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Abstract

Refrigeration systems have been a vital component of our lives for more than a century. Apart

from storing food, they are used to store sensitive goods such as pharmaceutical products or

reactive chemicals. The deterioration of the refrigeration system performance due to aging or

malfunction directly affects the quality of stored goods. Therefore, an early detection of devia-

tion in performance is an important task. This paper presents a system that monitors operation

of refrigeration devices and alerts the user to possible irregularities in the operation run. The

emphasis is on recognition of gradual changes of performance that indicate upcoming hardware

problems. The system consists of 2 modules: human-defined expert rules and machine learning.

The machine-learning module learns to recognize abnormal behaviour of devices automatically.

Furthermore, it can distinguish between different abnormal events and allow the user to clas-

sify some of the types as normal, so that they not longer raise an alarm. The machine learning

was evaluated by comparing its recognition of abnormal events and classification accuracy of

such events to the performance of a human operator. The system can in principle be adapted to

any electronic device that periodically applies some system for sustaining a predefined quality

(e.g., temperature).
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1 INTRODUCTION

Careful control of temperature inside refrigeration devices is crucial

for management of stored goods, such as food (frozen food, seafood,

or fresh produce), pharmaceutical products, chemicals, photographic

film, etc. Ready-to-eat foods need to be properly stored in order to pre-

vent growth of pathogens, such as Listeria monocytogenes in milk. When

using refrigeration as a means of storing, a strict control of tempera-

ture is required, so that the temperature of the product never exceeds

6 ◦C (preferably 2–4 ◦C), in order to ensure that growth of pathogens

to any significant degree does not occur before the product is con-

sumed (Alimentarius, 2009). Refrigeration systems for vaccine storage

must adhere to strict regulations (CDC, ), where temperature inside the

refrigerator must be maintained between 2 and 8 ◦C. In case of tem-

perature excursions outside the defined temperature interval, an alarm

is triggered and the operator is required to check temperature history

in order to determine whether the vaccine is still safe to use or should

be discarded. Many organic chemicals in the laboratory need to be

kept refrigerated as well, in order to prevent further chemical reactions

from occurring. Some widely used solvents, such as the highly volatile

and extremely flammable diethyl ether, are often stored under cool

conditions. Unprocessed photographic films can be damaged by high

temperatures, and their photographic characteristics gradually change

after manufacture—users are therefore advised to store professional

color films at 13 ◦C or lower. For long-term storage of motion-picture

film, temperatures down to −23 ◦C are recommended (Kodak, 2005).

In legacy refrigeration system, monitoring the temperature meant

that the operator periodically checked a thermometer placed in the

refrigerator and kept records on paper. Due to such sparse sampling,

there were no records of what was happening to the temperature in the

interim, therefore leading to discarding all the contents for safety rea-

sons in case of refrigerator malfunction. Modern systems use continu-

ous monitoring instead. As opposed to manual temperature inspection,

continuous monitoring is more reliable, keeps permanent records, and

reduces the risk of human error. As such, these systems are much better

suited to supervise storage of sensitive products.

Because continuous monitoring system tracks the temperature in

intervals on the order of magnitude of a second, detection of irregu-

larities can in principle be instantaneous. In general, temperature devi-

ations in refrigeration devices can be assigned to one of the following

types: (a) excursion out of predefined temperature limits caused for

example by an open door, (b) irregular patterns that may be connected

to some system component deterioration, or (c) continuous large devi-

ations from the average temperature that are still within the tempera-

ture limits but nevertheless affect the quality of the stored product.
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Typically, commercially available devices have preset upper and

lower temperature limits and an alarm is triggered in case of tem-

perature excursions outside the defined interval. Some commercial

systems employ additional predefined expert rules. For example, Lab-

Ware LIMS (LabWare, ), an advanced laboratory management system,

comes equipped with a set of rules and includes a module that allows

the user to add or modify the existing rules according to their needs.

Although these rules detect some of the most common irregular events

(such as temperature excursions), they will not recognize most pecu-

liar behaviour patterns that may affect the operation run of the sys-

tem, such as those resulting from an upcoming malfunction of some of

the components. To detect such behaviour, we required methods using

advanced knowledge of signal processing. Often, the implementation

of such complicated rules is either beyond the user expertise or the

advanced mathematical functions required (such as Fourier transform

or autocorrelation functions) that are not available in the program-

ming module. Additionally, listing all types of unusual events and writing

special rules for them is not possible in advance because new dis-

crepancies may occur. Therefore, instead of fixed expert rules, a more

suitable approach for complex event detection may be analysis of time

series. Recently, Kang, Belušić, and Smith-Miles (2014) studied the pos-

sibilities of extracting and clustering events from time series without

previous knowledge of their generating mechanisms. They used dif-

ferent algorithms for event detection and clustering. The main focus

of their work is time series that consist of random noise and events,

more specifically, atmospheric data gathered in the upper atmosphere.

This differs from our problem, where the signal is usually not random

noise but has distinctly observable periodic characteristics. They also

used hierarchical clustering for the detected events: For each event,

they extracted several features (standard deviation, nonlinearity, serial

correlation, etc.) and then used Euclidean distance in the clustering pro-

cess. In contrast, our work does not rely on any particular time-series

features, but rather uses dynamic time warping measure to compute

the distance between events directly, because event characteristics are

usually directly observable and are not masked with high degree of

noise. Similar work is also reported by Preston, Protopapas, and Brod-

ley (2009) who dealt with detecting events in astronomical time series

that also exhibit a high degree of noise and are nonperiodic. Shar-

ifzadeh, Azmoodeh, and Shahabi (2005) exploited wavelet footprints to

capture discontinuities in a signal. However, their work deals with non-

periodic signals, so we can assume that when applied to periodic signals

(such as refrigerator temperature fluctuations), the wavelet footprints

would detect periodic signal fluctuations as discontinuities.

