
1

Combining Domain Knowledge and Machine Learning for Robust

Fall Detection

Mirchevska Violeta1, Luštrek Mitja2, Gams Matjaž2

(1) Result d.o.o., Bravničarjeva 11, Ljubljana, Slovenia

(2) Jožef Stefan Institute, Jamova 39, Ljubljana, Slovenia

E-mail: violeta.mircevska@result.si

Abstract: This paper presents a method for combining domain knowledge and machine learning (CDKML) for

classifier generation and online adaptation. The method exploits advantages in domain knowledge and machine

learning as complementary information sources. While machine learning may discover patterns in interest domains

that are too subtle for humans to detect, domain knowledge may contain information on a domain not present in

the available domain dataset. CDKML has three steps. First, prior domain knowledge is enriched with relevant

patterns obtained by machine learning to create an initial classifier. Second, genetic algorithms refine the classifier.

Third, the classifier is adapted online based on user feedback using the Markov decision process. CDKML was

applied in fall detection. Tests showed that the classifiers developed by CDKML have better performance than ML

classifiers generated on a one-sided training dataset. The accuracy of the initial classifier was 10 percentage points

higher than the best machine learning classifier and the refinement added 3 percentage points. The online

adaptation improved the accuracy of the refined classifier by additional 15 percentage points.

Keywords: prior domain knowledge, inductive machine learning, ambient intelligence, fall detection

1. INTRODUCTION

The training dataset to which machine learning is applied is often one-sided, not representing all real-life

cases (Li et al., 2007; Yang & Kecman, 2009). A typical example is medical studies based on laboratory

samples upon which machine learning methods are applied. There is an important difference between

laboratory samples that consider a limited number of clear-case scenarios and real life. For a classifier

induced by machine learning to work in the general case, it must be induced using a sufficiently large and

representative training dataset. Because such data is not always available, this can be partially countered

by expert domain knowledge. Expert domain knowledge may be related to examples not present in the

available domain dataset and thus may improve the generality and robustness of classifiers induced on

such datasets. This paper addresses the problem of combining domain knowledge (DK) and machine

learning (ML). It contributes a method for combining DK and ML (CDKML) for classifier generation and

online adaptation.

We demonstrate our method on a fall detection task. This task is relevant for the elderly and the

European Union, whose population is rapidly ageing. Predictions made by the Statistical Office of the

European Communities state that the over-65 population in EU27 expressed as a percentage of the

working-age population (aged between 15 and 64) will rise from 26% in 2010 to 53% in 2060 (Eurostat,

2011). This demographic change will make medical and care services scarce, increasing the need to

motivate and assist the elderly to stay independent as long as possible. Innovative ICT systems can help

2

the elderly live independently for longer and counteract reduced capabilities caused by age. One such

system, developed as part of a European FP7 project, is the Confidence – Ubiquitous care system to

support independent living (Confidence, 2011). Confidence aims to develop a system to monitor the

health conditions of its elderly users in real-time. It detects falls and behaviour changes, including

limping and physical inactivity. Confidence is based on wearable tags attached to a user reporting x, y

and z tag coordinates with around 15 cm accuracy. Polls show that, with respect to privacy-violation

issues, such hardware is more acceptable to users than, for example, video cameras. We used CDKML to

develop the fall detection classifier in Confidence.

Confidence has three fall detection properties that make it challenging from an ML perspective. First, a

representative dataset for falls is difficult to obtain because of the variety of fall types (in consultation

with medical experts, we compiled a list of 18 fall types from over 40 listed in the literature), variations

depending on the user, as well as ethical issues and injury dangers that prevent collecting large amounts

of data from healthy persons simulating falls or, even worse, the elderly. Second, developing a classifier

to suit each user in each possible circumstance from the start is difficult. Confidence detects falls as

situations in which the user is lying/sitting motionless on the ground for a prolonged period of time.

However, it is difficult to set a period of time to suit each user. For example, one user might never

voluntarily lie or sit on the ground because of a physical disability that prevents him/her from getting up

again, whereas another might exercise regularly on the living room carpet. Therefore, an online classifier

adaptation is needed. Third, because of noise in the sensor data, misclassifications between similar

postures occur. For example, sitting on a low chair may be misclassified as sitting on the ground. Such

misclassifications of the posture directly influence the output of the fall detection model.

Motivation for developing the CDKML method lies in addressing ML shortcomings through DK. Using only

initial clear-cases of the domain of interest, our method can create classifiers with improved general

performance than ML classifiers induced on a one-sided dataset. The method also encompasses online

classifier adaptation using information obtained from user feedback. The feedback is obtained

occasionally and contains information about false negatives (i.e., the system did not detect the class of

interest when there was one) or false positives (i.e., the system detected the class of interest when there

was not one).

The paper is organized as follows. In Section 2, we present related work about combining DK and ML for

classifier generation. In Section 3, we present the CDKML method for combining DK and ML for classifier

generation and online adaptation. In Section 4, we present the experiments used to test the proposed

method and obtained results. Section 5 concludes the paper.

2. RELATED WORK

Cognitive psychology research shows that human concept-learning considers both prior DK and interest

concept examples (Wisniewski & Medin, 1994; Feldman, 1993; Heit, 2000). In principle, one information

source offsets information missing from another source. DK influences interpreting examples. Before

3

obtaining a considerable amount of concept examples, humans base their judgements mainly on prior

DK. Conversely, examples affect DK. As the number of observed items of the interest concept increases,

judgment relies increasingly on the actual observations and less on prior DK.

ML literature includes examples of concept learning using both prior DK and interest concept examples.

A comprehensive overview of methods for incorporating prior DK into inductive ML is presented in (Yu,

2007). Yu categorizes these methods into four groups: (1) methods that use prior DK to prepare training

examples, (2) methods that use prior DK to initiate the hypothesis or hypothesis space, (3) methods that

use prior DK to alter the search objective and (4) methods that use prior DK to augment the search. The

first group of methods incorporates prior DK into the training dataset used for induction by inserting

virtual examples into the training dataset (Kambar, 2005; Niyogi et al., 1998; Poggio & Vetter, 1992).

