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Abstract

Large real-time search problems such as path-finding in com-
puter games and robotics limit the applicability of complete
search methods such as A*. As a result, real-time heuris-
tic methods are becoming more wide-spread in practice.
These algorithms typically conduct a limited-depth looka-
head search and evaluate the states at the frontier using a
heuristic. Actions selected by such methods can be subop-
timal due to the incompleteness of their search and inaccu-
racies in the heuristic. Lookahead pathologies occur when
a deeper search decreases the chances of selecting a better
action. Over the last two decades research on lookahead
pathologies has focused on minimax search and small syn-
thetic examples in single-agent search. As real-time search
methods gain ground in applications, the importance of un-
derstanding and remedying lookahead pathologies increases.
This paper, for the first time, conducts a large scale inves-
tigation of lookahead pathologies in the domain of real-time
path-finding. We use maps from commercial computer games
to show that deeper search often not only consumes addi-
tional in-game CPU cycles but also decreases path quality.
As a second contribution, we suggest three explanations for
such pathologies and support them empirically. Finally, we
propose a remedy to lookahead pathologies via a method for
dynamic lookahead depth selection. This method substan-
tially improves on-line performance and, as an added benefit,
spares the user from having to tune a control parameter.

Introduction
Path-finding tasks commonly require real-time response,
which on large problems precludes the use of complete
search methods such as A*. Imagine a real-time strategy
computer game. The user commands dozens or even hun-
dreds of units to move simultaneously towards a distant
goal. If each of the units were to compute the whole path
to the goal before moving, this could easily incur a notice-
able (and annoying) delay. Incomplete single-agent search
methods (Korf 1990; Shueet al. 2001; Bulitkoet al. 2005;
Herńandez and Meseguer 2005; Bulitko and Lee 2006) work
similarly to minimax-based algorithms used in two-player
games. They conduct a limited-depth lookahead search, i.e.,
expand a part of the space centered on the agent, and heuris-
tically evaluate the distances from the frontier of the ex-
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panded space to the goal. By interleaving search and move-
ment, agents using these algorithms can guarantee a constant
upper-bound on the amount of search per move and compare
favorably to complete methods (Koenig 2004).

Actions selected based on heuristic lookahead search are
not necessarily optimal, but it is generally believed that
deeper lookahead increases the quality of decisions. It has
long been known that this is not always the case in two-
player games (Nau 1979; Beal 1980). This phenomenon has
been termed the minimax pathology. More recently patho-
logical behavior was discovered in single-agent search as
well (Bulitko et al. 2003; Bulitko 2003).

In this paper we investigate lookahead pathologies in
real-time pathfinding on maps from commercial computer
games. Computer games have a limited CPU budget for AI
and current path-finding algorithms can take as much as 60-
70% of it (Pottinger 2000). Thus, it is crucial that the CPU
cycles be used efficiently and more expensive, deeper looka-
head not be conducted when it is not beneficial or, worse yet,
when it is harmful.

This paper makes three contributions. First, it presents
a large-scale empirical study of lookahead pathologies in
path-finding on commercial game maps. In this study,
pathologies were found inmore than halfof the problems
considered. Second, it shows that both learning and search
are responsible for such wide-spread pathological behav-
ior. Our explanations for the pathology are presented for-
mally, motivated intuitively, and supported by empirical evi-
dence. Third, it proposes an automated approach to dynamic
lookahead selection. This novel technique takes advantage
of automatically derived state abstraction and works with
any lookahead-based single-agent search method. Its ini-
tial implementation in real-time path-finding demonstrates a
promise in remedying pathologies.