Several patents related to our work have also been published. Chiu

and Schneider (1986) patented an over-temperature warning system

for refrigerator appliances aimed at avoiding damage to perishable

items. Its monitoring capabilities are fairly simple and consist of two

temperature thresholds and mechanism that raises alerts in cases when

temperature raises above the thresholds. Sharood and Carr (2002)

patented a refrigeration monitor unit that is aimed at retrofitting exist-

ing appliances and can alert the user of conditions within the appli-

ance in which food spoilage may occur. Although with similar goals

as our work, the patent provides no description of the monitoring

methods and algorithms used; therefore, no direct comparison can be

made. Ramey, Rozsnaki, and Osman (2008) patented a fault detection

and diagnosis for refrigeration systems using distributed microsystems

that determines whether a refrigeration (or other cooling)-related sys-

tem is operating within normal parameters by comparing the current

system's enthalpy curve to the reference enthalpy curve derived from

ideal or normal conditions. This implies that additional sensor for pres-

sure is needed and introduces additional complexity to the system.

Moreover, because it monitors the refrigerant throughout the various

steps of the thermal process rather than the actual temperature in the

refrigerated compartment, it cannot detect events due to external fac-

tors, for example, opening refrigerator doors and placing a warm object

in the refrigerator.

In our work, we focused on creating a sophisticated temperature

monitoring system that not only notifies the user of irregular events

when they occur but also recognizes changes in the refrigeration sys-

tem behaviour or other unusual events that may signal an upcoming

component malfunction. By detecting such events, maintenance can

be scheduled for the system—thus preventing the imminent malfunc-

tion and possible loss of stored goods. Our patented system, called iLab

(Kužnar, Gams, Marinčič, Lotrič, & Čufar, 2012), is based on intelligent

computer algorithms that detect events, classify them, trigger alarm

when necessary, and, furthermore, take advantage of the user feedback

to learn which types of events are normal and which are not.

The rest of the paper is organized as follows. In Section 2, we describe

the task we are tackling in detail. In Section 3, we first describe the

iLab system and the two modules it contains: the expert rules module,

in which rules are defined by a human expert, and the artificial intelli-

gence (learning) module. In Section 4, we compare the performance of

the learning module to a human operator. We demonstrate that the arti-

ficial intelligence module is equally accurate as the human operator and

detects events that slip the detection of expert rules. In Section 5, we

conclude the paper with an overview of the strenghts of the iLab system

and the results of its evaluation.

2 TASK DESCRIPTION

The task is to recognize different types of unusual events in the operat-

ing run of a refrigeration device by continuous monitoring of the inside

temperature in order to prevent decrease of quality or loss of the con-

tent. The sources of the events can be classified into three categories:

• User: these types of events are caused by the user's interaction with

the refrigeration device. These events can be a result of a normal

operation, such as opening doors or abnormal operation, such as

accidentally leaving the door open, turning off the refrigerator, etc.

• Device: events that are caused by some sort of device failure or

change in operation that causes the device to operate differently.

The difference in operation can be significant (e.g., coolant compres-

sor malfunction) or subtle (e.g., crack in the door sealing).

• Environment: these types of events are a result of events from

the device's environment and can be anything from electricity

power outage, communication network failure, natural disasters

(e.g., floods), heat wave, etc.

As said, the system's goal is to detect any kind of event that is

reflected in the temperature inside the refrigeration device. Therefore,
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many of the environmental events cannot be detected, because for

instance in the event of the power outage, the iLab system would also be

affected. However, these extreme types of events are usually detected

by some other means. On the other hand, environmental events such as

heat waves would probably be reflected in the device's inside temper-

ature as more frequent cooling cycles. The main focus of iLab system

is to detect device operational changes and user-generated events that

are subtle and therefore difficult to detect by other means.

During the normal operating cycle, the temperature inside the refrig-

erator has characteristics of a periodic signal. When the temperature

rises above a certain value, the cooling unit switches on and cools the

insides to a set value. This periodic behaviour can be interrupted by

external influences of several types (see real data examples in Figure 1):

(a1) Temperature spikes, indicating abrupt changes of the tempera-

ture due to external reasons. It should be noted that spikes may

appear in some refrigeration systems that use defrost cycle (peri-

odically heating the evaporator coil in order to melt the frost that

has formed on it). Depending on the system, the defrost process

can run either several times per day or on a couple of days' inter-

val. If these defrost spikes do not exceed the upper temperature

limit, they do not count as anomalous events.

(a2) Temperature excursion outside the operating temperature inter-

val for a time longer than ΔT, which may occur due to scenarios

such as an operator forgetting to close the door, putting a large

warm object into the refrigerator, a power outage, etc. Both a1

and a2 types can be detected by simple rules, such as

if (T > Thigh) or (T < Tlow) then alarm, (1)

where Thigh and Tlow are the upper and lower temperature limits,

respectively.

(b1) Changes of the average temperature during the normal opera-

tion run may indicate set-temperature drifts due to software or

hardware problems (unless these values were manually reset).

FIGURE 1 Real data examples: normal operating run (top), followed by different types of anomalous events: (a1) spike, (a2) temperature
excursion, (b1) temperature drift, (b2) disruptions in the operating cycle, and (c) increased oscillation amplitude. Temperature limits Tmax and Tmin

are marked by horizontal red lines for each case
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(b2) Changes in periodicity of the normal operating run may indicate

problems with the cooling system, such as cooling gas leakage or

compressor malfunction.