Niyogi et al. (1998) showed that adding virtual examples is mathematically equivalent to incorporating

the prior DK as a regulariser in function learning in certain restricted domains. In the second group, prior

DK determines the part of the hypothesis space searched during induction (Zhu & Liu, 2010; Burns &

Danyluk, 2000; Thrun, 1996). This is achieved by determining which part of the hypothesis space satisfies

prior DK and using ML to search for a hypothesis in it, or by creating an initial hypothesis from the prior

DK and using ML to refine it. The third group incorporates the DK into the inductive bias that guides the

search through the hypothesis space. This is achieved by modifying the goal criterion to satisfy both DK

and training examples, as in learning with constraints (Sabzekar et al., 2011; Chen et al., 2011; Davidson

& Ravi, 2005), or by weighting the examples' influence in the training dataset (Brown et al., 2000; Wu &

Srihari, 2004; Wang et al., 2004). The fourth group produces hypothesis candidates and adjusts the

hypothesis space using DK during the on-going search (Decoste & Scholkopf, 2002; Pazzani et al., 1991).

In all cases, incorporating the DK aims to improve the generality of the induced ML model and/or the

efficiency of the learning process.

The interactive ML field also explores methods for concept learning using both prior DK and interest

concept examples. Compared to the previously described methods that incorporate DK into the ML

algorithm, interactive ML is basically an iterative process of classifier generation through human-

computer interaction (Benyon, 2001). Two strategies for model generation using interactive ML can be

distinguished: (1) iterative improvement of a single model by refining the input information used during

ML induction (Sun & Hardoon, 2010; Stumpf et al., 2009; Bramer, 2005) and (2) generating multiple

models to select one or several that are the most relevant from the user's perspective (Vidulin & Gams,

2011; Osei-Bryson, 2004).

The CDKML method belongs to the group of methods that use prior DK to initiate the hypothesis or

hypothesis space. The domain expert determines the initial classifier and hypothesis space using DK only

or using interactive ML. Genetic algorithms then refine the initial classifier using the available training

dataset. Here, DK is included as a set of constraints on the classifier form (e.g., for a classifier with the

form of a rule set, relations between rule parameters). Finally, the Markov decision process enables

online classifier adaptation based on user feedback. DK specifies the mapping from obtained user

feedback to changes of the state rewards. We are unaware of any work similar to combining the three

steps. The final step is also novel.

4

3. CDKML METHOD

Figure 1 presents a general CDKML schema – a method for combining DK and ML for classifier generation

and online adaptation. The schema contains three phases: (1) initialization, (2) refinement and (3) online

adaptation. In the first phase, the domain expert specifies the hypothesis space and initial classifier. The

domain expert may apply ML to the available training dataset, generating human-understandable

classifiers to obtain additional insight in the interest domain (Vidulin & Gams, 2011) and include parts of

these ML classifiers in the initial classifier. After determining the initial classifier, genetic algorithms

refine it in the second phase, under expert supervision. The third phase adapts the classifier online using

feedback information obtained from the user, who may indicate that the output class was incorrect. The

adaptation is defined as a Markov decision process where user feedback is considered a reward signal

from the environment. CDKML is not bound to a specific classifier form, but requires a human-

understandable form. In the following subsections, we present each CDKML phase in detail.

Initial model Refined model Adapted model

3. ONLINE

ADAPTATION
2. REFINEMENT1. INITIALIZATION

Learning

human-

understandable

classifiers

Domain

knowledge

User

feedback
Dataset

OUTPUT

PHASE

ML

INPUT

Genetic

algorithms

Markov decision

processes

Figure 1 CDKML – method for combining DK and ML for classifier generation and online adaptation

The CDKML presentation is accompanied by examples from its application in the fall detection domain.

In this specific domain, we selected the classifiers in the form of a set of disjunctive rules:

IF condition1 AND condition2 AND … AND conditionN THEN class.

We chose this classifier form because it can be constructed manually or with the help of supervised

learning and modified by genetic algorithms or Markov decision processes.

5

3.1. Initialization

In the first CDKML phase (initialization), a domain expert defines an initial classifier. For example, in the

fall detection domain, an expert may specify that if an elderly person is lying or sitting on the ground for

a long period of time, then there is high probability of a fall, as elderly people are unlikely to lie or sit on

the ground. Figure 2 presents an outline of this phase.

Function Initialization

Input: training examples Ex

Output: initial classifier CLinit

begin

 CLinit := empty_set_of_rules

 add rules in CLinit from domain knowledge

 // Explore human understandable ML models (e.g. decision tree, rule set)

 ML_ModelType := {decision tree, set of rules, etc.}

 for each ML_ModelType

 do

 create ML model on Ex using different initial parameters and attribute vectors

 explore patterns from the induced ML model

 add relevant rules in CLinit

 end do

end

Figure 2 Phase 1 – initialization

As an aid for designing the initial classifier, the expert may also examine human-understandable

classifiers induced by supervised learning on the available training data. An example is presented in

(Mirchevska et al., 2009), where several decision trees are iteratively created to explore the space of

possible classifiers. From these classifiers, the expert may obtain additional insight in the domain, modify

DK, or add extracted patterns in the initial classifier.

In the fall detection example, the starting rule-based classifier contained the following rule types:

1. IF falling activity within T1fall seconds AND the user was lying/sitting on the ground P1activity% of T1activity

seconds AND the user was not moving P1moving% of T1moving seconds THEN fall

2. IF falling activity within T2fall seconds AND the user was lying/sitting on the ground area afterwards

P2activity% of T2activity seconds THEN fall

6

3. IF the user was lying/sitting on the ground for P3activity% of T3activity seconds AND the user was not

moving P3moving% of T3moving seconds THEN fall

4. IF the user was lying/sitting on the ground for P4activity% of T4activity THEN fall

The expert specified these types of important fall patterns. However, specifying exact values for the

parameters in the rules, for example specifying exact values for the parameters P4activity and T4activity in

the last rule of the fall detection classifier, presented an issue for the expert, as the values may be

influenced by system features, such as the noise in the sensor data or the ability of the system to

correctly detect the lying/sitting posture. While the expert specified some initial values, and some values

were obtained from the generated classifiers, the expert was not confident in them.