Related Work
Most game-playing programs successfully use minimax to
back-up the heuristic values from the leaves of the game
tree to the root. Early attempts to explain why backed-
up values are more reliable than static values, however,
led to a surprising discovery: minimaxing actually am-
plifies the error in the heuristic evaluations (Nau 1979;
Beal 1980). Several explanations for such pathological be-
havior were proposed, the most common being that de-



pendence between nearby positions is what eliminates the
pathology in real games (Bratko and Gams 1982; Nau 1982;
Pearl 1983; Scheucher and Kaindl 1998). Recently Luštrek
et al. (2005) showed that modeling the error realistically
might be enough to eliminate it. Common to all the work
on the minimax pathology is that it tries to explain why the
pathology appears in theoretical analyses but not in practice,
whereas in path-finding, the pathology is a practical prob-
lem.

The pathology in single-agent search was discovered by
Bulitko et al. (2003) and was demonstrated on a small syn-
thetic search tree. Later it was observed in solving the eight
puzzle (Bulitko 2003). The same paper also showed the
promise of dynamic lookahead depth selection, but did not
propose a mechanism for doing so. An attempt to explain
what is causing the pathology on synthetic search trees was
made by Lǔstrek (2005), but it does not translate well to
path-finding and practically used heuristics. To the best of
our knowledge, this paper presents the first study of looka-
head pathology in path-finding.

Problem Formulation
In this paper we are dealing with the problem of an agent
trying to find a path from a start state to a goal state in a
two-dimensional grid world. The agent’s state is defined by
its location in one of the grid’s squares. Some squares are
blocked by walls and cannot be entered. The traversable
squares form the set of statesS the agent can enter;sg ∈ S
is the goal state. From each square the agent can move to the
eight immediate neighbor squares. Thetravel costof each
of the four straight moves (north, west, south and east) is 1
and the travel cost of the diagonal moves is

√
2. A search

problem is defined by a map, a start state, and a goal state.
The agent plans its path using the Learning Real-Time

Search (LRTS) algorithm (Bulitko and Lee 2006) config-
ured so that it works similarly to the classic LRTA* (Korf
1990). LRTS conducts a lookahead search centered on the
current statesc ∈ S and generates all the states within its
lookahead area (i.e., up tod moves away fromsc). The
term generate refers to ‘looking at’ a state, as opposed to
physically visiting it. Next, LRTS evaluates the states at the
frontier of the lookahead area using the heuristic functionh,
which estimates the length of shortest path from the frontier
states tosg. The agent then moves along the shortest path
to the most promising frontier statesfopt ∈ S. Statesfopt
is the state on the path tosg with the lowest projected travel
costf(sfopt) = g(sfopt) + h(sfopt), whereg(sfopt) is the
travel cost fromsc to sfopt andh(sfopt) the estimated travel
cost fromsfopt to sg. When the agent reachessfopt, another
lookahead search is performed. This process continues until
sg is reached. The initial heuristic is theoctile distanceto
sg, i.e., the actual shortest distance assuming a map without
obstacles (the term octile refers to the eight squares or tiles
the agent can move to). After each lookahead search,h(sc)
is updated tof(sfopt) if the latter is higher, which raises the
heuristic in the areas where it was initially too optimistic,
making it possible for the agent to eventually find the way
around the obstacles even when the lookahead radius is too

small to see it directly. This constitutes the process of learn-
ing. The updated heuristic is still guaranteed to be admis-
sible (i.e., non-overestimating), although unlike the initial
one, it may not be consistent (i.e., the difference in heuristic
values of two states may exceed the shortest distance be-
tween them).

Definition 1 For any states ∈ S, the length of the solution
(i.e., the travel cost of the path froms to sg) produced by
LRTS with the lookahead depthd is denoted byl(s, d).

Definition 2 For any states ∈ S, thesolution-length vec-
tor ~l(s) is (l(s, 1), l(s, 2), . . . , l(s, dmax)), wheredmax is the
maximum lookahead depth.

Definition 3 The degree ofsolution-length pathologyof a
problem characterized by the start states0 is k iff ~l(s0) has
exactlyk increases in it, i.e.,l(s0, i + 1) > l(s0, i) for k
differenti.

