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ABSTRACT 

The Chiron project carried out an observational study 

in which congestive-heart-failure patients were 

telemonitored in two countries. Data from 1,068 

recording days of 25 patients were gathered, consisting 

of 15 dynamic parameters (measured daily or 

continuously) and 49 static parameters (measured once 

or a few times during the study). The features derived 

from these parameters were mined for their association 

with the feeling of good/bad health. The findings mostly 

correspond to the current medical knowledge, although 

some may represent new insights. 

1 INTRODUCTION 

Telemonitoring of patients with chronic diseases is 

becoming technically increasingly feasible, but benefits for 

the patients are not always apparent, nor is it clear how to 

make the most of the data obtained this way. In the case of 

heart failure, two systematic literature reviews showed 

lower mortality resulting from telemonitoring [1][2], but in 

the trials they reviewed, telemonitoring was mostly 

compared with conventional care worse than what is offered 

today. Conversely, two large recent trials showed no benefit 

from telemonitoring [3]. However, the telemonitoring in 

these two trials was not very advanced – the monitored 

parameters were limited and no intelligent computer 

analysis was involved. We can conclude from this that as the 

conventional care improved, so should telemonitoring. One 

way to do so is by using intelligent computer methods on the 

gathered data, both to save the time of the medical personnel 

who would otherwise have to look at all the data themselves, 

and to uncover previously unknown relations in the data. 

This paper describes the mining of telemonitoring data 

from congestive-heart-failure (CHF) patients gathered in the 

Chiron project [4]. The objective of this project was to 

develop a framework for personalized health management 

with a focus on telemonitoring. The Chiron patients were 

equipped with a wearable ECG, activity, body-temperature, 

sweating and sensors. In addition, their blood pressure, 

blood oxygen saturation, weight, and ambient temperature 

and humidity were measured [5]. The data gathered this way 

was fed into a decision-support system, whose objective was 

to estimate the health risk of the patients [6]. However, since 

there is not enough knowledge on how to associate the 

values of the various measured parameters with the risk, an 

observational study was carried out in the project with the 

intention to generate such knowledge. This paper presents 

an initial analysis of the data gathered in this study. 

2 DATA FROM THE CHIRON STUDY 

2.1 Data gathering and description 

The data analyzed in this paper were gathered in the period 

from May 2013 to May 2014. The whole study included 38 

CHF patients: 19 from the United Kingdom and 19 from 

Italy. However, some of the data were incomplete, so only 

the data of 12 patients from the UK and 13 patients from 

Italy were included in the analysis. These 25 patients 

together provided a total of 1,068 usable recording days. 

The data consists of 64 parameters carefully selected based 

on their relevance to CHF [7]. 

The initial measurements of 49 static parameters were 

taken for each of the patients at the beginning of the study. 

This data includes general patient information (age, gender, 

BMI, waist-to-hip ratio, smoking, etc.), their current medical 

treatments (beta blockers, anti-coagulants, ACE inhibitors, 

etc.), related health conditions (arrhythmias, hypertension, 

diabetes, etc.) and the results of a blood analysis 

(hemoglobin, lymphocytes, LDL/HDL cholesterol, blood 

glucose, Na and K levels, etc.). Some of these measurements 

were repeated periodically every few weeks to provide up-

to-date information. However, the exact period varied from 

patient to patient and roughly half of the patients only had 

the measurements taken at the beginning of the study. 

During the study, the patients were wearing vital-signs 

monitoring equipment [5] for several hours each day. The 

equipment consisted of an ECG device, two accelerometers 

places on the chest and thigh, a body-temperature and a 

humidity sensor. The ECG recordings were subsequently 

analyzed to extract the physiological parameters related to 

the heart rhythm: heart rate, QRS interval, QT interval, PR 

interval, T wave amplitude and R wave amplitude. The 

accelerometers continuously provided the patient’s activity 

and energy-expenditure estimation. The temperature and 

humidity sensors provided the measurements of the skin 

temperature and sweating index in five-minute intervals. 

