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Abstract. To deal with the large amount of data produced by telemoni-
toring of patients with chronic diseases, a decision support system (DSS)
was developed. The DSS uses sensor data and the data from a patient’s
electronic health record as the input. It assesses the risk to the patient’s
health by exploiting the existing medical knowledge. The risk assessment
can show the contribution of the individual monitored parameters to the
risk, and can be tailored by the doctor to each patient.
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1 Introduction

The amount of data produced by telemonitoring solutions can be overwhelming,
so using it for clinical decision-making is difficult. When telemonitoring data is
combined with data obtained by traditional means, the problem becomes even
larger. In a European project aiming to integrate telemonitoring into the clinical
workflow, we tackle this problem by a decision support system.

In the CHIRON project [1], a patient is equipped with wearable ECG, tem-
perature, sweating and activity sensors. The data produced by the sensors is sent
to a user’s mobile phone where the data is transformed into several parameters.
These are then sent to a central server and are combined with the data from the
patient’s health record in order to be examined by the doctor. The DSS system
uses all the data to automatically assess the risk to the patient’s health and helps
the doctor understand its assessment. It also offers personalization, allowing the
doctor to tailor the risk assessment to each patient. For the most part, the DSS
can support the management of any chronic disease. Our test case, however, is
the congestive heart failure (CHF), and the choice of sensors and the expert
knowledge contained in the DSS reflects that.

The architecture of the DSS is as follows: (i) the system input are sensor
values from monitored parameters and electronic health records; (ii) in the risk
assessment module, which is designed as an expert system, the input values are
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transformed to a risk; (iii) the risk value can be used to trigger alerts (e.g., if the
risk is too high, the doctor will receive a notification); and (iv) the configuration
module can be used to tailor the risk assessment to each patient.

2 Related work

Pocock et al. [2] conducted an analysis that included individual data on 39,372
patients with heart failure. Using multivariable piece-wise Poisson regression
methods with step-wise variable selection, a final model included 13 highly sig-
nificant independent predictors of mortality. Conversion from real parameter
values to an easy-to-use integer-based model was done by translating mortality
rate into a risk score. The score facilitates the identification of low-risk patients,
e.g. score < 17 has an expected 90% 3-year survival, and very high-risk patients,
e.g. score ≥ 33 has an expected 30% 3-year survival.

Yan et al. [3] presented a medical decision support system based on the
Multilayer perceptron neural network architecture for heart disease diagnosis.
They have identified the 40 input variables critical to the diagnosis of the heart
diseases. A heart diseases database consisted of 352 cases in this study. Three
assessment methods, cross validation, holdout and bootstrapping, were applied
to assess the generalization of the system. The results showed that the proposed
system can achieve very high diagnosis accuracy (> 90%) and comparably small
intervals (< 5%), proving its usefulness in support of clinic diagnosis decision of
heart diseases.

In the Chiron project an observational study is currently undergoing in Italy
and United Kingdom and consists of 30 patients diagnosed with CHF. First
difference with two above mentioned studies is that Chiron observational study
targets only CHF patients. Second difference is that in this study more than 60
parameters will be collected and evaluated at the end of the study, which has
not been done at such scale before. Hopefully this will improve above results.

3 Expert system for risk assessment

The expert system is a set of knowledge-based models for risk assessment, which
attempts to exploit the large amount of existing medical knowledge. Its con-
struction and the result is first presented in general terms suitable for a range
of diseases, and then specifically for the CHF and the CHIRON project. The
CHF/CHIRON models will be updated with the knowledge generated during the
CHIRON observational study. This is of particular importance for the parame-
ters that have not been studied at such a scale before (for example continuous
monitoring of several ECG parameters).

3.1 Selection of parameters

Parameter selection was made by a three-stage process. First a literature search
was performed and a list of parameters was made available. There were more
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than 60 variables selected including clinical, angiographic, biological, pharmaco-
logical, local ambient and electrocardiographic items which were considered in
previous published investigations in CHF patients and were deemed relevant as
potential short- or long-term risk factors for complications including hospitaliza-
tion or mortality. A medical expert (reference) initially subdivided all selected
variables into baseline Information (for which an agreement exist on the capa-
bility of potential long-term predicting value) versus short- or very short-term
potential predictors (on which CHIRON will specifically focus in this Expert
system construction). The baseline parameters included: demographic and clin-
ical variables including socio-economic status and activity parameters, results
obtained from blood sample and electrocardiographic tests, comorbidities and
ongoing drug regimen or devices. Short-term parameters included oxygen sat-
uration, skin and ambient humidity and temperature, parameters to monitor
movements, electrocardiogram and potassium blood content from high fidelity
electrocardiogram. The same medical expert ranked all these variables by giving
a synthetic probabilistic value to each potential risk factor, allocating a reliability
code: L = low, M = average, H = high.