The length of the solution an agent finds seems to be the
most natural way to represent the performance of a search
algorithm. However, we will require a metric that can also
be used on a set of states that do not form a path.

Definition 4 In any states ∈ S′ whereS′ ⊆ S is the set of
states visited by an agent while pursuing a given problem,
the agent can take an optimal or a suboptimal action. An
optimal action moves the agent into a state lying on a lowest-
cost path froms to sg. The error e(S′) is the fraction of
suboptimal actions taken in the set of statesS′.

Definition 5 In any set of statesS′ ⊆ S, the error vector
~e(S′) is (e(S′, 1), e(S′, 2), . . . , e(S′, dmax)), wheredmax is
the maximum lookahead depth.

Definition 6 The degree oferror pathologyof a problem
characterized by the set of statesS′ is k iff ~e(S′) has exactly
k increases in it, i.e.,e(S′, i + 1) > e(S′, i) for k different
i. We can also speak of the “pathologicalness” of a single
state (|S′| = 1), but in such a case the notion of the degree
of pathology makes little sense. A states ∈ S is patholog-
ical iff there are lookahead depthsi andi + 1 such that the
action selected ins using lookahead depthi is optimal and
the action selected using depthi + 1 is not.

Finally, we will need ways to measure the amount of work
done by the LRTS algorithm.

Definition 7 α(d) is the average number of states generated
per single move during lookahead search with depthd.

Definition 8 β(d) is the average volume of updates to the
heuristic encountered per state generated during lookahead
search with depthd. The volume of updates is the difference
between the updated and the initial heuristic.

Pathology Experimentally Observed
We chose in-game path-finding as a practically important
task with severe constraints on CPU time. Five maps from a
role-playing and a real-time strategy game were loaded into
Hierarchical Open Graph, an open-source research testbed
provided by Bulitkoet al. (2005). The map sizes ranged
from214×192 (2,765 reachable states) to235×204 (16,142



reachable states). On these maps, we randomly generated
1,000 problems with the distance between the start and goal
state between 1 and 100.

We conducted two types of experiments: on-policy and
off-policy. In an on-policy experiment, the agent follows
the behavioral policy dictated by the LRTS algorithm with
lookahead depthd from a given start state to the goal state,
updating the heuristic along the way. We varyd from 1 to
10. The length of the path and the error over the entire path
are measured for eachd, giving the solution-length and the
error vectors from which the pathology is computed. In an
off-policy experiment, the agent spontaneously appears in
individual states, in each of which it selects the first move
towards the goal state using the LRTS algorithm with looka-
head depthd. The heuristic is not updated. Again,d ranges
from 1 to 10. The same 1,000 problems were used in both
types of experiments, but in the off-policy experiments, the
start states were ignored. The error over all states is mea-
sured for eachd and the error pathology is computed from
the resulting error vector. Since it is not possible to measure
solution-length pathology in off-policy experiments, only er-
ror pathology is considered in this paper (with the exception
of the first experiment).

First we conducted the basic on-policy experiment. The
results in Table 1 show a thatover 60%of problems are
pathological to some degree. ‘Degree’ in the table means
the degree of pathology (0 indicates no pathology), ‘Length
%’ means the percentage of problems with a given degree
of length pathology and ‘Error %’ means the same for error
pathology. The notation in the rest of the tables in this and
the following section is similar.

Table 1: Percentages of pathological problems in the basic
on-policy experiment.

Degree 0 1 2 3 4 ≥ 5
Length % 38.1 12.8 18.2 16.1 9.5 5.3
Error % 38.5 15.1 20.3 17.0 7.6 1.5

The first possible explanation of the results in Table 1 is
that the maps contain a lot of states where deeper lookaheads
lead to suboptimal decisions, whereas shallower ones do not.
This turned outnot to be the case: for each of the problems
we measured the “pathologicalness” of every state on that
map in the off-policy mode. Surprisingly, there were only
3.9% of pathological states. This is disconcerting: if the
nature of the path-finding problems is not pathological, yet
there is a lot of pathology in our solutions, then perhaps the
search algorithm is to blame.

