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Game-playing programs usually evaluate moves by 
searching the game tree using the minimax principle. 
Practice shows that deeper searches produce better 
results. However, theoretical analyses indicate that 
under apparently reasonable conditions, the behavior 
of minimax is pathological, i.e. deeper searches 
produce worse results. In this paper, a minimax model 
that – unlike most work in this area – uses real 
numbers for positions’ values is introduced. It usually 
does not exhibit pathology. Mechanism that improves 
evaluation with depth is explained. Comparison to 
chess is made, showing the model not to be unrealistic. 
 
1. Introduction 
 
Game playing has long been a test bed for artificial 
intelligence research and many techniques developed 
there have found application elsewhere. Game-playing 
programs typically choose their moves by searching 
the game tree: they build the tree of possible future 
moves and positions to some arbitrary depth, 
heuristically evaluate the leaves, and then propagate 
their values to the root using the minimax principle. 
Practical aspects of the technique are well understood 
and it is known that everything else being equal, the 
deeper the tree is searched, the better the program 
plays. However, mathematical analyses indicate that 
under seemingly sensible conditions, minimaxing 
amplifies the error in the heuristic evaluation, so 
increased depth of search increases the error. This 
phenomenon was first observed by Beal [1] and was 
later termed the minimax pathology. Several 
explanations have been proposed, but no definite 
conclusion has been reached to date. 
 
One of the properties of game trees of real games that 
can explain the absence of pathology is the similarity 
between a position's descendents. The majority of past 
research used two-value minimax models, i.e. games 
could only be lost or won. We use real numbers for 
positions’ values, which makes it possible to model 
this similarity in a more natural way and enables a 
direct comparison to a game-playing program, since 
this is the way game-playing programs evaluate 
positions. The mechanism that improves the quality of 

evaluation with increased depth of search is analyzed 
mathematically. 
 
The paper is organized as follows. Section 2 is an 
introduction to the minimax pathology. Section 3 
presents our model of minimax. Section 4 gives a 
mathematical explanation of minimax with real-
number values. Section 5 compares our model to a 
chess program. Section 6 concludes the paper and 
points out some areas for further research. 
 
2. Minimax Pathology 
 
Game tree consists of nodes representing positions and 
edges representing moves. Game scores are assigned to 
the leaves. Ideally these would be the scores of 
terminal positions, but since they can be determined 
only if the whole tree is built, which is usually 
computationally infeasible, the scores are generally 
heuristic evaluations of non-terminal positions. The 
tree has interchanging max and min plies1: in the root it 
is your turn and you choose the descendant with the 
highest value (trying to maximize your score), in the 
next ply it is your opponent’s turn and he chooses 
descendants with the lowest values (trying to minimize 
your score), etc. Each internal node is assigned a 
backed-up value, which is the value of the chosen 
descendant. This is illustrated in Figure 1; thick edges 
mark the moves players choose. 

 
Figure 1. Game tree and minimax 

In this section, two-value minimax model is analyzed: 
losses are marked with “–” and wins with “+”. 
Negamax notation is used, i.e. nodes are marked as lost 
or won from the perspective of the player to move. 

                                                           
1 Ply is a term for tree level used in game playing, i.e. one player’s 
move. 



Figure 2 shows two-value negamax representation of 
the tree in Figure 1. 

 
Figure 2. Two-value game tree and negamax 

Game trees are assumed to have uniform branching 
factor b, depth of search d, and probability of a loss in 
i-th ply ki. Plies are numbered upwards. The value of 
each leaf is independent of other leaves’ values. 
 
Two situations shown in Figure 3 are to be considered: 
a node has at least one lost descendant, in which case it 
is won because one can always choose move leading to 
the descendant lost for the opponent; or a node has 
only won descendants, in which case it is lost because 
all moves lead to positions won for the opponent. 

