
Minimax Pathology and Real-Number Minimax Model

Mitja Luštrek
Jožef Stefan Institute, Department of Intelligent Systems

Jamova 39, 1000 Ljubljana, Slovenia
mitja.lustrek@ijs.si

Game-playing programs usually evaluate moves by
searching the game tree using the minimax principle.
Practice shows that deeper searches produce better
results. However, theoretical analyses indicate that
under apparently reasonable conditions, the behavior
of minimax is pathological, i.e. deeper searches
produce worse results. In this paper, a minimax model
that – unlike most work in this area – uses real
numbers for positions’ values is introduced. It usually
does not exhibit pathology. Mechanism that improves
evaluation with depth is explained. Comparison to
chess is made, showing the model not to be unrealistic.

1. Introduction

Game playing has long been a test bed for artificial
intelligence research and many techniques developed
there have found application elsewhere. Game-playing
programs typically choose their moves by searching
the game tree: they build the tree of possible future
moves and positions to some arbitrary depth,
heuristically evaluate the leaves, and then propagate
their values to the root using the minimax principle.
Practical aspects of the technique are well understood
and it is known that everything else being equal, the
deeper the tree is searched, the better the program
plays. However, mathematical analyses indicate that
under seemingly sensible conditions, minimaxing
amplifies the error in the heuristic evaluation, so
increased depth of search increases the error. This
phenomenon was first observed by Beal [1] and was
later termed the minimax pathology. Several
explanations have been proposed, but no definite
conclusion has been reached to date.

One of the properties of game trees of real games that
can explain the absence of pathology is the similarity
between a position's descendents. The majority of past
research used two-value minimax models, i.e. games
could only be lost or won. We use real numbers for
positions’ values, which makes it possible to model
this similarity in a more natural way and enables a
direct comparison to a game-playing program, since
this is the way game-playing programs evaluate
positions. The mechanism that improves the quality of

evaluation with increased depth of search is analyzed
mathematically.

The paper is organized as follows. Section 2 is an
introduction to the minimax pathology. Section 3
presents our model of minimax. Section 4 gives a
mathematical explanation of minimax with real-
number values. Section 5 compares our model to a
chess program. Section 6 concludes the paper and
points out some areas for further research.

2. Minimax Pathology

Game tree consists of nodes representing positions and
edges representing moves. Game scores are assigned to
the leaves. Ideally these would be the scores of
terminal positions, but since they can be determined
only if the whole tree is built, which is usually
computationally infeasible, the scores are generally
heuristic evaluations of non-terminal positions. The
tree has interchanging max and min plies1: in the root it
is your turn and you choose the descendant with the
highest value (trying to maximize your score), in the
next ply it is your opponent’s turn and he chooses
descendants with the lowest values (trying to minimize
your score), etc. Each internal node is assigned a
backed-up value, which is the value of the chosen
descendant. This is illustrated in Figure 1; thick edges
mark the moves players choose.

Figure 1. Game tree and minimax

In this section, two-value minimax model is analyzed:
losses are marked with “–” and wins with “+”.
Negamax notation is used, i.e. nodes are marked as lost
or won from the perspective of the player to move.

1 Ply is a term for tree level used in game playing, i.e. one player’s
move.

Figure 2 shows two-value negamax representation of
the tree in Figure 1.

Figure 2. Two-value game tree and negamax

Game trees are assumed to have uniform branching
factor b, depth of search d, and probability of a loss in
i-th ply ki. Plies are numbered upwards. The value of
each leaf is independent of other leaves’ values.

Two situations shown in Figure 3 are to be considered:
a node has at least one lost descendant, in which case it
is won because one can always choose move leading to
the descendant lost for the opponent; or a node has
only won descendants, in which case it is lost because
all moves lead to positions won for the opponent.

Figure 3. Types of nodes

Equation (1), which governs the relation between the
values of k in consecutive plies, can be derived from
the second situation (Figure 3 on the right).
ki+1 = (1 – ki)b (1)

The goal is to calculate the probability of incorrectly
evaluating the root given the probability of incorrect
evaluation of the leaves. Two types of evaluation errors
are possible: a loss can be mistaken for a win (false
win) or a win for a loss (false loss). Let pi and qi be the
probabilities of the respective types of errors in i-th
ply. False wins occur in nodes where all descendants
should be won (Figure 3 on the right), but at least one
of them is a false loss. Equation (2) shows that pi+1 is
the product of the probability of all descendants of a
node in ply i + 1 being wins and the probability of at
least one of them being a false win, divided by the
probability of a node in ply i + 1 being a loss.

b
i

i

b
i

b
i

i q
k

qkp)1(1))1(1()1(

1
1 −−=

−−−
=

+
+

 (2)

False losses occur in nodes where some descendants
should be lost (Figure 3 on the left), but all of them are
false wins instead, while all won descendants retain
their true values. Equation (3) shows that qi+1 is the
probability of a false loss occurring in a node in ply
i + 1, summed over the number of possible lost
descendants, and divided by the probability of a node

in ply i + 1 being a win. The probability of a false loss
occurring in a node in ply i + 1 with j lost descendants
is the product of the probability of the node having j
lost descendants, the probability of all of them being
false losses and the probability of all the won
descendants not being false wins.