Comparing the percentage of pathological states to the re-
sults in Table 1 is not entirely meaningful, because in the
first case the error is considered per state and in the second
case it is averaged over all the states visited per problem.
The average number of states visited per problem during the
basic on-policy experiment is 188. To approximate the set-
ting of the on-policy experiment, we randomly selected the
same number of states per problem in the off-policy mode
and computed the error over all of them. Pathology mea-
surements from the resulting error vector are shown in Table

2.

Table 2: Percentages of pathological problems in the off-
policy experiment with 188 states per problem.

Degree 0 1 2 3 ≥ 4
Problems % 57.8 31.4 9.4 1.4 0.0

This correction reduces the discrepancy between the pres-
ence of pathology in on-policy and off-policy experiments
from 61.5% vs. 3.9% to 61.5% vs. 42.2%.

The fact that only 3.9% of states are pathological indi-
cates that the pathology observed in the off-policy experi-
ment with 188 states per problem may be due to very minor
differences in error. This interferes with the study of pathol-
ogy since the results may be due to random noise instead
of systematic degradation of lookahead search performance
when lookahead depth increases. To remove such interfer-
ence, we extend Definition 6 with noise tolerancet:

Definition 9 The degree of error pathology of a problem
characterized by the set of statesS′ is k iff ~e(S′) has ex-
actly k t-increases in it, where at-increase means that
e(S′, i + 1) > t · e(S′, i).

The new definition witht = 1.09 will be used in lieu of
Definition 6 henceforth. The particular value oft was chosen
so that fewer than 5% of problems are pathological in the
off-policy experiment with 188 states per problem. Table 3
compares the on-policy and off-policy experiments with the
new definition.

Table 3: Percentage of pathological problems in the basic
on-policy and off-policy experiments witht = 1.09.

Degree 0 1 2 3 4 ≥ 5
On-policy % 42.3 19.7 21.2 12.9 3.6 0.3
Off-policy % 95.7 3.7 0.6 0.0 0.0 0.0

The data indicate that the noise tolerance hardly reduces
the pathology in the on-policy experiment (compare to Ta-
ble 1). This suggests that map topology by itself is a rather
minor factor in on-policy pathologies. In the rest of the pa-
per, we will investigate the real causes for the difference in
the amount of on-policy and off-policy pathologies. We re-
fer to data in Table 3 as the basic on-policy and the basic
off-policy experiments henceforth.

Mechanisms of Pathology
The simplest explanation for the pathology in the basic on-
policy experiment is as follows:

Hypothesis 1 The LRTS algorithm’s behavioral policy
tends to focus the search on pathological states.

This hypothesis can be verified by computing off-policy
pathology from the error in the states visited during the ba-
sic on-policy experiment instead of randomly chosen 188
states. This experiment differs from the basic on-policy ex-
periment in that the error is measured in the same states at all
lookahead depths (in on-policy experiments, different states



may be visited at depths depths) and there is no learning.
The results in Table 4 do show a larger percentage of patho-
logical problems than the off-policy row of Table 3 (6.3%
vs. 4.3%), but a much smaller one than the on-policy row of
the same table (6.3% vs. 57.7%). So while the percentage
of pathological states visited on-policy is somewhat above
average, this cannot account for the large frequency (57.7%)
of pathological problems in the basic on-policy experiment.

Table 4: Percentages of pathological problems measured
off-policy in the states visited while on-policy.