(c) Faster oscillations or oscillations with amplitudes larger than

desired but still within temperature limits may affect the qual-

ity of stored goods. For example, it has been demonstrated that

fluctuations in temperature decrease the mechanical properties

of frozen food (potatoes; Alvarez & Canet, 1998). The reason is

periodical sublimation and freezing of water, leading to forma-

tion of ice crystals that damage the tissue at cellular level.

(d) Other events, such as problems in communication between the

sensor and the computer. This may be seen as sudden appear-

ance of invalid values or a constant temperature value over a

longer time interval. We do not address these types of events in

this work.

3 SYSTEM ARCHITECTURE OVERVIEW

The iLab system monitors the data about a laboratory environment

and informs the user about unusual events. Although it has only been

used on refrigeration data so far, which is also the subject of this paper,

the system can in principle monitor any type of time series. Figure 2

shows the main components of the system and related dataflow. Data

about the laboratory environment are gathered using the appropriate

sensors. It is sent to the iLab system via a network and the necessary

middleware. The system stores the data into a database and processes

it in order to detect unusual events (i.e., type a, b, or c). Upon a detected

unusual event type, an alarm or a warning is written into a database and

displayed to the user via a graphical user interface (e.g., sent to a mobile

device). The user then either confirms the event or declares it as a false

one in order to improve the system's performance by learning from the

user's feedback.

Unusual events are detected with two independent complementary

modules. The module based on rules detects unusual events by check-

ing whether the current sensor data complies with the user-defined

rules about sensor values and trends. Rules predominantly check

events of type a; however, some events of types b and c are also possi-

ble to define by rules using more complex formulations. The rule-based

module also enables automatic real-time checking of laboratory envi-

ronment parameters as prescribed by law. Furthermore, it detects

critical sensor and network malfunctions and offers the users a way

to intuitively define events that should be detected by the system,

which increases the users' trust in the system. The advantage of the

rule-based module is its simplicity, which enables the user to under-

stand how it functions, thus increasing its reliability. Rules are written

as general mathematical expressions over the time series, as an appro-

priate trade-off between their generality on one hand and simplicity in

terms of the time required by the user to learn it on the other hand.

Details about rule language and its implementation are presented in

subsection 3.1.

The problem of the rules is that they are designed to cope with typ-

ical situations that experts are aware of and can be described by the

rule language. However, in real-life, unexpected events will eventually

occur, and the detection of these is the task of the second module.

It primarily deals with b- and c- type events, though it also detects

a-type events. This module is based on unsupervised machine learn-

ing (ML). It first builds a model describing typical sensor values and

trends, which is later updated in real time and used to check whether

the current sensor data complies with the learned model. A signif-

icant deviation from the model is treated as an unusual event and

displayed to the user as an alarm. The learning module supplements

the rule-based module and mitigates its limitations. Because it is fully

automatic and does not depend on user input, it can detect unusual

events even if the user defines inappropriate rules (e.g., with too loose

thresholds). It is also useful when the user forgets to or is not able

to constrain sensor values or trends using the rules' module. Further-

more, it is able to detect an unusual event sooner than the rule-based

module because it can detect an unusual trend even before the sensor

values exceed the threshold prescribed by the user-defined rules. We

use the unsupervised-learning approach in order to decrease the nec-

essary user interaction: The goal of the system is to relieve the users

from the tedious work and not to burden them with additional work.

However, this approach may lead to some false alarms. Although the

cost of false alarm is usually much smaller than the cost of unnoticed

unusual event, a high number of false alarms decrease the user's trust

in the system, which in extreme cases causes the user to ignore the

system-triggered alarms altogether. Therefore, the learning module is

extended with a supervised-learning capability. It groups the unusual

events by their similarity using a clustering algorithm and learns which

clusters of unusual events are regarded as false alarms by the user. If

it detects an unusual event that belongs to a group of false alarms, it

FIGURE 2 Main components of the iLab system and related dataflow. The expert module triggers alarm when rules are breached whereas the
learning module warns the user of possible unusual behaviour when performance characteristics change. User's feedback is used to improve the
learning module's performance. GUI = graphical user interface
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does not trigger an alarm. For example, if a “tabula rasa” system moni-

tors the temperature in the refrigerator, it will detect opening the doors

of the refrigerator as an unusual event. The user will label the alarm

related to the refrigerator door opening as false, and the system will

eventually learn not to trigger the alarm when the door is opened. Nev-

ertheless, it will still trigger an alarm if the refrigerator door is left open

for an extended time or if the refrigerator compressor fails, because

those events do not belong to the group of normal door opening events.

3.1 Expert rules

The rule-based module is one of the two unusual event-detection mod-

ules in the iLab system. This section presents a technical overview of

the module, including the language to define the rules and the imple-

mentation of these rules.

Its advantage is that it is reliable and easy to understand, which

increases the user's trust in the system, and easily customizable, which

enables the users to tailor the system according to their specific needs.

During the initialization of the system, the user enters the rules in the

form of (in)equations about the time series that represent the moni-

tored environment parameters; for example, T > 18: The measured

temperature must be above 18 ◦C (or F, depending on the units used).