3.2. Refinement

The second CDKML phase (refinement) refines the initial classifier set from the domain expert to

conform to system-related and general-user characteristics evident from the training dataset. As the rule

structure in the classifier is fixed, standard rule induction methods are unsuitable for the desired

training. Genetic algorithms (Eiben & Smith, 2003) thus tune the initial classifier parameters to maximize

its performance on the training dataset. Figure 3 presents an outline of this phase.

We apply genetic algorithms thus: We use the Pittsburgh approach, where each individual in the

population represents one possible solution. The individual is a vector containing parameters of all rules

in the rule-based classifier. For example, if the rule-based classifier contains 8 rules with 4 parameters

each, the individual is 32 elements long. The elements are real values inside an interval defined by the

expert. The fitness function for evaluating the quality of each individual is accuracy on the training

dataset. Fitness values fall within the interval [0, 1]. We thus want to tune the parameters of the rule-

based classifier to the training dataset, hopefully avoiding overfitting, as the domain expert defines the

structure of the rule-based classifier. We used elitism, meaning that the best individual is always

transferred to the new population.

Using genetic algorithms allows constraining relations between rules and parameters within a rule. In

the presented fall detection classifier, rule strictness decreases from rule type 1 to rule type 4. The first

rule type requires detecting falling activity and the user to be immovable and lie/sit on the ground to

detect a fall, whereas the fourth rule type requires only the user to lie/sit on the ground. The duration of

lying/sitting on the ground needed for the first rule type to detect a fall should be the shortest (the

combination with other evidence more quickly assures that a fall happened) and should increase toward

rule type 4. The relation between the required periods of lying/sitting on the ground in the rules is

expressed through constraints. Additionally, if the rule requires detecting falling activity to detect a fall,

the falling activity should be detected before the person lied/sat on the ground. This relation is also

represented as a constraint. The fitness of individuals representing rule-based classifiers that violate the

constraints is set to minimal fitness.

7

Function Refinement

Input: initial classifier CLinit; constraints between the rule parameters of the initial

 classifier Constraints; training examples Ex; parameters of the genetic algorithms

 POPULATION_SIZE, CROSSOVER_RATE, MUTATION_RATE, STOP_CRITERION,

 MAX_ITERATIONS

Output: refined classifier CLref

begin

 //Create individual Ibase representing the initial classifier CLinit using the Pittsburgh

 //approach

 Ibase := empty_vector

 for each rule r in CLinit

 do

 put the parameters of rule r in a single vector Vecr

 append Vecr to Ibase

 end do

 //Create initial population

 Pinit := empty_set

 add Ibase to Pinit

 for i:=1 to POPULATION_SIZE

 do

 Ii := create an individual by random changes of Ibase

 add Ii to Pinit

 end do

 //Evolve population

 Ibest:= Find_fittest_individual(Pinit, Constraints, Ex) //function defined below

 iter := 0, Pnew:= Pinit

 while ((accuracy(Ibest) < STOP_CRITERION) AND (iter < MAX_ITERATIONS))

 do

 Pold := Pnew, Pnew := empty_set, iter:= iter+1

 add Ibest to Pnew //Use elitism

 for i:=1 to (POPULATION_SIZE/2)

 do

 select two parents from Pold by tournament selection

 crossover parents with probability CROSSOVER_RATE

 mutate individuals obtained by crossover with probability MUTATION_RATE

 add new individuals to Pnew

 end do

 Icur_best := Find_fittest_individual(Pnew, Constraints, Ex)

8

 if(accuracy(Icur_best) > accuracy(Ibest)

 then

 Ibest:= Icur_best

 end if

 end do

 CLref := update the values of the parameters in CLinit with the values in Ibest

end

Function Find_fittest_individual

Input: population P; constraints between the parameters of the initial classifier

Constraints; training examples Ex

Output: individual Iresult

begin

 for each I in P do

 if I violates Constraints

 fitness(I) := 0

 else

 fitness(I) := accuracy(I) on Ex

 end if

 end for each

 Iresult := individual in P with highest fitness value

end

Figure 3 Phase 2 – refinement

The genetic algorithm outputs the final general rule-based classifier. The expert should observe various

classifiers generated with different input parameters and choose the best one in his/her opinion, not

solely based on accuracy.

9

3.3. Online adaptation

The third CDKML phase (online adaptation) adapts the general rule-based classifier online using feedback

obtained from a particular user. We explain the adaptation process using the example rule: “IF the user

was lying on the ground for Pactivity% in Tactivity THEN fall”. Figure 4 presents an outline of this phase.

Function Initialize_MDPs

Input: refined classifier CLref

Output: set of MDPs

begin

 for each rule r in CLref

 do

 create a MDPR(S, A, P, R) for r

 initialize the set of states S to a n-dimensional state space, where n is the

 number of parameters in r

 initialize the set of actions A to all possible parameter value changes

 initialize the transition probability P(s, a, s’) to be 0 or 1

 initialize the elements of the reward matrix R to zero

 initialize current state MDPR.current to the parameter values of r

 end do

end

Function Update_rules

Input: current classifier CLcurrent; user feedback UF {false positive, false negative}

accompanied with the triggering example Ex; penalty amount for false positive PaFp;

penalty amount for false negative PaFn

Output: adapted rule-based classifier CLadpt

begin

 if UF= false positive

 then

 Rfp := set of all rules of CLcurrent that caused a false positive

 for each rule r in Rfp

 do

 in MDPR reduce the utility of the current state and all states that it

 dominates by PaFp

 Cstates := set of neighbouring states of MDPR.current with highest utility

10

 MDPR.current := state from Cstates with maximum distance from Ex

 end do

 else // UF = false negative

 find rule r in CLcurrent with minimum distance from Ex

 in MDPR reduce the utility of the current state and all states that dominate it by