The patients were also provided with a mobile application 

for generating weekly and daily reports. The patients 

reported their overall feeling of health with respect to the 

previous day on a daily basis (feeling much worse than 

yesterday, worse, the same, better or much better), and 



answered 13 questions about their health and well-being on 

a weekly basis. In addition, they reported measurements of 

systolic and diastolic blood pressure, body mass, blood 

oxygen saturation, and ambient temperature and humidity. 

These – together with the continuously monitored 

parameters – are labeled dynamic in Section 3. 

The study also intended to gather data about hospital 

admissions and deaths, but no such events occurred during 

the study period. Therefore we decided to use the patients’ 

self-reports of health instead. The analysis in this paper is 

based on the daily questions about the feeling of health. 

2.2 Data preprocessing 

The ECG and accelerometer data recordings required the 

most attention when preprocessing the data prior to the data 

mining. These two types of recordings also generated the 

vast majority of all the gathered data. 

The ECG signal was already processed with the Falcon 

algorithm [5], producing an output where each heart beat is 

described with an 11-tuple. Because the tuples were not 

explicitly separated and some of them are incomplete, it was 

important to distinguish between them in order to extract the 

specified parameters. We used R-peaks in the ECG signal to 

identify distinct tuples. Additionally, a lot of the data was 

corrupt or missing, so those parts had to be removed. 

Similar problems occurred when processing the 

accelerometer data. It was not possible to extract the 

information about the activity and energy expenditure if a 

recording of any one of the axes of either of the two sensors 

was missing. If a patient forgot to wear both sensors, or one 

had an empty battery, the data thus had to be discarded. 

Finally, some data was not uploaded successfully to the 

servers due do connection problems, and some data are 

missing as a result of inconsistent patients’ behavior. 

All of the parameters that were measured continuously 

were further separated by the main activities of the day: 

during lying, sitting and moving separately (resulting in 

features labeled per_act in Section 3) or during all the 

activities together (all_act). The ratios of the durations of 

these three activities were calculated for each day. For every 

parameter that was measured continuously or multiple times 

per day, the average value (avg) and standard deviation (sd) 

were calculated; the calculations were done for separate 

activities and for the whole day. 

The key value whose association with the other 

monitored parameters we study in this paper – the overall 

feeling of health – was reported by the patients relatively to 

the previous day. Since the value is not absolute (e.g., 

feeling well) but relative (e.g., feeling better or worse than 

yesterday), it is associated with the measurements of both 

the current and the previous day. Because of that we 

introduced features that represent changes of the parameters’ 

values with respect to the previous day (chg). Again, the 

calculations were done for separate activities and for the 

whole day. 

For the purpose of data mining, classes were assigned to 

the data. If each of the five distinct feelings of health 

corresponds to one class, the differences between them are 

too small. Therefore we decided to have only two classes:  

 Much worse vs. much better (MW-MB) 

 Much worse or worse three times in a row vs. much 

better or better three times in a row (MW3-MB3) 

 Much worse or worse vs. much better or better (MWW-

MBB) 

 Much worse vs. everything else (MW-E) 

 Much worse or worse three times in a row vs. 

everything else (MW3-E) 

 Much worse or worse vs. everything else (MWW-E) 

The majority of the data instances have the class ‘feeling the 

same as yesterday’, while very few instances have ‘feeling 

much better’ or ‘feeling much worse’. Because of this, the 

first three classes result in discarding the majority of the 

instances (only 69, 101 or 285 instances remain), while the 

last three use all 1,086 of them. Since classes are 

imbalanced, particularly in the last three cases, we used 

cost-sensitive classification, with the costs of 

misclassifications compensating for the imbalances. 

3 MINING THE DATA 

Since the number of combinations of data-mining 

algorithms, features and classes is huge, we designed a 

three-step data-mining procedure (described in detail in 

Sections 3.1–3.3): 

1. Selection of algorithms that classify the data with a high 

accuracy and yield understandable models 

2. Using the selected algorithms, selection of features that 

classify the data with a high accuracy and are 

understandable 

3. Using the selected algorithms and features, selection of 

classes that result in accurate models 

At the end of these three steps, we ended up with a number 

of interesting models, some of which are presented in 

Section 3.4. 