Thereafter, the rule-based module detects unusual events by check-

ing whether the current sensor data complies with the user-defined

rules. Using time-series (in)equations as the rule language is conve-

nient for two reasons: the (in)equations are very expressive and gen-

eral, which enables a high level of customization, and most users are

familiar with such representation, therefore, they can start using the

system with a minimal amount of training. The rule language offers

common mathematical operations (addition, subtraction, multiplica-

tion, division, and exponentiation) and functions (logarithm, absolute

value, square root, and trigonometric functions), comparison operators

(equal to, not equal to, greater than, less than, greater than or equal to,

and less than or equal to), constants, and variables, which correspond

to time-series values relative to the current time. In addition, functions

over intervals of time series can be used; those are minimum, maxi-

mum, average, sum, standard deviation, and slope of a linear fit. Com-

piler construction techniques (Aho, Sethi, & Ullman, 1986) were used

in implementation of the rule-checking algorithm. The algorithm pro-

ceeds in three sequentially execute phases: lexical analysis (i.e., lexing),

syntax analysis (i.e., parsing), and evaluation. Lexical analysis removes

white spaces and recognizes function names, variable names, numeric

constants, and lexical errors. Syntax analysis identifies the order of

operations (e.g., additions and multiplications) to be performed in the

evaluation step, which finally determines whether the time-series data

comply with the rule. The three phases are described in more detail in

the following paragraphs.

Lexical analysis breaks a rule represented as a sequence of char-

acters (e.g., letters, digits, whitespace characters, brackets, etc.) into

pieces called tokens. Each token is a single atomic unit of the rule

language: an operator, function name, numerical constant, or variable

name. For example, the inequation abs (h − h[8]) < 10 is broken

into the following tokens: abs (, h,−, h, [,8, ], ), <,10. The token syntax

is a regular language; therefore, a finite state automaton is used to

recognize lexically correct rules and output the sequence of tokens

or detect the position of the first lexically nonvalid character in the

rule. The tokenization algorithm—implementing an efficient finite state

automaton based on the regular expression representing the token

syntax—was generated using the JFlex tool (JFlex, 2014). The inputs to

JFlex are pairs of regular expressions and Java code. When the gener-

ated tokenization algorithm finds text matching a regular expressions,

it executes the corresponding Java code that returns the recognized

token. Equations 2 and 3, for example, show the regular expressions

representing a numerical constant (e.g., 12.03) and a variable name

(e.g., tempFridge12), respectively, in the IEEE POSIX Extended Regular

Expressions standard notation.

(0|[1 − 9][0 − 9] ∗)|(0|[1 − 9][0 − 9] ∗)∖.[0 − 9] ∗, (2)

[A − Za − z][A − Za − z0 − 9] ∗ . (3)

The next phase of checking a rule is syntax analysis. It parses the token

sequence to identify the syntactic structure of the rule and builds a

parse tree, which replaces the linear token sequence with a tree struc-

ture. The parse tree defines the operands and order of operations

on them to be executed when evaluating the rule. The parse tree is

built according to a formal grammar, which defines the rules' syntax. If

the rule does not belong to the language corresponding to the formal

grammar, an error and its location in the rule character sequence are

returned instead. The syntactic analysis is done by parsing algorithm,

called parser, which was generated using the CUP tool (CUP, 2014). The

generated LALR(1) parser is implemented as a pushdown automaton.

Figure 3 shows the context-free grammar in Backus-Naur Form used to

generate the parser (nonterminals are in italics).

Figure 4 shows a parse tree generated for the rule: abs (h − h[8]) <
10. In order to calculate whether the inequality expressed by a rule

holds, we evaluated the values in the parse tree nodes in a recursive

bottom-up order. The value(s) of a node representing a variable (time

series) is returned by a function that provides the value for a given envi-

ronment parameter name and index (range of indices) relative to the

current time. An operation, such as subtraction or calculation of abso-

lute value, is executed after all of its operands are calculated. Figure 5

shows the bottom-up propagation of operand values during the evalu-

ation phase executed based on the parse tree.

A rule is evaluated each time a new value of the time series

referred to by the rule is obtained. Nevertheless, the lexical and syn-

tax analysis of the rule are executed only once. Parse tree can also be

FIGURE 3 Context-free grammar defining the rules
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FIGURE 4 Parse tree for the rule abs (h − h[8]) < 10

FIGURE 5 Bottom-up propagation of operand values during the
evaluation of abs (h − h[8]) < 10

simplified if it includes operations on constant operands. For instance,

the subtree representing the expression part 18/(3 * 60) can be

replaced with a constant 0.1 in a parse tree representing the inequa-

tion SUM (x[0..60])>18/(3 * 60). Another evaluation optimization can

be achieved by an efficient implementation of the function returning

time-series values: The size of the buffer used to cache the time-series

values should be equal to the highest index referred to in the rules. For

example, the buffer for parameter h should store eight values if the rule

discussed in Figures 4 and 5 is concerned. The third optimization is

possible by incrementally computing functions over intervals of time

series. For example, SUM (x[0..10]) can be computed from the previous

value of the sum as shown in Equation 4, which decreases the number of

additions from nine in the naïve approach to two. Similarly, computing

other functions over intervals of time series can be optimized.

SUM (x[i..j]) = SUM (x[i − 1..j − 1]) − x[i − 1] + x[j]. (4)

3.2 Learning module

Figure 6 shows the overview of the processing involved in the learning

module. The processing is performed in a continuous loop, depicted as

loop start and next loop blocks in the flow chart.

In each iteration of the processing loop, new sensor data are

appended to the time series that is processed in the following steps.

The first step of the processing is event detection, which is respon-

sible for detecting unusual events in the time series. The detection

of unusual events is performed by comparing recent “behaviour” with

older behaviour to determine whether an unusual discrepancy has

occurred. The comparison is made by taking into consideration the

last N data points from the time series and splitting them into two

parts—the more recent head and older tail, where each part consists of

N∕2 data points as shown in Figure 7 (in principle, the lengths of these

two parts can be arbitrary, N∕2 was chosen for convenience).