 PaFn

 Cstates := set of neighbouring states of MDPR.current with highest utility

 MDPR.current := state from Cstates with minimum distance from Ex

 end if

end

Figure 4 Phase 3 – online adaptation

The problem of adapting a rule in the rule-based classifier is defined as a Markov decision process

(Russell & Norvig, 2003), MDPR(S, A, P, R). The state space S of each rule is N-dimensional, where N is the

number of adjustable parameters in the rule. The example rule space is two-dimensional, with one

dimension representing the set of possible percentage values and the other representing possible time

interval values (Figure 5). We use discrete parameters. In each step, we can increase or decrease the

value of each parameter by one unit. The set of actions A are combinations of such parameter value

changes. Parameter value changes are deterministic; the values in the transition probability matrix P(s, a,

s’), denoting the probability of transitioning from state s to s’ when executing action a, are 0 or 1. The

elements of the reward matrix R reflect the obtained user feedback (a reward signal from the

environment) and may change. Translating user feedback to the appropriate state reward requires

information of how each parameter influences the output of the rule, as specified by the domain expert.

The MDP goal state is the combination of rule parameter values that best separates fall events from non-

fall events and depends on the needs of a particular user and may change through time.

Figure 5 presents the process of adapting the example rule. Current rule parameter values

(MDPR.current) are highlighted with a black rectangle. First of all, the reward matrix R of MDPR is

initialized to zero for all states and MDPR.current is set to the rule's values in the refined classifier (Figure

5a). We assume that, after a certain period of time, a false positive feedback is obtained. In this concrete

rule, a false positive feedback reduces the current state reward and all states dominated by it (states

with less strict parameter values than the current state’s parameter values) by a penalty amount paFp,

which in our example is -1, because a false positive indicates that the parameters of the rule must be

made stricter (Figure 5b). After obtaining such feedback, the set of neighbouring MDPR.current states

with the highest utility is determined, and the new MDPR.current value is the state with the maximum

parameter distance from the example that caused the false positive. In the example rule, the distance

from a state s to an example Ex that triggered user feedback is calculated thus:

11

where T is the set of possible time interval values in the rule, stimeInterval and spercentage represent the rule

parameter values represented by state s, and Expercentage(t) represents the amount of lying on the ground

in time interval t in Ex. The new MDPR.current value in Figure 5b has stricter values for both the time and

percentage parameters. We again assume that, after a certain period of time, a false negative feedback

is obtained. A false negative feedback reduces the reward of the current state and all states that

dominate it (states with stricter parameter values than the current state’s parameter values) by a

penalty amount paFn, which in our example is -1, because a false negative indicates that the parameters

of the rule are too strict and must be relaxed (Figure 5c). Again, the set of neighbouring MDPR.current

states with the highest utility is determined, and the new value of MDPR.current is the state with the

minimum parameter distance from the example that caused the false negative. Figure 5c presents a case

where the feedback result reduced the strictness of the percentage parameter of MDPR.current, while

the time parameter remained unchanged. The initial state was avoided because of the negative reward

received during the first false positive. Rule parameters values are adapted in this way after each

obtained user feedback.

Figure 5 Online classifier adaptation using user feedback

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

IF person lying on the ground

70% in 9 seconds THEN alarm

p
e

rc
e

n
ta

g
e

8 9 10 11 12

FALSE POSITIVE

time interval (s)

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

-1 -1 0 0 0

-1 -1 0 0 0

-1 -1 0 0 0

IF person lying on the ground

80% in 10 seconds THEN alarm

p
e

rc
e

n
ta

g
e

5
0

6

0

7

0

8
0

 9

0

1
0

0

time interval (s)

8 9 10 11 12

F
A

L
S

E

N
E

G
A

T
IV

E

0 0 -1 -1 -1

0 0 -1 -1 -1

0 0 -1 -1 -1

-1 -1 0 0 0

-1 -1 0 0 0

-1 -1 0 0 0

IF person lying on the ground

80% in 9 seconds THEN alarm

p
e

rc
e

n
ta

g
e

5
0

6

0

7

0

8
0

 9

0

1
0

0

time interval (s)

8 9 10 11 12

FALSE POSITIVE

0 0 -1 -1 -1

0 0 -1 -1 -1

-1 -1 -1 -1 -1

-2 -2 0 0 0

-2 -2 0 0 0

-2 -2 0 0 0

IF person lying on the ground

70% in 10 seconds THEN

alarmp
e

rc
e

n
ta

g
e

5
0

6

0

7

0

8
0

 9

0

1
0

0

time interval (s)

8 9 10 11 12

5
0

6

0

7

0

8
0

 9

0

1
0

0

a) b)

d) c)

12

User feedback does not affect all rules in the rule-based classifier. If false positive feedback is obtained,

only the rules that incorrectly classified the concrete example as positive are adapted. If false negative is

obtained, only the rule that needs the least change to cover the concrete example is adapted.

4. EVALUATION

This section evaluates CDKML on the fall detection task. We used CDKML to build a rule-based classifier

for fall detection as part of the fall detection module in the Confidence system. We first describe the fall

detection module in the Confidence system. We then present the data on which the rule-based fall

detection classifier was evaluated. Finally, we comment on the obtained results.

4.1 Fall detection in Confidence

This section presents the fall detection module of the Confidence system by which CDKML was

evaluated.

Figure 6 presents a simplified version of the part of the Confidence system related to fall detection.

Detailed system descriptions can be found in literature (Lustrek et al., 2011; Kaluza et al., 2010) and a

detailed description of the fall detection module in (Mirchevska et al., 2010).