Degree 0 1 2 3 ≥ 4
Problems % 93.6 5.3 0.9 0.2 0.0

Notice that the basic on-policy experiment involves learn-
ing (i.e., updating the heuristic function) while the basic off-
policy experiment does not. The agent performs a search
with lookahead depthd everyd moves. If there were no ob-
stacles on the map, the agent would move in a straight line
and would encounter exactly one updated state during each
search (the one updated during the previous search). Each
search generates(2d + 1)2 distinct states, so1/(2d + 1)2 of
them would have been updated: a fraction that is larger for
smallerd. We can now formulate:

Hypothesis 2 Smaller lookahead depths benefit more from
the updates to the heuristic. This can be expected to make
their decisions better than the mere depth would suggest and
thus reduce the difference in error between small and large
lookahead depths. If the error is reduced, cases where a
deeper lookahead actually performs worse than a shallower
lookahead should be more common.

A first test of Hypothesis 2 is to perform an on-policy ex-
periment where the agent is still directed by the LRTS algo-
rithm that uses learning (as without learning it would often
get caught in an infinite loop), but the measurement of the
error is performed using only the initial, non-updated heuris-
tic. To do this, two moves are selected in each state: one that
uses learning, which the agent actually takes, and another
that ignores learning, which is used for error measurement.
The results in Table 5 strongly suggest that learning is in-
deed responsible for the pathology, because the pathology
in the new experiment is much smaller than in the basic on-
policy experiment shown in Table 3 (20.2% vs. 57.7%). This
is not the only reason, because the pathology is still larger
than in the basic off-policy experiment also shown in Table
3 (20.2% vs. 4.3%), but it warrants further investigation; we
will return to the other reason later.

Table 5: Percentages of pathological problems in an on-
policy experiment with error measured without learning.

Degree 0 1 2 3 4 ≥ 5
Problems % 79.8 14.2 4.5 1.2 0.3 0.0

During the basic off-policy experiment, all lookahead
depths are on an equal footing with respect to learning as
there are no updates to the heuristic function. Since learn-
ing is inevitable during on-policy experiments, the best one

can do to put all lookahead depths on an equal footing dur-
ing an on-policy experiment is to have all states within the
lookahead radius updated as equally as possible. We imple-
ment such uniform learning as follows. Letsc be the current
state,Si the set of all the interior nodes of the lookahead area
andSf the frontier of the lookahead area. For every inner
states ∈ Si an LRTS search originating ins and extending
to the frontierSf is performed. The heuristic value ofs is
then updated to travel cost of the shortest path to the goal
found during the search, just like the heuristic value ofsc

is updated with the regular update method. The results for
an on-policy experiment with uniform learning are found in
Table 6.

Table 6: Percentages of pathological problems in an on-
policy experiment with uniform learning.

Degree 0 1 2 3 4 ≥ 5
Problems % 40.9 20.2 22.1 12.3 4.2 0.3

The results in Table 6 seem to contradict Hypothesis 2,
since they are even more pathological than in the basic on-
policy experiment shown in Table 3 (59.1% vs. 57.7%).
Figure 1 explains the apparent contradiction: even though
more states are updated with uniform learning than with
the regular learning, the volume of updates encountered de-
creases more steeply, which means that the difference in the
impact of learning between lookahead depths is more pro-
nounced with uniform learning. This may happen because
the uniform learning helps the agent find the goal state more
quickly: the length of the solution averaged over all the
problems is 2.3 to 3.3 times shorter than in the basic on-
policy experiment. Shorter solutions mean that the agent
returns to the areas already visited (where the heuristic is
updated) less often. What is common to both on-policy ex-
periments in Figure 1 is that unlike in the basic off-policy ex-
periment, the volume of updates encountered does decrease
with increased lookahead depth. This supports Hypothe-
sis 2, even though the reasoning that led to it may not be
entirely correct.

Figure 1: The volume of heuristic updates encountered with
respect to the lookahead depth in different experiments.

Unlike the regular learning in LRTS, uniform learning
preserves the consistency of the heuristic. Experiments on
synthetic search trees suggested that inconsistency increases



the pathology (Lǔstrek 2005), but considering that the con-
sistent uniform learning is more pathological than the in-
consistent regular learning, this appears not to be the case in
path-finding.