 
Figure 3. Types of nodes 

Equation (1), which governs the relation between the 
values of k in consecutive plies, can be derived from 
the second situation (Figure 3 on the right). 
ki+1 = (1 – ki)b (1) 
 
The goal is to calculate the probability of incorrectly 
evaluating the root given the probability of incorrect 
evaluation of the leaves. Two types of evaluation errors 
are possible: a loss can be mistaken for a win (false 
win) or a win for a loss (false loss). Let pi and qi be the 
probabilities of the respective types of errors in i-th 
ply. False wins occur in nodes where all descendants 
should be won (Figure 3 on the right), but at least one 
of them is a false loss. Equation (2) shows that pi+1 is 
the product of the probability of all descendants of a 
node in ply i + 1 being wins and the probability of at 
least one of them being a false win, divided by the 
probability of a node in ply i + 1 being a loss. 
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False losses occur in nodes where some descendants 
should be lost (Figure 3 on the left), but all of them are 
false wins instead, while all won descendants retain 
their true values. Equation (3) shows that qi+1 is the 
probability of a false loss occurring in a node in ply 
i + 1, summed over the number of possible lost 
descendants, and divided by the probability of a node 

in ply i + 1 being a win. The probability of a false loss 
occurring in a node in ply i + 1 with j lost descendants 
is the product of the probability of the node having j 
lost descendants, the probability of all of them being 
false losses and the probability of all the won 
descendants not being false wins. 
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If only games where both sides have an equal chance 
of winning are considered, kd must be 0.5 and equation 
(1) can be used to calculate k for other plies. After 
choosing p0 and q0, equations (2) and (3) can be used 
to calculate pd and qd. Overall error in the root can be 
defined as position error pd kd + qd (1 – kd) or as move 
error, which is the probability of a wrong move to be 
chosen in the root due to position error in the root’s 
descendants. If only cases where the moves lead to 
positions with different values are considered and b = 
2, move error equals ½ (pd + qd). Either way, it turns 
out that with increasing d, the error converges towards 
0.5, rendering minimax useless. 
  
First attempts to explain the minimax pathology were 
made by Bratko and Gams [3] and Beal [2]. Both came 
to the conclusion that the reason minimax is effective 
in real games is that sibling nodes have similar values. 
Nau [5][6] used a simple game to show that strong 
dependence between a node and its descendants 
eliminates the pathology. Pearl [7] claimed that real 
games do not have such a strong dependence. He 
argued that early terminations (or blunders), which 
carry reliable evaluations, are the culprit. These 
attempts all used two-value model, while Sadikov et al. 
[8] used multiple values in their analysis of king and 
rook versus king chess endgame. They managed to 
explain the pathology, but it is not known how general 
their conclusion is. 
 
Most of these explanations only show which property 
eliminates the pathology, while the exact mechanism is 
not sufficiently clear. Also, they are at best verified on 
special cases of real games. 
 
3. Real-Value Model 
 
In our model game tree is built from the root down. 
Static value 0 is assigned to the root and values of its 
descendants are distributed around it. The rationale for 
such a distribution is that descendants of a position are 
only one move away from it and are therefore unlikely 
to have a significantly different value. The process is 
repeated recursively on each descendant until the 
chosen depth is reached. Error is introduced as 
normally distributed noise in the leaves. Minimaxing is 



performed on the original and the erroneous values. 
Unlike in two-value model, position error is defined as 
the difference between the correct and the corrupted 
backed-up value of a node. 
 
The model has a number of parameters: branching 
factor b, type of distribution of  nodes’ static values 
around the static value of their parent, its standard 
deviation σv, the interval within which nodes’ values 
must lie [–m, m], and standard deviation of error σe. 
Only relative values of σv, m, and σe are important, so 
σv can be fixed to 1. In Figure 4 results for normal 
distribution of nodes’ values, m = ∞, and σe = 0.2 are 
shown. The parameters are chosen rather arbitrarily, 
but their effect is examined later on. The results are 
averaged over 10,000 game trees for b = 2 and 1,000 
game trees for b = 5, each time with 10 different error 
placements per tree. Only move error is plotted; 
position error behaves similarly. 
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Figure 4. Move error in the root as a function of d 

Normal, triangular, and uniform distributions of nodes 
values were tested with very similar results. Several 
values of m were tried. With m < 3 pathology was 
present, because nodes’ values could not be properly 
distributed around the value of their parent. There was 
hardly any difference between m ≥ 4 and m = ∞. 
Varying σe had little effect on the pathology. We can 
conclude that in our model, minimax is not 
pathological for nearly all parameter settings. 
 