Preprocessing
and filtering

Attribute
computation

Activity
recognition

Fall detection

Preprocessed RTLS

data

Attributes: distances between

tags, tag velocity and similar

Current user activity; User

level of movement

User has fallen/has not fallen

Raw RTLS data

U
se

r

fe
e
d
b
a
ck

Figure 6 Fall detection in the Confidence system

13

In the Confidence system, the user is equipped with wearable tags whose coordinates are detected by

radio sensors. The experiments presented in this paper used the real-time localization system (RTLS)

Ubisense (Ubisense, 2011) for this purpose. In a typical open-environment, the localization accuracy of

Ubisense is on average about 15 cm but in practice may occasionally drop to 200 cm or more. The raw

RTLS data is first preprocessed to reduce noise. The preprocessed RTLS data is then given as input to the

attribute computation module. This module computes characteristics of the user's body, including tag

velocity and amount of movement, and relations between body parts, including the distance between

tags. The activity recognition module uses these characteristics to classify the user’s activity into one of

seven classes: standing, sitting, lying, standing up, going down, falling, or on all fours. Additionally, if the

system detects lying or sitting, it determines whether these activities are done at appropriate places,

including a bed for lying or chair for sitting, or at inappropriate places, such as on the ground. The activity

recognition module's output is given as input to the fall detection module.

The fall detection module uses data concerning user activity history and user movement levels to detect

falls, using the four rule types shown in Section 3.1, which mostly depend on whether an elderly person

is lying or sitting at an inappropriate place (e.g., on the ground) for a long period of time, resulting in a

high probability of a fall. Fall detection does not rely only on detecting the falling activity (high

acceleration toward the ground), as it always lasts a very short time and is thus difficult to recognize.

Compared to detecting falling activity, lying and sitting on the ground are easier to detect, which makes

them convenient for fall detection. However, this approach has certain issues. Activity on all fours may

be misclassified as lying on the ground. Because lying on the ground indicates a fall, such

misclassifications may lead to false positives. However, activity on all fours that occurs when a person is

searching for something on the ground is shorter than the period of lying/sitting on the ground that

follows a fall and includes more movement. Another common misclassification occurs when a person is

sitting on a low chair. Sitting on a low chair may be misclassified as sitting on the ground because of the

noise in the localization system measurements and may cause false positives. However, the amount of

sitting on the ground recognized when the person is sitting on a low chair should be lower than the

amount of this activity recognized when the person is sitting on the ground. Therefore, the main

challenge faced when developing the fall detection classifier is providing reliable and robust fall

detection even in various complex real life circumstances.

4.2 Data

We designed a test scenario to investigate the generality and robustness of the developed rule-based

classifiers, as well as their adaptation capabilities. The scenario (Table 1) contains two types of events:

straightforward and complex events.

Straightforward events represent typical fall and non-fall events. Both fall events (1 and 2) involve high

acceleration toward the ground during the falling activity. High acceleration during the falling activity is a

characteristic feature of falls, and setting thresholds for it is a common way of detecting falls. The user

lands lying (1) or sitting (2) on the ground after the fall. Non-fall events contain activities commonly done

14

at home, including walking, sitting on a chair, or lying in bed (3). Additionally, searching for something on

the ground on all fours or lying (4) is added as a non-fall event.

Complex events represent atypical falls and non-fall events that may be particularly easily misclassified.

One type of non-fall event is lying down quickly on a bed or sitting down quickly on a chair (7). This event

includes high acceleration during the lying/sitting down activity, which is a characteristic feature of falls.

However, the lying/sitting that follows is on the bed/chair, enabling the rule-based classifier to

differentiate falls from non-falls. The other non-fall event is sitting on a low chair (8). Five non-fall events

of sitting on a low chair are present in the scenario. They differ in the position of the user’s body on the

chair: the user sits straight or leans forward, backward, to the left, or to the right. In complex fall events

(5 and 6), the user slowly descends to the ground, trying to hold onto nearby furniture. However, after

the falling activity, the user lands lying/sitting on the ground.

Table 1 Test scenario

STRAIGHTFORWARD EVENTS COMPLEX EVENTS

 Description Fall Description Fall

1 Tripping, landing flat on the ground Yes 5

Falling slowly (trying to hold onto

furniture), landing flat on the

ground

Yes

2
Falling when trying to stand up,

landing sitting of the ground
Yes 6

Falling slowly when trying to stand

up (trying to hold onto furniture),

landing sitting on the ground

Yes

3

Normal everyday behaviour, such as

walking, sitting on a chair, lying in

bed

No 7
Lying down quickly on the bed /

Sitting down quickly on the chair
No

4
Searching for something on the

ground on all fours and lying
No 8 Sitting on a low chair No

We selected the falls in the test scenario from a list of 18 fall types, compiled in consultation with

medical personnel. The falls were demonstrated by a physician, who also provided guidance during initial

recordings.

All events present in the test scenario were recorded in single recordings interspersed with short periods

of walking. Each recording lasted around 20 minutes. The recordings were made by 5 healthy volunteers

(3 male and 2 female), 5 times by each. Figure 7 presents the total number of fall and non-fall examples

in the recorded data. The large number of non-fall events among the complex events is due to the

examples of sitting on a low chair. We recorded many such examples because the adaptation (in the

third phase) primarily occurred on them.

15

Fall events

Non-fall events

Complex eventsStraightforward events

No. of
examples

150

100

50

Figure 7 Total number of fall and non-fall examples in the recorded data

4.3 Results

We evaluated the first and second CDKML phases as follows: The domain expert first specified the initial

classifier. Genetic algorithms then refined the initial classifier based only on examples of straightforward

events (to demonstrate laboratory testing). We used leave-one-person-out evaluation, where the

refined classifier was generated from examples of four people and tested on examples of the fifth, which

was excluded from the training dataset. This was repeated five times, using a different person for testing

each time. The accuracy of the refined classifier was tested on both straightforward and complex events

of the person excluded from the training dataset, thus illustrating real-life performance, which includes

both clear and complex cases. The test on the straightforward events shows how well the classifier

performs on events present in the training dataset. The test on the complex events, conversely, tests the

generality and robustness of the generated classifier, as the complex events are not present in the

learning process.