1

1
1 1

)1()1(

+

=

−−

+ −

−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=
∑

i

b

j

jb
i

j
i

jb
i

j
i

i k

qpkk
j
b

q (3)

If only games where both sides have an equal chance
of winning are considered, kd must be 0.5 and equation
(1) can be used to calculate k for other plies. After
choosing p0 and q0, equations (2) and (3) can be used
to calculate pd and qd. Overall error in the root can be
defined as position error pd kd + qd (1 – kd) or as move
error, which is the probability of a wrong move to be
chosen in the root due to position error in the root’s
descendants. If only cases where the moves lead to
positions with different values are considered and b =
2, move error equals ½ (pd + qd). Either way, it turns
out that with increasing d, the error converges towards
0.5, rendering minimax useless.

First attempts to explain the minimax pathology were
made by Bratko and Gams [3] and Beal [2]. Both came
to the conclusion that the reason minimax is effective
in real games is that sibling nodes have similar values.
Nau [5][6] used a simple game to show that strong
dependence between a node and its descendants
eliminates the pathology. Pearl [7] claimed that real
games do not have such a strong dependence. He
argued that early terminations (or blunders), which
carry reliable evaluations, are the culprit. These
attempts all used two-value model, while Sadikov et al.
[8] used multiple values in their analysis of king and
rook versus king chess endgame. They managed to
explain the pathology, but it is not known how general
their conclusion is.

Most of these explanations only show which property
eliminates the pathology, while the exact mechanism is
not sufficiently clear. Also, they are at best verified on
special cases of real games.

3. Real-Value Model

In our model game tree is built from the root down.
Static value 0 is assigned to the root and values of its
descendants are distributed around it. The rationale for
such a distribution is that descendants of a position are
only one move away from it and are therefore unlikely
to have a significantly different value. The process is
repeated recursively on each descendant until the
chosen depth is reached. Error is introduced as
normally distributed noise in the leaves. Minimaxing is

performed on the original and the erroneous values.
Unlike in two-value model, position error is defined as
the difference between the correct and the corrupted
backed-up value of a node.

The model has a number of parameters: branching
factor b, type of distribution of nodes’ static values
around the static value of their parent, its standard
deviation σv, the interval within which nodes’ values
must lie [–m, m], and standard deviation of error σe.
Only relative values of σv, m, and σe are important, so
σv can be fixed to 1. In Figure 4 results for normal
distribution of nodes’ values, m = ∞, and σe = 0.2 are
shown. The parameters are chosen rather arbitrarily,
but their effect is examined later on. The results are
averaged over 10,000 game trees for b = 2 and 1,000
game trees for b = 5, each time with 10 different error
placements per tree. Only move error is plotted;
position error behaves similarly.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 3 4 5 6 7 8 9 10

d

M
ov

e
er

ro
r

b = 2
b = 5

Figure 4. Move error in the root as a function of d

Normal, triangular, and uniform distributions of nodes
values were tested with very similar results. Several
values of m were tried. With m < 3 pathology was
present, because nodes’ values could not be properly
distributed around the value of their parent. There was
hardly any difference between m ≥ 4 and m = ∞.
Varying σe had little effect on the pathology. We can
conclude that in our model, minimax is not
pathological for nearly all parameter settings.

4. Mathematical Analysis

For the purpose of mathematical analysis, constant
difference between the values of sibling nodes is
assumed and only b = 2 is considered.

A node in ply i + 1 has two descendants with true
backed-up values µL i (lower value) and µi H (higher
value). Erroneous backed-up values are random
variables L and H. In the leaves they are distributed
normally with means µ0 L and µ0 H and standard
deviation σe. Their probability density functions are
given in equations (4).

2

2
0

2

)(

0 2
1)(e

Lx

e
L exf σ

µ

πσ

−−

= 2

2
0

2
)(

0 2
1)(e

Hx

e
H exf σ

µ

πσ

−−

= (4)

In a max ply i + 1, the value of a node is random
variable MAXi+1 = max (Li, Hi) with probability density
function calculated according to equation (5).

∫∫
∞−∞−

+

+=

=<+<=
x

HiLi

x

LiHi

LiHiMAXi

dhhfxfdllfxf

xHPxfxLPxfxf

)()()()(

)()()()()(1
 (5)

Probability density functions of L0, H0, and MAX1 are
shown in Figure 5.