The head and tail parts are compared to each other by first applying

the discrete wavelet transform (DWT; Jensen & Cour-Harbo, 2001) and

obtaining the coefficients for both parts. DWT transforms the original

signal from the time domain into the time-frequency domain, meaning

that we can observe which frequencies are present in the signal at any

given time, similar to the short-time Fourier transform. The maximum

level of DWT decomposition depends on the length of each part (N∕2)

and the length of the chosen wavelet (NW) and is limited to

floor

(
log2

N
NW − 1

)
. (5)

We have chosen the Haar wavelet (Haar, 1910), because it is the

most simple one and has proven as a good choice during our initial

experiments.

The results of the DWT are the coefficients for each of the decom-

posed frequencies. The coefficients are then summed overtime so that

each frequency is represented with one aggregated coefficient and the

head and tail parts are each represented with a vector of aggregated

coefficient values. The final comparison is then made by computing

the difference between the two vectors (for head and tail parts) using

the Euclidean distance metric—we will refer to this value as anomaly

level. Because the values for anomaly levels are domain dependant and

there is no general threshold for distinguishing between normal and

abnormal (event) parts of the time series, we propose a method for

dynamically computing the threshold that is based on observing the

past anomaly levels when no events have occurred. During the initial-

ization phase of the algorithm, we assume that no unusual events will

occur and we can adjust the threshold based on the anomaly levels dur-

ing that phase. The dynamic threshold can therefore be computed as

function of standard deviation, more precisely:

threshold(A, L) = A ∗ std(anomaly levelsL) + mean(anomaly levelsL),
(6)

where anomalylevelsL is a vector of the last L values of the computed

anomalylevels, std is the standard deviation, and A is a scalar value by

which we multiply the computed standard deviation. In each itera-

tion of the processing loop thus computed both the anomaly level and

threshold. If the anomaly level is greater than the threshold (signalling

the start of an event), then an unusual event has occurred. Because

we also have the information when the anomaly level drops below

the threshold (signalling the end of an event), we can extract the time

series that corresponds to the event and is later used in classification

steps. Because the entire time-series segment of the detected event is

needed in further steps, further processing needs to wait until the event

has ended.

When an event is detected and the time-series segment that cor-

responds to the detected event is extracted, the classification of the

event is performed. This is done in two steps: we first (a) perform an

unsupervised event clustering and then (ii) classify the new event to

the majority class of the cluster that the new event is assigned to.
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FIGURE 6 Learning module processing overview

FIGURE 7 Head and tail parts of the time series

The events are classified into one of two classes: “unusual” and “nor-

mal,” which reflect the user's interest in the event. The user can give this

feedback information later in the processing loop.

Clustering is done using the single-linkage hierarchical cluster-

ing algorithm with dynamic time warping (Keogh & Ratanamahatana,

2005) as the method for computing distances between the events. To

obtain flat clusters (partitioning of the events), the silhouette coeffi-

cient (Rousseeuw, 1987) is used to select the best number of clusters

(event groups), that is, the partitioning with the highest silhouette coef-

ficient value is selected. The results are clusters of similar events, which

are later used for classification.

To classify a new event, we retrieve all other past events that were

also assigned to the new event's cluster and were previously labelled by

the user (by providing feedback information). If no such events exists,

the new event is labelled as unusual, because a user feedback is needed.

When labelled events are available, their majority class is assigned to

the new event.

If the new event is classified as unusual then the user is notified with

the possibility to provide a feedback whether the event is unusual or

normal, which is stored internally for later use as described before.

After storing the feedback, the next processing iteration starts with

new data.

The learning module requires the following parameters that control

its performance:

• N is the length the of signal used in the event detection for detect-

ing changes in behaviour of a time series, which is an indicator of an

event. The value N has great impact on the detection performance.

Small values enable better detection of “short” events, greater sus-

ceptibility to signal noise and worsen the detection of slower chang-

ing behaviour. Large values enable the algorithm to detect more

subtle, long-evolving changes in signal and are less susceptible to

noise but result in worse detection of short events.

• A is the parameter used in computing the dynamic threshold

for anomaly levels to control sensitivity of event detection. With

smaller values, the algorithm will be more sensitive to anomaly level

changes, but they can cause FPs. With greater values, the algorithm

will similarly be less sensitive to changes.

• L specifies how many previously computed anomaly levels are used

for computing the threshold. Smaller values allow the threshold to

adapt more quickly to the changes in anomaly levels. This parameter

can be tuned to obtain a desired responsiveness.

• DWT decomposition level is an optional parameter. If not specified,

then the maximum decomposition level is used.

Because the learning module relies on signal processing, it inherently

exhibits some delay at detecting events. The amount of delay is mainly

related to the type of the event that occurred. In case of abrupt changes,

such as spikes, the delay is minimal (in the range of 5–20 signal sam-

ples for N between 20 and 200) and is usually not dependent on the

algorithm parameters. The reason is that abrupt changes quickly cause

large changes in computed anomaly levels. Nonetheless, in extreme

cases, when parameters are not suitably chosen for the monitored sig-

nal (for instance, a very large value of A), it could cause larger delays or

even failure to detect an event. The detection delay is more pronounced

in case of slowly evolving events, such as temperature drifts, where

the point of change in signal cannot be clearly determined. In this case,

the signal change is reflected more gradually in computed anomaly lev-

els, therefore leading to longer detection delays. Figure 8 is showing a

simulated example of slow drift that is starting at time 2,200 and lasts

until time 2,700. The signal changes linearly from 0.5 to 1.5 mean sig-

nal value. The event is detected by three different window sizes: 200

(red box in top row), 100 (red box in middle row), and 20 (red boxes in

bottom row). As can be observed, the event is detected after 30 sig-

nal samples in case of window 20, 100 samples for window 100, and

50 samples for window 200. We can also observe how window 20 is
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FIGURE 8 Example of slow-changing event (drift) and module's event detection delay

susceptible to signal noise, which results in large number of detected

short events. On the basis of this, we could also argue that window

size 20 is too small for this kind of event and that it detected the start

of drift by chance, although window sizes 100 and 200 provide better

detection results—one detected event with small detection delay.