We evaluated the online classifier adaptation part, i.e., phase 3 of CDKML, thus: The refined classifier

was adapted to a concrete user using examples of both straightforward and complex concrete user

events, because we wanted to test the ability of the method to learn new cases while preserving its

performance on the cases present in the training dataset in phase 2 of CDKML. Four of the five concrete

user scenario recordings were randomly presented one by one to the fall detection classifier. The fall

detection classifier classified each event as fall or non-fall, then feedback was provided and the fall

detection classifier was adapted, as necessary, before the next event. The final adapted classifier

evaluation was done on the recording, which was not used in the adaptation phase.

For comparison, fall detection classifiers were induced using ML only. The attributes were the time since

detecting the last falling activity, the amount of each type of activity in time intervals from 5 to 15

seconds, and the amount of user movement in this interval range. The attributes are equivalent to the

parameters of the rules in the rule-based fall detection classifier. We used the following ML algorithms:

decision trees (J48), rules (JRip), support vector machines (SMO), random forest (RandomForest), and

Naïve Bayes (NaiveBayes). In brackets, we give the Weka implementation (Hall et al., 2009) for these

algorithms.

16

We evaluated fall detection classifier performance using two measures: accuracy on a subset of events

ACCevents and F-measure on a subset of events FMevents. The accuracy on a subset of events ACCevents is

The F-measure on a subset of events FMevents is

where Pevents is the precision and Revents is the recall of the classifier of events E belonging to the set

events.

Table 2 presents the performance of the induced fall detection classifiers on straightforward events only,

on complex events only, and on the whole sequence with respect to the accuracy on fall examples ACCf,

accuracy on non-fall examples ACCnf, overall accuracy ACCall and overall F-measure FMall. Table 3 presents

the accuracy of the induced classifiers on each event in the test scenario separately ACCe. The measures

were computed for each person separately, and the values in Tables 2 and 3 represent the averages.

Additionally, the refinement CDKML phase was performed five times in each test run, because of the

stochastic nature of the genetic algorithm and the average value was considered.

Table 2 shows that the best overall accuracy among ML classifiers was obtained by support vector

machines with an ACCall of 53 percentage points. The ML classifiers tended to be biased towards fall

recognition. They had maximal ACCf; however, they raised many false positives, as indicated by the low

ACCnf values. The overall accuracy of the initial classifier was 10 percentage points higher than support

vector machines. It slightly decreased on the ACCf, from 100 to 98 percentage points, but increased

greatly on the ACCnf from 30 to 46 percentage points. The refinement of the initial classifier based on

straightforward-event examples contributed to a 3 percentage point increase in accuracy. The ACCnf

increased to 53 percentage points at the cost of a slight decrease in ACCf, which was 93 percentage

points. The adapted classifier outperformed the refined classifier in accuracy by 15 percentage points;

however, as mentioned above, it had an advantage over the previous classifiers, because it obtained

examples of both straightforward and complex events during learning, and the examples came from the

concrete user on which the tests were made. The adapted classifier had the highest ACCnf, 85 percentage

points, whereas its ACCf had 71 percentage points. The tests concerning F-measure, which compensates

for uneven class distribution, also confirmed the performance improvement.

17

Table 2 Classifier comparison using accuracy on the fall examples (Accf), accuracy on the non-fall examples (ACCnf), overall
accuracy (ACCall) and overall F-measure (FMall).

1)

CLASSIFIER

ML CDKML

J48 JRip SMO
Random

Forest

Naïve

Bayes

Initial

classifier

Refined

classifier

Adapted

classifier

Training

dataset

SF

events

SF

events

SF

events

SF

events

SF

events

SF

events

SF

events

All

events

Te
st

in
g

d
at

as
et

St
ra

ig
h

tf
o

rw
ar

d

ev
en

ts
 o

n
ly

ACCf 1.00 1.00 1.00 1.00 1.00 0.98 0.91 0.71

ACCnf 0.68 0.68 0.68 0.70 0.30 0.82 0.94 0.99

ACCall 0.84 0.84 0.84 0.85 0.65 0.90 0.92 0.85

FMall 0.86 0.86 0.86 0.87 0.74 0.91 0.92 0.83

C
o

m
p

le
x

ev
en

ts

o
n

ly

ACCf 1.00 1.00 1.00 1.00 1.00 0.98 0.96 0.72

ACCnf 0.15 0.12 0.17 0.14 0.04 0.34 0.39 0.81

ACCall 0.37 0.34 0.38 0.36 0.28 0.50 0.53 0.79

FMall 0.44 0.43 0.45 0.44 0.41 0.49 0.51 0.63

A
ll

ev
en

ts

ACCf 1.00 1.00 1.00 1.00 1.00 0.98 0.93 0.71

ACCnf 0.28 0.26 0.30 0.28 0.10 0.46 0.53 0.85

ACCall 0.52 0.51 0.53 0.52 0.40 0.63 0.66 0.81

FMall 0.58 0.57 0.59 0.58 0.53 0.64 0.65 0.71

Table 3 compares the performance of the induced classifiers on each event separately. As mentioned

above, the ML classifiers detected all fall events; however, they performed poorly on all non-fall events.

Introducing domain knowledge to the initial classifier significantly improved the ACCe on the normal

behaviour non-fall event. The refinement improved ACCe on the non-fall event searching on the ground.

This event was included in the training data for the refinement phase, so increased performance was

expected; it was achieved at the cost of neglecting certain fall events. The adapted classifier correctly

recognized almost all falls after which the user lay on the ground, but it had difficulties with falls after

which the user sat on the ground. Sitting on the ground is a rare event in real life. Sitting on a low chair,

an event for which ACCe significantly increased, is a much more common real life event. The classifier

frequently confused these two activities for one another. Not only is the user’s posture similar, but they

can both last a long time, during which the user is immovable. Some examples of sitting on a low chair

are in fact undistinguishable from falls because of the noise in the measurements of the sensors used.

Adapting the fall detection classifier establishes a tradeoff between these events. As sitting on a low

chair is far more frequent then falls after which a user sits on the ground in a normal sitting position,

1)

 The abbreviation SF stands for straightforward events.