4. Mathematical Analysis 
 
For the purpose of mathematical analysis, constant 
difference between the values of sibling nodes is 
assumed and only b = 2 is considered. 
 
A node in ply i + 1 has two descendants with true 
backed-up values µL i (lower value) and µi H (higher 
value). Erroneous backed-up values are random 
variables L and H. In the leaves they are distributed 
normally with means µ0 L and µ0 H and standard 
deviation σe. Their probability density functions are 
given in equations (4). 
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In a max ply i + 1, the value of a node is random 
variable MAXi+1 = max (Li, Hi) with probability density 
function calculated according to equation (5). 
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Probability density functions of L0, H0, and MAX1 are 
shown in Figure 5. 

 
Figure 5. Probability density functions of the values of 

two sibling nodes in ply 0 and their parent 

As can be seen in Figure 5, the curve of the parent is 
narrower than the curves of its descendents, meaning 
that position error of the parent is smaller. 
 
Analogously to equation (5), the probability density 
function in a min ply is calculated according to 
equation (6). 

∫∫
∞∞

+ +=
x

LiHi
x

HiLiMINi dllfxfdhhfxfxf )()()()()(1
 (6) 

Since probability density functions in ply 0 are given 
by equations (4), probability density function in any 
ply can be calculated by repeatedly using equations (5) 
and (6). This is shown in Figure 6; µi H – µi L = 1 for all 
i. 

 
Figure 6. Probability density functions in plies 0–10 



As can be seen in Figure 6, the higher a ply, the 
narrower the curve of the probability density function 
of a node’s backed-up value. This means that position 
error decreases with depth of search. 
 
Let MEi+1 be move error in ply i + 1. An erroneous 
move in ply i + 1 is chosen when the values of a pair of 
sibling nodes in ply i are switched, i.e. Li > Hi, so 
MEi+1 is calculated according to equation (7). 
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How move error changes with increasing depth of 
search is shown in Figure 7; MEd is move error in the 
root when the depth of search is d, µi H – µi L = 1 for all 
i, and σe = 1. 

 
Figure 7. Move error in the root as a function d 

 
5. Verification in Chess 
 
Whether nodes’ static values are indeed distributed 
around the static value of their parent was verified with 
the chess program Crafty [4]. For each of 450,000 
game tree nodes visited in the course of a game, the 
differences between the static value of the node and the 
static values of all of its descendants were calculated. 
In Figure 8, the results are shown as the number of 
cases where the difference lies within an interval; the 
lower and upper 1% of the cases are omitted for clarity. 
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Figure 8. Distribution of the differences between the 

static value of a node and its parent 

As can be seen in Figure 8, the distribution resembles 
normal, which is the default in our model. Since it was 
found that the type of distribution is not that important, 
we feel that the results from Crafty can be considered a 
confirmation of the model. 
 
6. Conclusion 
 
We designed a real-value minimax model with nodes’ 
static values distributed around the static value of their 
parent. It was tested with a wide variety of parameter 
settings and only in the special case when the basic 
assumption of the model could not be properly 
expressed did it behave pathologically. The mechanism 
through which minimaxing reduces the noise 
introduced in the leaves of a game tree was explained 
in mathematical terms. The explanation is not as 
general as one might wish, but it appears to be 
essentially correct. It was shown that our model 
corresponds reasonably well to chess. From this we can 
conclude that one reason that makes minimax the 
algorithm of choice for game-playing programs is 
found and understood. 
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