4 EVALUATION

Only learning module was evaluated, because the detection perfor-

mance of the expert rules module greatly depends on the rules that are

defined by the human operator and must be defined separately for each

time series (device) in the evaluation dataset, which is out of scope of

this paper.

4.1 Methodology

It is not always clear when an unusual event is detected correctly, as

illustrated in Figures 9 and 10 showing various cases of detection.

FIGURE 9 Overlapping of unusual and detected unusual events

FIGURE 10 Splitting and joining unusual events

Unusual event (black rectangle in Figure 9) is a sequence of time points

with unusual values or trend, that is, a domain expert would label them

as unusual. A detected event (white rectangles in Figure 9) is a sequence

of time points labelled as unusual by an algorithm. The algorithm's per-

formance can be evaluated on level of events or on the level of time

points. On the level of events, a true positive (TP) event is declared

when the algorithm labels at least one point belonging to an unusual

event as unusual (Figure 9a—all points identified correctly—,d–g). On

the other hand, there are two possible mistakes of the algorithm at the

event level. The first is false negative event (FN, Figure 9b), which hap-

pens if the algorithm labels all points belonging to an unusual event as

usual. In this case, the user is not notified about the unusual event—this

represents the most severe mistake. The other type of mistake is a

false positive event (FP, Figure 9c), detected as unusual although not

unusual in reality. In such case, the user is notified about the detected

event although no unusual event actually took place. This type of mis-

take can be tolerated to a certain extent, so the algorithm should be

allowed to trigger a limited number of FP events if that simultane-

ously decreases the number of FN events. Nevertheless, the algorithm

needs to minimize the number of both types of mistakes. Further-

more, the algorithm might make a mistake of splitting a single unusual

event into two or more detected events (Figure 10a) or joining two

or more unusual events into a single detected event (Figure 10b). In

both cases, the user is correctly notified about the unusual event and

no FP events are detected; however, this is still a problem because

the algorithm needs to group similar detected events in order to learn
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TABLE 1 Summary of possible mistakes of unusual event detection (see Figures 9 and 10)

During detected event

During unusual event remaining

Fig. FN TP FP TN start end unevent detected

9a ✓ ✓ ok ok ✓

9b ✓ ✓

9c ✓ ✓ ✓

9d ✓ ✓ ✓ late early ✓

9e ✓ ✓ ✓ ✓ late late ✓

9f ✓ ✓ ✓ ✓ early early ✓

9g ✓ ✓ ✓ early late ✓

10a ✓ ✓ ? ✓ too many

10b ✓ ✓ ✓ too few

which groups are not interesting for the user based on his feedback. The

grouping and learning about interestingness of groups become diffi-

cult in case of joining or splitting unusual events. Finally, a true negative

(TN) is declared when both the algorithm and the domain expert label

the overlapping sequence as normal,or in other words, do not detect

an unusual event.

Additionally, mistakes originate from imprecise detection of the

beginning or end of the event, with detection starting or ending too

soon or too late in comparison with the actual event. The summary of

these mistakes, referencing Figures 9 and 10, is presented in Table 1.

However, it should be noted that the definition of the start and end

points of the actual event may be arbitrary to some degree.

On the basis of the number of TP, FP, TN, and FN events, we com-

pute several standard measures that evaluate different aspects of event

detection performance, more precisely:

• Sensitivity ( TP
TP+FN

): the ratio between the number of detected events

and the number of actual events. Greater values mean that more

events were detected by the system.

• Precision ( TP
TP+FP

): the ratio of the actual events in a set of all events

that were detected by the system. Greater values mean that there

were less falsely detected events.

• False discovery rate ( FP
TP+FP

): inverse of the precision measure.

Greater values mean that there were more falsely detected events.

• F1 score ( 2TP
2TP+FP+FN

): the harmonic mean of precision and sensitivity.

Greater value indicate better overall performance of the system.

• Classification accuracy ( TP+TN
TP+FP+TN+FN

): the percentage of correctly

detected events.

In addition to these measures, we also provide a visualization of

algorithm performance in the receiver operating characteristic (ROC)

space. It is necessary to note that our problem is not a standard binary

classification problem, and our algorithm does not provide probability

values (or ranks) for instances. Therefore, the ROC curve and conse-

quently the area under the ROC curve (AUC) cannot be computed.

However, we can approximate the ROC curve and AUC by running

the algorithm using different parameters resulting in different TP rate

(recall) recall and FP rate ( FP
FP+TN

) values, and then only plot nondomi-

nant ones in the ROC space.

Because the learning module can be tuned (via parameters) to detect

events of various lengths, we used three independent parameter setups

in parallel to detect short-, mid-, and long-term events. This is expected

to give better results in cases when little is known in advance about

the time-series data. The actual values of parameters are specified in

subection 4.2.

The classifying aspect of the algorithm was evaluated by analysing

the clustering performance—which is actually the basis for accurate

classifications. The performance of the clustering was evaluated by

the Adjusted Rand Index (ARI; Lawrence & Phipps, (1985)) that mea-

sures the similarity of two different cluster assignments of examples,

ignoring permutations and with chance normalization. The measure

is bounded by the range [−1, 1], where higher values reflect greater

similarity (assignment consensus). True cluster assignments are known,

because the simulated time series were used for evaluation; therefore,

we can interpret the ARI as a measure of the clustering performance.