The second step was to perform a survey among European Opinion Leaders
(OL) in cardiology as a means to obtain a comparative evaluation of the value of
the selected variables. A questionnaire was constructed and the OL were asked
to reply to the questions by giving a semiparametric coded series of responses
to specific questions, made such to be adapted to the risk under evaluation. The
questionnaire consisted of two parts. The first aimed at questioning on clinical
elements not definitely proved in published studies (25 questions), whereas the
second part addressed elements to be considered as more definitely proved (41
questions). The semiparametric responses might be given taking the probabilistic
nature of the question into account. There were 32 OL respondents from Italy,
Slovenia, Spain and UK.

4 Risk modeling

We decided to use three risk models, since the risk within different time horizons
is affected by different parameters:

– Long-term, which models static risk, and is mostly affected by the parameters
that change rarely

– Medium-term, which primarily models risk with causes in the last three
months, and is mostly affected by the parameters that change with a medium
frequency

– Short-term, which primarily models risk with causes in the last three days,
and is mostly affected by the parameters that change frequently

These three models are tailored to the CHF and the CHIRON observational
study, although they are suitable for other settings as well. In principle one
could use any number of models and any time horizons, as long as matching
parameters are available. In order to include each parameter in one or more
models, and assign the risk value to it, the following information is required:
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– The importance, which was obtained through the surveys: low, medium, high

– The frequency at which the parameter changes, which roughly corresponds to
the frequency at which it is measured: low fairly static (e.g., age); medium
measured during regular visits to the doctor (e.g., blood pressure); high
measured continuously using sensors (e.g., heart rate)

– The minimum and maximum expected value of the parameter p: pmin, pmax

– The relation between the parameter value and the risk: (+) - the higher the
value, the higher the risk; (-) - the higher the value, the lower the risk; (U) -
high risk at low and high values, low risk in between (for such parameters the
lowest-risk value pmid is needed in addition to the minimum and maximum
expected value)

– The low threshold, which separates the parameter values corresponding to
low risk (green) from those corresponding to medium risk (yellow), and
the high threshold, which separates the parameter values corresponding to
medium risk from those corresponding to high risk (red)

4.1 Parameter value to risk transformation

The value of each parameter is transformed into a risk value, which lies in the
[0, 1] interval. If a given parameter p is numeric and has the (+) or (-) relation,
this is straightforward:

risk(p) = (p− pmin)/(pmax − pmin); p’s relation is (+)

risk(p) = 1− (p− pmin)/(pmax − pmin); p’s relation is (−)

Computing the thresholds on the risk scale is also straightforward. If pl and ph
are the low and high threshold in terms of parameter values, then the thresholds
in terms of risk values are risk(pl) and risk(ph), computed using the equations
above. If the parameter p has the (U) relation, computing the risk is somewhat
more complicated. Each such parameter has two low and two high thresholds
in terms of parameter values, one on the left and one on the right side of the
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follows:
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Fig. 1. The graph of the risk with respect to the parameter value.

The parameters with only two values (0 and 1, e.g., gender) also require
special treatment. For these, one value is always assigned low risk (0), and the
other may be assigned medium risk (1/2) or high risk (1). The thresholds in terms
of risk values are risk(pl) = 1/3 and risk(ph) = 2/3.

All above formulas are experimental as there is currently not enough data
to evaluate them, but they are still derived from the current medical knowl-
edge about congestive heart failure and use principals for designing clinical de-
cision support system [4]. At the end of the observational study the parameter
thresholds and risk thresholds will be evaluated and the model will be updated
accordingly.
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4.2 Construction of the models

We propose simple additive models, which means that the risk values are added
up to the overall risk. In risk modeling, various exponential models are more
common [5], but their parameters are typically computed from data. Since we
are using expert knowledge, and the risk values are only rough estimates, we
believe the transparency and simplicity of additive models is preferable.