18

misclassifications of this event are more costly. The adapted classifier is thus inclined to reduce

misclassifications during sitting on a low chair at the cost of not detecting certain falls after which the

user lands sitting on the ground. In any case, user immovability after falls for additional or prolonged

time should enable detecting these false negatives; however, because of practical reasons, we could not

capture this in the recordings.

Table 3 Classifier comparison using the accuracy on each event (ACCe) in the test scenario

CLASSIFIER/

ACCe

STRAIGHTFORWARD TESTS COMPLEX TESTS

FALLS NON-FALLS FALLS NON-FALLS

Tripping

(1)

Falling

landing

sitting

(2)

Normal

behavi-

our (3)

Searching

on the

ground

(4)

Falling

slowly

(5)

Falling

slowly

landing

sitting

(6)

Lying/

Sitting

down

quickly

(7)

Sitting

on low

chair(8)

-avg.

value

M
ac

h
in

e
Le

ar
n

in
g

J48 1.00 1.00 0.68 0.68 1.00 1.00 0.64 0.06

JRip 1.00 1.00 0.76 0.60 1.00 1.00 0.60 0.02

SMO 1.00 1.00 0.76 0.60 1.00 1.00 0.88 0.03

Random

Forest
1.00 1.00 0.76 0.64 1.00 1.00 0.76 0.02

Naïve

Bayes
1.00 1.00 0.12 0.44 1.00 1.00 0.20 0.01

Initial

classifier
1.00 0.96 0.96 0.68 0.96 1.00 0.96 0.22

Refined

classifier
0.96 0.86 0.96 0.92 0.96 0.96 1.00 0.27

Adapted

classifier
0.96 0.46 1.00 0.98 0.84 0.60 1.00 0.77

5. CONCLUSION

We presented the CDKML – method for combining DK and ML for classifier generation and online

adaptation. The method has three phases: initialization, refinement, and online adaptation. The domain

expert specifies the initial CDKML classifier in the first phase. The expert may also use hypotheses

induced by ML as help. In the second phase, genetic algorithms adjust the initial classifier to suit system-

and general-user characteristics. Tests show that the classifiers developed after the first two phases are

already more reliable and robust than ML classifiers built from limited examples from the domain of

interest. In addition to general classifier generation, in the third phase, we presented a method for

19

online classifier adaptation based on specific user feedback indicating incorrect system output. Tests

show that, during online adaptation, the classifier is adjusted to correctly recognize events not present in

the training dataset, making tradeoffs between contradictory examples based on the cost of each

misclassification.

The method is suitable for domains that have limited obtainable training data and available domain

knowledge. Online adaptation is essential if specific characteristics of the objects of interest must be

accommodated; the user must be able to give feedback about misclassifications to allow the online

adaptation. One such domain is fall detection, on which we evaluated the method. The method is

suitable for modelling behaviour in general and for studies in the medical or biological fields, for which

large, representative training datasets are typically difficult to obtain.

ACKOWLEDGEMENTS

This research is partly financed by the European Union, European Social Fund and partly by the European

Community's Framework Programme FP7/2007–2013 under grant agreement No. 214986.

References

BENYON, D. (2001) The new HCI? navigation of information space, Knowledge-Based Systems, 14(8), 425-

430.

BRAMER, M. (2005) Inducer: a public domain workbench for data mining, International Journal of

Systems Science, 36(14), 909-919.

BROWN, M., GRUNDY, W., LIN, D., CRISTIANINI, N., SUGNET, C., FUREY, T., et al. (2000) Knowledge-based

analysis of microarray gene expression data by using support vector machines, Proceedings of the

National Academy of Sciences, 97, 262-267.

BURNS, B. D., and DANYLUK, A. P. (2000) Feature Selection vs Theory Reformulation: A Study of Genetic

Refinement of Knowledge-based Neural Networks, Machine Learning - Special issue on multistrategy

learning, 89-107.

CHEN, M.-C., CHAO, C.-M., and WU, K.-T. (2011) Pattern filtering and classification for market basket

analysis with profit-based measures. Expert Systems.

CONFIDENCE. (2011) Confidence, Retrieved August 23, 2011, from http://www.confidence-eu.org/

DAVIDSON, I., and RAVI, S. S. (2005) Hierarchical clustering with constraints: Theory and practice,

Proceedings of the Nineth European Principles and Practice of KDD (PKDD), 59-70.

DECOSTE, D., and SCHOLKOPF, B. (2002) Training invariant support vector machines machine learning,

Machine Learning, 46, 161-190.

EIBEN, A. E., & SMITH, J. E. (2003) Introduction to Evolutionary Computing, Springer-Verlag.

20

EUROSTAT. (2011) Eurostat, Retrieved August 23, 2011, from

http://epp.eurostat.ec.europa.eu/tgm/table.do?tab=table&init=1&language=en&pcode=tsdde511&plugi

n=1

FELDMAN, R. S. (1993) Understanding Psychology, New York: Mc Graw-Hill.

HALL, M., FRANK, E., HOLMES, G., PFAHRINGER, B., REUTEMANN, P., and WITTEN, I. H. (2009) The WEKA

Data Mining Software: An Update, SIGKDD Explorations, 11(1) , 10-18.

HEIT, E. (2000) Background Knowledge and Models of Categorization, In U. Hahn, & M. Ramscar,

Similarity and Categorization, 155-178.

KALUŽA, B., MIRCHEVSKA, V., DOVGAN, E., LUŠTREK, M., and GAMS, M. (2010) An agent-based approach

to care in independent living, Proceedings of Ambient Intelligence, 177-186.

KAMBAR, S. (2005) Generating synthetic data by morphing transformation for handwritten numeral

recognition (with ν-svm) (Master thesis).

LI, D.-C., YEH, C.-W., TSAI, T.-i., FANG, Y.-H., and HU, S. C. (2007) Acquiring knowledge with limited

experience, Expert Systems, 24(3), 162-169.

