S., CVETKOVIĆ, B., MIRCHEVSKA, V., and GAMS, M. (2011) Detecting 

Falls with Location Sensors and Accelerometers, Proceedings of Innovative Applications of Artificial 

intelligence.  

MIRCHEVSKA, V., KALUŽA, B., LUŠTREK, M., and GAMS, M. (2010) Real-Time Alarm Model Adaptation 

Based on User Feedback, Proceedings of Workshop on Ubiquitous Data Mining in ECAI 2010 , 39-43. 

MIRCHEVSKA, V., LUŠTREK, M., VELEZ, I., VEGA, N. G., and GAMS, M. (2009) Classifying Posture Based on 

Location of Radio Tags. Ambient Intelligence Perspectives II - Selected papers from the Second 

International Ambient Intelligence Forum 2009, 85-92. 

NIYOGI, P., GIROSI, F., and POGGIO, T. (1998) Incorporating prior information in machine learning by 

creating virtual examples, Proceedings of the IEEE, 2196-2209. 

OSEI-BRYSON, K.-M. (2004) Evaluation of decision trees: a multi-criteria approach, Computers and 

Operations Research, 1933-1945. 

PAZZANI, M., BRUNK, C., and SILVERSTEIN, G. (1991) A knowledge-intensive approach to learning 

relational concepts, The Eighth International Workshop on Machine Learning, 432-436. 

POGGIO, T., and VETTER, T. (1992) Recognition and structure from one 2D model view: Observations on 

prototypes, object classes and symmetries, Tech. Rep. AIM-1347. Cambridge, MA, USA: Massachusetts 

Institute of Technology. 

RUSSELL, S., & NORVIG, P. (2003) Artificial intelligence A Modern Approach, Prentice Hall. 



21 
 

SABZEKAR, M., YAZDI, H. S., & NAGHIBZADEH, M. (2011) Relaxed Constraints Support Vector Machine, 

Expert Systems. 

STUMPF, S., RAJARAM, V., LI, L., WONG, W.-K., BURNETT, M., DIETTERICH, T., et al. (2009) Interacting 

meaningfully with machine systems: Three experiments, International journal of human-computer 

studies, 67, 639-662. 

SUN, S., and HARDOON, D. R. (2010) Active learning with extremely sparse labeled examples, 

Neurocomputing, 73, 2980-2988. 

THRUN, S. (1996) Explanation-Based Neural Network Learning: A Lifelong Learning Approach. Boston, 

MA: Kluwer Academic Publishers. 

UBISENSE  (2011) Ubisense, Retrieved August 23, 2011, from http://www.ubisense.net/ 

VIDULIN, V., and GAMS, M. (2011) Impact of higher-level knowledge on economic welfare through 

interactive data mining, Aplied artificial intelligence, 25(4), 267-291. 

WANG, L., XUE, P., and CHAN, K. L. (2004) Incorporating prior knowledge into SVM for image retrieval, 

Proceedings of the 17th International Conference on Pattern Recognition, 981-984. 

WISNIEWSKI, E. J., and MEDIN, D. L. (1994) On the Interaction of Theory and Data in Concept Learning, 

Cognitive science, 18(2), 221-281. 

WU, X., and SRIHARI, R. (2004) Incorporating prior knowledge with weighted margin support vector 

machines, Proceedings of the tenth ACM SIGKDD International Conference on Knowledge Discovery and 

Data Mining, 326-333. 

YANG, T., and KECMAN, V. (2009) Adaptive local hyperplane algorithm for learning small medical data 

sets, Expert systems, 26(4), 355-359. 

YU, T. (2007) Incorporating Prior Domain Knowledge into Inductive Machine Learning Its implementation 

in contemporary capital markets (PhD thesis).  

ZHU, Z., and LIU, P. (2010) Feasibility research of text information filtering based on genetic algorithm, 

Scientific Research and Essays, 5(22) , 3405-3410. 

 

 

The authors 

 
Violeta Mirchevska 

Violeta Mirchevska is a researcher at Result d.o.o., cooperating closely with the Department of 

Intelligent Systems at the Jožef Stefan Institute. She completed her Bachelor's in computer science and 

automation at the Faculty of Electrical Engineering and Information Technologies, Ss. Cyril and 



22 
 

Methodius University, Macedonia in 2007 and is currently a PhD candidate at Jožef Stefan International 

Postgraduate School, Slovenia. Her research focuses on modelling agent behaviour based on observing 

low-level action sequences by leveraging both domain knowledge and machine learning. The main 

application areas of her research are user profiling, remote health monitoring and security. 

 

Mitja Luštrek 

Dr. Mitja Luštrek is a researcher at the Jožef Stefan Institute in Slovenia. He is the head of the ambient 

intelligence group at the Department of Intelligent Systems. His main research area is ambient 

intelligence with a focus on human behavior analysis. He has experience with wearable inertial sensors 

and real-time locating systems, and has used artificial intelligence techniques for activity recognition and 

detection of anomalous behaviors. He has also worked in several other areas of artificial intelligence, 

including game playing, heuristic search, and machine learning in bioinformatics. He is an editor of the 

Informatica journal and a member of the executive board of the Slovenian Artificial Intelligence Society. 

 

Matjaž Gams 

Prof. dr. Matjaž Gams (http://dis.ijs.si/Mezi/) is a senior researcher at the Jožef Stefan Institute, 

Ljubljana, Slovenia. His research interests include artificial intelligence, intelligent systems, intelligent 

agents, machine learning, cognitive sciences, and information society. His publication list includes 500 

items, 70 in scientific journals. Matjaž Gams is heading the Department of Intelligent Systems at the 

Jožef Stefan Institute. He is currently president of ACM Slovenia and the cofounder of the Engineering 

Academy, Artificial Intelligence Society, and Cognitive Sciences Society in Slovenia. He is an executive 

contact editor of the journal Informatica and member of the editorial board of several international 

journals. He headed several major applications in Slovenia, including a virtual agent for the Slovenian 

employment agency, an expert system controlling the quality of nearly all national steel production and 

a text-to-speech system in Slovenian, donated to several thousand users. Matjaž Gams also teaches 

several courses in computer sciences at the graduate and postgraduate levels. 

http://dis.ijs.si/Mezi/