Hypothesis 3 Let αoff(d) andαon(d) be the average num-
ber of states generated per move in the basic off-policy and
on-policy experiments correspondingly. In off-policy exper-
iments a search is performed every move, whereas in on-
policy experiments a search is performed everyd moves.
Thereforeαon(d) = αoff(d)/d (assuming the same number
of non-traversable squares). This means that in the basic on-
policy experiment fewer states are generated at larger looka-
head depths than in the basic off-policy experiment. Conse-
quently lookahead depths in the basic on-policy experiment
are closer to each other with respect to the number of states
generated. Since the number of states generated can be ex-
pected to correspond to the quality of decisions, cases where
a deeper lookahead actually performs worse than a shallower
lookahead should be more common.

Hypothesis 3 can be verified by an on-policy experiment
where a search is performed every move instead of every
d moves as it is in the regular LRTS. Table 7 supports
the hypothesis. The percentage of pathological problems
is considerably smaller than in the basic on-policy experi-
ment shown in Table 3 (13.1% vs. 57.7%). It is still larger
than in the basic off-policy experiment also shown in Table
3 (13.1% vs. 4.3%), but the remaining difference can be
explained with Hypothesis 2 and (to a smaller extent) with
Hypothesis 1.

Table 7: Percentages of pathological problems in an on-
policy experiment when searching every move.

Degree 0 1 2 3 4 ≥ 5
Problems % 86.9 9.0 3.3 0.6 0.2 0.0

Hypothesis 3 can be further tested as follows. Figure 2
shows that in the basic off-policy experiment and in the on-
policy experiment when searching every move, the num-
ber of states generated per move increases more quickly
with increased lookahead depth. This means that lookahead
depths are less similar than in the basic on-policy experi-
ment, which again confirms Hypothesis 3.

Figure 2: The number of states generated with respect to the
lookahead depth in different experiments.

Summary. Different lookahead depths in the basic on-
policy experiment are closer to each other in terms of the
quality of decisions they produce than the differences in
depth would suggest. This makes pathological cases where a
deeper lookahead actually performs worse than a shallower
lookahead relatively common. The reasons stem from the
volume of updates encountered per move (Hypothesis 2) and
the number of states generated per move (Hypothesis 3). A
minor factor is also that the LRTS algorithm’s behavioral
policy tends to visit states that are themselves pathological
more frequently than is the average for the map (Hypothe-
sis 1).

Remedying Lookahead Pathologies
We have shown that pathological behavior is common in
real-time path-finding. We now demonstrate how much an
LRTS agent would benefit were it able to select lookahead
depth dynamically. Table 8 shows the solution length and
the average number of states generated per move in the
basic on-policy experiment averaged over our set of 1,000
problems. If the optimal lookahead depth is selected for
each problem (i.e., for each start state), the average solu-
tion length is 107.9 and the average number of states gen-
erated per move is 73.6. This is a 38.5% improvement over
the best fixed depth (which, curiously, is 1). The number
of states generated falls between lookahead depths 4 and 5.
The improvement in solution length is quite significant and
motivates research into automated methods for lookahead
depth selection.

Table 8: Average solution length and the number of states
generated per move in the basic on-policy experiment.

Depth Length States Depth Length States
1 175.4 7.8 6 221.0 102.2
2 226.4 29.0 7 209.3 115.0
3 226.6 50.4 8 199.6 126.4
4 225.3 69.7 9 200.4 137.2
5 227.4 87.0 10 187.0 146.3

The most straightforward way to select the optimal looka-
head depth is to pre-compute the solution lengths for all
lookahead depths for all states on the map. We did this for
the map and the goal state shown in Figure 3. The right side
of the map represents an office floor and the left side is an
outdoor court area. The shades of gray represent the opti-
mal lookahead depth for a given start state. Black areas are
blocked.