LUŠTREK, M., GJORESKI, H., KOZINA, S., CVETKOVIĆ, B., MIRCHEVSKA, V., and GAMS, M. (2011) Detecting

Falls with Location Sensors and Accelerometers, Proceedings of Innovative Applications of Artificial

intelligence.

MIRCHEVSKA, V., KALUŽA, B., LUŠTREK, M., and GAMS, M. (2010) Real-Time Alarm Model Adaptation

Based on User Feedback, Proceedings of Workshop on Ubiquitous Data Mining in ECAI 2010 , 39-43.

MIRCHEVSKA, V., LUŠTREK, M., VELEZ, I., VEGA, N. G., and GAMS, M. (2009) Classifying Posture Based on

Location of Radio Tags. Ambient Intelligence Perspectives II - Selected papers from the Second

International Ambient Intelligence Forum 2009, 85-92.

NIYOGI, P., GIROSI, F., and POGGIO, T. (1998) Incorporating prior information in machine learning by

creating virtual examples, Proceedings of the IEEE, 2196-2209.

OSEI-BRYSON, K.-M. (2004) Evaluation of decision trees: a multi-criteria approach, Computers and

Operations Research, 1933-1945.

PAZZANI, M., BRUNK, C., and SILVERSTEIN, G. (1991) A knowledge-intensive approach to learning

relational concepts, The Eighth International Workshop on Machine Learning, 432-436.

POGGIO, T., and VETTER, T. (1992) Recognition and structure from one 2D model view: Observations on

prototypes, object classes and symmetries, Tech. Rep. AIM-1347. Cambridge, MA, USA: Massachusetts

Institute of Technology.

RUSSELL, S., & NORVIG, P. (2003) Artificial intelligence A Modern Approach, Prentice Hall.

21

SABZEKAR, M., YAZDI, H. S., & NAGHIBZADEH, M. (2011) Relaxed Constraints Support Vector Machine,

Expert Systems.

STUMPF, S., RAJARAM, V., LI, L., WONG, W.-K., BURNETT, M., DIETTERICH, T., et al. (2009) Interacting

meaningfully with machine systems: Three experiments, International journal of human-computer

studies, 67, 639-662.

SUN, S., and HARDOON, D. R. (2010) Active learning with extremely sparse labeled examples,

Neurocomputing, 73, 2980-2988.

THRUN, S. (1996) Explanation-Based Neural Network Learning: A Lifelong Learning Approach. Boston,

MA: Kluwer Academic Publishers.

UBISENSE (2011) Ubisense, Retrieved August 23, 2011, from http://www.ubisense.net/

VIDULIN, V., and GAMS, M. (2011) Impact of higher-level knowledge on economic welfare through

interactive data mining, Aplied artificial intelligence, 25(4), 267-291.

WANG, L., XUE, P., and CHAN, K. L. (2004) Incorporating prior knowledge into SVM for image retrieval,

Proceedings of the 17th International Conference on Pattern Recognition, 981-984.

WISNIEWSKI, E. J., and MEDIN, D. L. (1994) On the Interaction of Theory and Data in Concept Learning,

Cognitive science, 18(2), 221-281.

WU, X., and SRIHARI, R. (2004) Incorporating prior knowledge with weighted margin support vector

machines, Proceedings of the tenth ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, 326-333.

YANG, T., and KECMAN, V. (2009) Adaptive local hyperplane algorithm for learning small medical data

sets, Expert systems, 26(4), 355-359.

YU, T. (2007) Incorporating Prior Domain Knowledge into Inductive Machine Learning Its implementation

in contemporary capital markets (PhD thesis).

ZHU, Z., and LIU, P. (2010) Feasibility research of text information filtering based on genetic algorithm,

Scientific Research and Essays, 5(22) , 3405-3410.

The authors

Violeta Mirchevska

Violeta Mirchevska is a researcher at Result d.o.o., cooperating closely with the Department of

Intelligent Systems at the Jožef Stefan Institute. She completed her Bachelor's in computer science and

automation at the Faculty of Electrical Engineering and Information Technologies, Ss. Cyril and

22

Methodius University, Macedonia in 2007 and is currently a PhD candidate at Jožef Stefan International

Postgraduate School, Slovenia. Her research focuses on modelling agent behaviour based on observing

low-level action sequences by leveraging both domain knowledge and machine learning. The main

application areas of her research are user profiling, remote health monitoring and security.

Mitja Luštrek

Dr. Mitja Luštrek is a researcher at the Jožef Stefan Institute in Slovenia. He is the head of the ambient

intelligence group at the Department of Intelligent Systems. His main research area is ambient

intelligence with a focus on human behavior analysis. He has experience with wearable inertial sensors

and real-time locating systems, and has used artificial intelligence techniques for activity recognition and

detection of anomalous behaviors. He has also worked in several other areas of artificial intelligence,

including game playing, heuristic search, and machine learning in bioinformatics. He is an editor of the

Informatica journal and a member of the executive board of the Slovenian Artificial Intelligence Society.

Matjaž Gams

Prof. dr. Matjaž Gams (http://dis.ijs.si/Mezi/) is a senior researcher at the Jožef Stefan Institute,

Ljubljana, Slovenia. His research interests include artificial intelligence, intelligent systems, intelligent

agents, machine learning, cognitive sciences, and information society. His publication list includes 500

items, 70 in scientific journals. Matjaž Gams is heading the Department of Intelligent Systems at the

Jožef Stefan Institute. He is currently president of ACM Slovenia and the cofounder of the Engineering

Academy, Artificial Intelligence Society, and Cognitive Sciences Society in Slovenia. He is an executive

contact editor of the journal Informatica and member of the editorial board of several international

journals. He headed several major applications in Slovenia, including a virtual agent for the Slovenian

employment agency, an expert system controlling the quality of nearly all national steel production and

a text-to-speech system in Slovenian, donated to several thousand users. Matjaž Gams also teaches

several courses in computer sciences at the graduate and postgraduate levels.

http://dis.ijs.si/Mezi/