Figure 5. Probability density functions of the values of

two sibling nodes in ply 0 and their parent

As can be seen in Figure 5, the curve of the parent is
narrower than the curves of its descendents, meaning
that position error of the parent is smaller.

Analogously to equation (5), the probability density
function in a min ply is calculated according to
equation (6).

∫∫
∞∞

+ +=
x

LiHi
x

HiLiMINi dllfxfdhhfxfxf)()()()()(1
 (6)

Since probability density functions in ply 0 are given
by equations (4), probability density function in any
ply can be calculated by repeatedly using equations (5)
and (6). This is shown in Figure 6; µi H – µi L = 1 for all
i.

Figure 6. Probability density functions in plies 0–10

As can be seen in Figure 6, the higher a ply, the
narrower the curve of the probability density function
of a node’s backed-up value. This means that position
error decreases with depth of search.

Let MEi+1 be move error in ply i + 1. An erroneous
move in ply i + 1 is chosen when the values of a pair of
sibling nodes in ply i are switched, i.e. Li > Hi, so
MEi+1 is calculated according to equation (7).

∫ ∫
∞

∞−

∞

+ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=>= dhdllfhfHLPME

h
LiHiiii)()()(1

 (7)

How move error changes with increasing depth of
search is shown in Figure 7; MEd is move error in the
root when the depth of search is d, µi H – µi L = 1 for all
i, and σe = 1.

Figure 7. Move error in the root as a function d

5. Verification in Chess

Whether nodes’ static values are indeed distributed
around the static value of their parent was verified with
the chess program Crafty [4]. For each of 450,000
game tree nodes visited in the course of a game, the
differences between the static value of the node and the
static values of all of its descendants were calculated.
In Figure 8, the results are shown as the number of
cases where the difference lies within an interval; the
lower and upper 1% of the cases are omitted for clarity.

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

7,000,000

8,000,000

-1
.1

-1
.0

-0
.9

-0
.8

-0
.7

-0
.6

-0
.5

-0
.4

-0
.3

-0
.2

-0
.1 0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

Difference between the static value of a node
and its parent

N
um

be
r o

f c
as

es

Figure 8. Distribution of the differences between the

static value of a node and its parent

As can be seen in Figure 8, the distribution resembles
normal, which is the default in our model. Since it was
found that the type of distribution is not that important,
we feel that the results from Crafty can be considered a
confirmation of the model.

6. Conclusion

We designed a real-value minimax model with nodes’
static values distributed around the static value of their
parent. It was tested with a wide variety of parameter
settings and only in the special case when the basic
assumption of the model could not be properly
expressed did it behave pathologically. The mechanism
through which minimaxing reduces the noise
introduced in the leaves of a game tree was explained
in mathematical terms. The explanation is not as
general as one might wish, but it appears to be
essentially correct. It was shown that our model
corresponds reasonably well to chess. From this we can
conclude that one reason that makes minimax the
algorithm of choice for game-playing programs is
found and understood.

References

[1] D. F. Beal. An Analysis of Minimax. Advances in
Computer Chess 2 (ed. M. R. B. Clarke), pp. 103-109,
Edinburgh University Press, 1980

[2] D. F. Beal. Benefits of Minimax Search. Advances
in Computer Chess 3 (ed. M. R. B. Clarke), pp. 17-24,
Pergamon Press, 1982

[3] I. Bratko and M. Gams. Error Analysis of the
Minimax Principle. Advances in Computer Chess 3
(ed. M. R. B. Clarke), pp. 1-15, Pergamon Press, 1982

[4] R. Hyatt. Home page.
http://www.cis.uab.edu/info/faculty/hyatt/hyatt.html

[5] D. S. Nau. An Investigation of the Causes of
Pathology in Games. Artificial Intelligence 19(3), pp.
257-278, 1982

[6] D. S. Nau. Pathology on Game Trees Revisited,
and an Alternative to Minimaxing. Artificial
Intelligence 21(1, 2), pp. 221-224, 1983

[7] J. Pearl. On the Nature of Pathology in Game
Searching. Artificial Intelligence 20(4), pp. 427-453,
1983

[8] A. Sadikov, I. Bratko and I. Kononenko. Search vs
Knowledge: Empirical Study of Minimax on KRK
Endgame. Advances in Computer Games: Many
Games, Many Challenges (eds. H. J. van den Herik, H.
Iida, and E. Heinz), pp. 33-44, Kluwer Academic
Publishers, 2003

	Introduction
	Minimax Pathology
	Real-Value Model
	Mathematical Analysis
	Verification in Chess
	Conclusion
	References