4.2 Datasets

The performance of the learning module as compared to a human oper-

ator was tested on a two datasets.

The first dataset consists of 137 real-sensor time series from differ-

ent refrigeration systems. Time series were labelled by three human

operators, who independently from one another analysed the data and

listed all events that they considered “unusual.” If an event was labelled

by at least two users, it was considered unusual for the purpose of the

analysis (P). Over 500 unusual events were collected, including those

shown in Figure 1. As mentioned in subsection 4.1, different algorithm

parameter setups were used to accommodate the detection of events

of various lengths. Generally, we can group the parameter setups into

three groups, namely short, mid, and long. Each of these groups con-

sists of 30 setups with parameter values that are drawn from uniform

distributions as specified in Table 2. See subsection 3.2 for parameter

descriptions.

TABLE 2 Uniform distributions for generating parameter setups for
the real sensor data

Setup N A L

Wshort [6, 10] [1, 3] [35, 90]

Wmid [24, 40] [1, 3] [120, 270]

Wlong [48, 80] [1, 3] [240, 540]
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TABLE 3 Uniform distributions for generating parameter setups for
the simulated sensor data

Setup N A L

W20 [15, 25] [1, 3] [75, 225]

W100 [75, 125] [1, 3] [375, 1125]

W200 [150, 250] [1, 3] [750, 2250]

Second dataset was artificially generated to overcome the limita-

tions of real sensor data. The problem with sensor time series is that

they are typically of limited length (several hours of data collection

at most) and often contain only a small number of unusual events.

In addition, each dataset usually contains just one or two types of

unusual events; therefore, we are not able to fully evaluate the abil-

ity of the learning module to categorize the events into different types.

Simulated time series were generated using a triangle wave function

with a period of 40 points, combined by random noise both in ampli-

tude and period. Additionally, different unusual events with random

parameters were introduced, such as spikes, temperature drifts, oscilla-

tions, temperature ramps, and elongations of the period to simulate the

real-world events. Because the period of the main function and the sam-

pling rate are known in these simulated series, we set the windows close

to 20 (half of the period), 100 (2.5 periods), and 200 (5 periods) points

to cover both shorter and longer events. As for real sensor data, we

generate 30 setups for each of the event lengths as specified in Table 3.

When reporting on combined performance results, we randomly

choose (without replacement) one setup from each of the three groups

(short, mid, and long) and generate a combined performance evaluation

for the event detection. We then repeat this 30 times (the number of

individual setups in each of the groups) and compute the mean value for

each of the performance measures.

4.3 Results

We first report on results from event detection evaluation on both

datasets and then present results for classification aspect of the learn-

ing module only on simulated dataset, due to the limitations of real

sensor dataset described in subsection 4.2.

Evaluation results for real sensor dataset are presented in Table 4,

where the values represent the average of 30 runs, except in the col-

umn Expert, where each expert event detection result is tested against

the other two experts' event detection results. The Expert column gives

an insight into event detection consistency between the experts or, in

other words, the level of agreement between the experts. The compar-

ison of the column Expert with the column Combined gives us an insight

on how well our algorithm compares to domain experts.

TABLE 4 Sensitivity, precision, false discovery rate, and F1 score for
the performance of the learning module on real data

Window Wshort Wmid Wlong Combined Expert

Sensitivity 0.77 0.45 0.30 0.84 0.88

Precision 0.92 0.89 0.88 0.62 0.89

False discovery rate 0.08 0.11 0.12 0.38 0.11

F1 score 0.84 0.60 0.45 0.72 0.89

Classification accuracy 0.86 0.68 0.55 0.78 0.88

The sensitivity of the combined setups is very close to the domain

experts' sensitivity, meaning that our algorithm fails to detect only

slightly more events when compared to experts. Given that the data

was (intentionally) analysed using fixed preselected windows, although

it consisted of several different types of sensors with different sampling

rates and different periodicity of cooling cycles, we can expect that opti-

mizing the module parameters for a specific sensor will increase sen-

sitivity considerably. On the other hand, the combined setups achieve

considerably lower precision and consequently higher false discovery

rate, meaning that our algorithm produces more FPs. This problem,

however, is addressed in the classification step, where the module

learns about the events from the user feedback and the number of false

alerts usually decreases quickly in real life. The algorithm's lower preci-

sion can also be observed from the F1 score and classification accuracy

measures, which are both lower than the expert's. An example from the

real sensor dataset analysis is shown in Figure 11.

Evaluation results for simulated dataset are presented in Table 5. We

can see that the module's combined sensitivity is almost perfect and

actually misses only one event in all of the 30 runs. Such a high per-

formance can be attributed to the optimized window lengths, which

is important for real-life applications. We can again see that combin-

ing three windows of different lengths leads to higher sensitivity at the

expense of precision, which in our case is preferred, since FNs (missing

important events) have higher real life cost than FPs.

As expected, we can see that for both the real and the simulated data,

the shorter windows achieve higher sensitivity than longer windows.

However, the combined setups always achieve the highest sensitiv-

ity. Inverse can be observed for precision. Although high precision is

achieved by individual windows, when combined, the precision drops

due to more FPs. Similar trends can be observed for false discovery rate,

F1 score, and classification accuracy.