3.1 Selection of algorithms 

In the first step we used MW3-MB3 classes and the avg 

subset of dynamic all_act features. We compared several 

algorithms from the Weka suite [8] shown in Table 1. We 

selected the underlined algorithms for the experiments in 

Sections 3.2 and 3.3 due to their accuracy and in the case of 

JRip to have another understandable algorithm. 

Table 1: Comparison of data-mining algorithms 

Algorithm Accuracy 

Random Forest 79.3 % 

Naive Bayes 77.4 % 

J48 76.3 % 

SVM, Puk kernel 74.5 % 

SVM, linear kernel 74.2 % 

SGD 73.8 % 

Multilayer Perceptron 73.2 % 

JRip 71.9 % 

kNN, k = 1 60.9 % 

kNN, k = 2 56.2 % 

kNN, k = 3 47.8 % 

SVM, RBF kernel 40.1 % 



3.2 Selection of features 

We first compared predefined features sets described in 

Section 2. Since the number of combinations is large, we 

proceeded in several sub-steps. First, we compared subsets 

of dynamic all_act features, finding that only avg and avg  + 

chg subsets performed better than the rest. The results are 

shown in the first segment of Table 2 with the highest 

accuracy for each algorithm in bold. Second, we added 

per_act features to these two subsets of features, finding the 

extended features worse than all_act features alone (second 

segment of Table 2). And third, we combined these two 

subsets of features with static features, finding them best of 

all (third segment of Table 2). However, given the small 

number of patients, it is likely that the static features 

identified individual patients instead of taking into account 

their general characteristics. Because of that we retained all 

the underlined features for experiments in Section 3.3. 

Table 2: Comparison of predefined feature sets 

Algorithm 
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Dynamic, all_act, avg + chg 75.5 80.0 70.6 76.9 80.3 

Dynamic, all_act, avg 77.4 74.5 71.9 76.3 79.3 

Dynamic, all_act, avg + sd 75.3 73.1 70.9 73.3 77.7 

Dynamic, all_act, avg + chg + sd 74.0 78.7 70.3 75.2 78.3 

Dynamic, all_act, chg + sd 67.1 78.6 64.6 64.9 71.9 

Dynamic, all_act, chg 62.1 71.2 55.5 64.8 64.4 

Dynamic, all_act, sd 58.2 65.4 63.0 64.6 66.9 

Dynamic, all_act + per_act, avg 77.0 72.5 71.6 75.7 78.4 

Dynamic, all_act + per_act, avg + chg 73.4 71.8 71.0 76.7 79.1 

Dynamic + static, all_act, avg 77.5 79.2 75.5 76.4 79.3 

Dynamic + static, all_act, avg + chg 77.8 80.4 77.0 79.6 80.5 

We also tested automatic feature selection methods from the 

Weka suite. None of the methods performed well on its 

own, so we used the features selected by at least two 

methods out of the following: Correlation-based Feature 

Subset, Gain Ratio, ReliefF, Symmetrical Uncertainty and 

Wrapper (the end result of the Wrapper approach was the 

union of features selected when each of the five algorithms 

selected in Section 3.1 were used). As the starting point, we 

used all features, all dynamic features, and avg + chg subset 

of all_act dynamic features. The results in Table 3 show that 

the first and third of these starting points resulted in the best 

models obtained so far, although we retained all the 

underlined features for the experiments in Section 3.3. 