Table 9 shows the solution length and the average number
of states generated per move averaged over all the start states
on the map in Figure 3. If the optimal lookahead depth is
selected for each start state, the average solution length is
132.4 and the average number of states generated per move
is 59.3. This solution length is a 47.7% improvement over
the best fixed depth (which is again 1) and the number of
states generated falls between lookahead depths 3 and 4 –
results not unlike those in Table 8, which suggests that this
map is quite representative.



Figure 3: Starting states shaded according to the optimal
lookahead depth (white:d = 1, darkest gray:d = 10).

Table 9: Average solution length and the number of states
generated per move for the map in Figure 3.

Depth Length States Depth Length States
1 253.2 7.8 6 318.8 101.2
2 346.3 29.4 7 283.6 116.2
3 329.1 50.4 8 261.5 126.7
4 337.0 69.3 9 282.6 133.2
5 358.9 85.7 10 261.1 142.7

Once we know the optimal lookahead depth for all the
states on the map, we can adapt the depthper move. Select-
ing the lookahead depth in statesc that would be optimal if
the agent started insc should yield an even shorter solution
than keeping the same depth all the way to the goal state.
However, this is not guaranteed, because the heuristic will
probably have been modified prior to reachingsc and thus
the search fromsc may not behave in exactly the same way
as if the agent started insc with the initial heuristic. On
the map in Figure 3, this approach gives the average solu-
tion length of 113.3, which is an additional improvement of
14.4% over the optimal depth per start state. The average
number of nodes generated per move decreases by 42.6% to
34.0.

Determining the optimal lookahead depth for every pair
of states on the map is computationally very expensive: the
8,743-state map in Figure 3 contains over7.6×107 directed
pairs of states. We can make the task more tractable with
state abstraction such as the clique abstraction of (Bulitkoet
al. 2005). In this approach cliques of states are merged into
single abstract states, reducing the number of states by a fac-
tor of 2 to 4 each time the merge operation is applied. The
cost of building the abstract states is linear in the number of
states, so the process is reasonably fast. For each abstract
statesa, we find a ground-level statesgl closest to the av-
erage coordinates of all states abstracting intosa. We then
compute the optimal lookahead depth forsgl and associate

it with sa. During the on-line search, the lookahead depth
for the agent’s state is retrieved from the state’s abstract par-
ent. Table 10 shows how the abstraction level at which the
optimal lookahead depths are stored affects the search per-
formance.

Table 10: Number of abstract states, the resulting solution
length, and number of states generated per move for differ-
ent levels of abstraction.

Level Abs. states Length States/move
0 8,743 113.3 34.0
1 2,463 124.6 38.3
2 783 129.2 39.2
3 296 133.4 40.9
4 129 154.0 51.2
5 58 169.3 50.5
6 26 189.2 45.1
7 12 235.7 55.5
8 4 253.2 7.8
9 1 253.2 7.8

Optimal lookahead depths at abstraction level 5 are shown
in Figure 4. The average solution length in this case is 33.1%
better than with the best fixed depth and the optimal depths
needs to be pre-computed for only 0.004% of state pairs.

Figure 4: Optimal lookahead depth with abstract states
(white: d = 1, darkest gray:d = 10).

Conclusion and Future Work
This paper made three contributions. First, we demonstrated
that lookahead pathology is a common phenomenon in real-
time path-finding. Second, we proposed and empirically
supported three complementary causes of lookahead pathol-
ogy. Finally, we proposed a method for selecting lookahead
depth dynamically per current state. Doing so not only elim-
inated another user-tuned parameter, but also substantially
increased search performance by eliminating pathologies.



Further research will be directed towards a practical
method for dynamic selection of lookahead depth. We
showed that this can reap a significant benefit, but our initial
implementation is computationally still somewhat expensive
and needs to be tested on more maps. In order to speed it up,
we will look into computing the optimal lookahead depth
at abstract levels, where the state space is smaller. We will
also consider lookahead search with more flexible lookahead
spaces such as (Koenig 2004). Finally, we would like to ex-
tend this research to dynamic and stochastic environments.
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