ROC curve approximation for real (circles) and simulated (squares)

data can be seen in Figure 12. As can be observed, both ROC curves

FIGURE 11 Real sensor data analysis. Black line represents the
sensor data. Grey rectangles indicate the unusual events as labelled by
the users (U1–3). White rectangles indicate the events, detected by
the learning module with three windows (W1, W2, and W3
correspond to short, mid, and long window sizes)

TABLE 5 Performance of the learning module for three different
windows and overall performance on the simulated data

Window W20 W100 W200 Combined

Sensitivity 0.9618 0.8392 0.7775 0.9996

Precision 0.9958 0.9956 0.9963 0.6207

False discovery rate 0.0042 0.0044 0.0037 0.3793

F1 score 0.9785 0.9107 0.8734 0.7659

Classification accuracy 0.9790 0.9181 0.8826 0.8058
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FIGURE 12 Receiver operating characteristic curve approximation for
real data (circles) and simulated data (squares). AUC = area under the
ROC curve

closely approach the upper left corner, meaning that our algorithm gen-

erally achieves a high TP rate and a low FP rate. As a result, both AUC

values are also high, 0.9810 for the simulated data and 0.8396 for the

real data. The ROC curve approximations are based on more parame-

ter setups (130) with greater variability for A and L parameters than

reported in Tables 4 and 5 to obtain better ROC curve approximation,

because setups from both tables mostly fall near the upper left corner

of ROC space. More specifically, A was picked from [0.5,7.5] and L was

computed by multiplying the window length N with a random number

sampled from [1,14].
The classifying aspect of the algorithm is shown in Figure 13,

using the simulated data with three types of events in this particular

example—spikes, temperature drifts, and temperature ramps. The com-

puted ARI for W100 was 0.66, which would suggest a fairly weak per-

formance. However, manual inspection of cluster assignments revealed

that the events are not assigned into false clusters, e.g. spikes are not

assigned into clusters with ramps, but rather that event types are fur-

ther subdivided into more specialized clusters, e.g. the algorithm dif-

ferentiates between high and low ramps. If we consider this and group

the subclusters into a larger cluster corresponding to a particular event

type (which can be obtained through user feedback in real-life), the

obtained ARI is 1.00, which reflects a perfect similarity.

FIGURE 13 A section of the classification accuracy test on the simulated data. Coloured rectangles indicate the recognized events whereas the
color refers to the event type. As seen in this example, spikes and temperature ramps are assigned to their respective groups whereas the
temperature drifts are classified as two different types of events. The reason is that the second temperature drift has a considerable higher
amplitude than the first one

5 DISCUSSION

In this paper, we described the iLab system, whose task is to moni-

tor the data about a laboratory environment, particularly refrigeration

devices, and inform the user about unusual events. It contains two inde-

pendent complementary modules: one using user-defined rules and

one using ML. Having two complementary modules is iLab's first advan-

tage over similar systems and is already patented (Kužnar et al. 2012).

The rules' module detects events that can be anticipated and described,

such as excursions of the refrigeration temperature outside the pre-

scribed boundaries. Its alarms are accompanied with a description text

with the values exceeded, as well as possible instructions on how to

react. The ML module detects any behaviour that is unusual compared

to previous normal behaviour, be it known or new. Although the events

vary in cause, severity, and consequences, ML module detects changes

in behaviour, be it short or long term, and alarms users. Although many

systems for the management of laboratory equipment or specifically

refrigeration devices support rules to detect undesirable events, these

rules are often not as flexible as iLab's. However, iLab's main advan-

tage over competing systems is its ML module. Not only can it detect

the majority of unusual events, it can automatically classify the types

of events it detects, thus allowing the user to define some of them as

normal. This way, it can overcome its weakness of raising false alarms,

which inevitably occur because even humans do not always agree on

what is unusual and what normal.

The iLab system was tested on both real and simulated data in order

to evaluate the performance of the learning module in comparison

with a human operator manually checking the data. The test on real

data showed 84 % sensitivity, which is a rather high value, comparable

to the domain experts' performance. We expect that most of the irreg-

ular events will already be recognized by the expert rules' module. In

this case, three arbitrarily chosen windows were combined to detect

events because the data originated from different types of devices

with different typical behaviour and sampling times. In tests on sim-

ulated data, windows were optimized according to the period of the

normal operating cycle. A window that is shorter than the period will

detect short events, whereas a window that spans over several periods

is better to detect temperature drifts. In this case, the combined sensi-

tivity was 99.96%, which means that the system recognizes almost all

irregular events. Precision can be improved through the user feedback

that labels some false alarms as irrelevant. Despite high sensitivity, the

precision was 62%, which is acceptable, especially considering the abil-

ity of the algorithm to learn from the user feedback and decrease the
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number of false alarms. The ROC curve estimation enabled us to com-

pute the AUC, which was 0.84 for real data and 0.98 for simulated data.

In a separate classification test, the system was always able to cor-

rectly classify three different types of unusual events. It initially divided

the unusual events into more than three clusters, but each of the clus-

ters contained only events of one type, so merging some of the clusters

yielded perfectly accurate classification. If the events of a particular

type are truly unusual, having them in multiple clusters is not a problem.

If, however, the user wants to define one of the types as normal, then the

user needs to do so for each of the clusters, which is an inconvenience,

but a fairly minor one.

For future work, a detailed analysis of event detection delay is

needed to determine how quickly does the system detect different

types of events. In our preliminary manual survey, we have observed

that the type or shape of event can have a big impact on the delay. Events

that introduce gradual changes to the refrigeration device operation

(e.g., temperature drift as a result of slightly open door) exhibit longer

detection delays than events that have instant impact on operation (e.g.,

door left entirely open). There is also a need to study the effects of

algorithm parameter choice on the detection delay and detection per-

formance, which would give answers if and how we can tune detection

delay and performance through algorithm parameters and if there are

some trade-offs between delay and performance. This would be helpful

in situations where one criterion is more important than the other and

would allow tuning the parameters to specific needs.
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