Table 3: Comparison of automatic feature selection 

Algorithm 

 

 

Features N
a

iv
e
 

B
a
y

e
s 

S
V

M
, 

P
u

k
 

J
R

ip
 

J
4
8
 

R
a

n
d

o
m

 

F
o

re
st

 

All features, FS 75.5 80.0 70.6 76.9 80.3 

Dynamic, all_act, avg + chg, FS 77.4 74.5 71.9 76.3 79.3 

Dynamic + static, all_act, avg + chg 75.3 73.1 70.9 73.3 77.7 

Dynamic, all_act, avg + chg 74.0 78.7 70.3 75.2 78.3 

Dynamic, all_act, avg 67.1 78.6 64.6 64.9 71.9 

Dynamic, FS 62.1 71.2 55.5 64.8 64.4 

3.3 Selection of classes 

We compared the accuracies of different classes on all the 

algorithms selected in Section 3.1 and all the features 

selected in Section 3.2. In Table 4 we report the F-measure 

for the Random Forest algorithm (most accurate overall), 

averaged over all the features. The F-measure was chosen 

because of the class imbalance, particularly for the three ‘vs. 

everything else’ pairs of classes. One can see that MW3-

MB3 performed best, probably because it strikes the best 

balance between the difference between the two classes in 

the pair, and the number of instances in the dataset. MW-

MB may have too few features, while in the other cases the 

difference between the two classes is too small. 

Table 4: Comparison of classes 

Classes MW-

MB 

MW3-

MB3 

MWW

-MBB 

MW- 

E 

MW3- 

E 

MWW-

E 

F-measure 0.77 0.79 0.66 0.55 0.56 0.61 

Instances 69 101 285 1,068 1,068 1,068 

3.4 Interesting models 

Classification models were built with the J48 and JRip 

algorithms (being the most understandable of the five 

selected in Section 3.1) on all the features selected in 

Section 3.2. Two examples are presented in Figure 1 and 

Figure 2. They show that a high heart rate 

(HR_avg_all_activities in the figures) and short QRS 

interval (QRS_avg_all_activities, a feature of the ECG 

signal) are associated with the feeling of good health, which 

corresponds to the existing medical knowledge. Increased 

weight (DRWChg) is associated with bad health, which 

makes sense, since it often signifies excess fluid retention, a 

common problem of CHF patients. Low humidity (HumA) 

and decrease in humidity (HumAChg) are associated with 

good health, which matches the medical opinion that CHF 

patients often badly tolerate humid weather, although there 

is little hard evidence for this. Oxygen saturation (DRS) 

below 97 % is associated with bad health in the second 

model, which is normal, since the saturation in healthy 

individuals is 96 % – 100 %. Finally, the first model 

associates high systolic blood pressure (SBP) and the second 

low diastolic blood pressure (DBP) with good health. This is 

expected in CHF patients, since their hearts have problems 

pumping out enough blood (low systolic blood pressure) as 

well accepting enough blood (high diastolic blood pressure). 

 

Figure 1: J48 classification tree on the avg subset of all_act 

dynamic features 



 

Figure 2: J48 classification tree on the avg + chg subset of 

all_act dynamic features 

4 CONCLUSION 

Telemonitoring can provide huge quantities of medically 

relevant data, which has the potential to revolutionize the 

care of patients with chronic diseases. However, before this 

can happen, the data must be properly interpreted, for which 

the current knowledge is not yet entirely adequate. This 

paper presents the data gathered by telemonitoring of CHF 

patients, and the first attempt to uncover interesting relations 

in the data by data mining. A systematic procedure for the 

selection of appropriate data-mining algorithms, features 

and classes was designed, whose output were a number of 

models associating telemonitored parameters with the 

feeling of good or bad health. The models correspond quite 

well to the current medical knowledge, which demonstrates 

the validity of our approach. 

In the future, we need to solve the technical difficulties 

with extracting the ECG parameters and compute some new 

features that may be relevant (e.g., QT interval prolongation, 

a feature of the ECG signal that is known to be associated 

with cardiovascular problems). Furthermore, the models 

resulting from data mining must be carefully examined by 

cardiologists, both the models presented in the paper and 

others. Those that contain hitherto unknown relations may 

be even more important than those that correspond to the 

current medical knowledge, since the relations in them may 

yield new and important insights. Finally, it would be 

desirable to study data that contain events such as hospital 

admissions or even deaths, since the findings on such data 

would be more reliable than on data that only contains self-

reported feeling of health. However, another observational 

study would be needed for that, which is a difficult 

proposition that would require substantial funding. 
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