Let N be the number of parameters, and let each parameter be associated
with a weight. The formula for a model is then as follows:

risk =
1∑N

i=1 w(pi)
·

N∑
i=1

w(pi) · risk(pi)

The weight of a parameter depends on its importance (wI) and model-specific
properties (wM ):

w(pi) = wI(pi) · wM (pi)

The importance weights were set to 1/3 for low-importance parameters, 1 for
medium-importance parameters and 3/2 for high-importance parameters by the
reference expert. The model-specific weights are 1 by default; the exceptions are
specified in the following three paragraphs.

Long term. This model uses parameter values upon enrollment, which is a
common point for all the patients.
– Low-frequency parameters: all are included with the enrollment values.
– Medium-frequency parameters: all are included with the enrollment val-

ues.
– High-frequency parameters: selected are included with the average val-

ues over the first month after the enrollment. The averaging is needed
because the impact of the exact time of measurement could otherwise
be too large.

Medium term. This model uses recent parameter values, and deemphasizes
the low-frequency parameters in order to give a greater weight to the more
frequently-changing ones.
– Low-frequency parameters: all are included with the last known values

and the model-specific weight of 1/3.
– Medium-frequency parameters: all are included with the averages over

the last three months. For those with numeric values, the slope of a linear
approximation over the last three months is also included.

– High-frequency parameters: selected are included with the average values
over the last month.

Short term This model also uses recent parameter values and deemphasizes
both the low-and the medium-frequency parameters.
– Low-frequency parameters: all are included with last known values and

the model-specific weight of 1/9.
– Medium-frequency parameters: all are included with the averages and

in some cases slopes over the last three months, and the model-specific
weight of 1/3.



7

– High-frequency parameters: all are included with the averages and slopes
over the last three days. For those measured continuously, the standard
deviations are also included.

As mentioned before, these three models are tailored to the CHF and the
CHIRON observational study. For other purposes, one could modify the selection
of the attributes (e.g., include all the high-frequency attributes in the medium-
term model, or exclude some of the low-frequency attributes from the short-term
model) and the model-specific weights (1/3 and 1/9).

5 Prototype

The prototype of the expert system is implemented in Java as a stand-alone PC
application, and shown in Figure 2. The upper left window allows the selection
of the patient, model and parameter, the upper middle window shows the short-
medium- and long-term risk, and the upper right window shows the selected risk
over time. The lower two windows show the selected parameters over time.

Fig. 2. Prototype of the expert system.

The expert system prototype is fully configurable. Essentially, all parameters
are stored in an XML file that can be changed at any time. Parameters (and
their averages, slopes and standard deviations) can be removed or added to
any of the three models. When the prototype is started, the XML file is loaded
and the system configured. Only adding a new type of parameter would require
modifying the prototype itself.

To test the prototype, the reference expert defined static parameter values
for three imaginary patients: one with low, one with medium and one with high
risk. Since data at multiple time points are needed for the models, a year’s worth
of data was generated by adding normally distributed noise to the static values.
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In order to improve user experience and provide data about patients’ risks
to the medical experts during the observational study, Advanced Medical Ex-
pert Support Tool (A-MEST) [6] was developed. It is a step towards achieving
the patient-centric approach by incorporating the health information into the
Electronic Health Record (EHR). Risk values produced by presented decision
support system are also recorded to EHR and therefore made available for use
by A-MEST. It also has a Graphical User Interface which shows the visualiza-
tion of the health status of the patients providing meaningful information to
the cardiologists. Furthermore, alert system is incorporated into A-MEST to fa-
cilitate the medical experts by prioritizing patients with higher risks and alert
them when a certain patient has a critical risk value. Due to the use of EHR
by A-MEST, it could also be used by any Hospital Information System using
European standard ISO/EN 13606.

Conclusion

In this paper we presented a DSS for the management of chronic diseases using
telemonitoring. Since the DSS was designed with CHF in mind, the sensors used
for telemonitoring (ECG, temperature, sweating and activity) are suitable for
CHF patients, and the expert knowledge contained in the system also pertains
to CHF. The DSS is otherwise general.

The main module of the DSS deals with risk assessment. It is designed as an
expert system which provides the risk assessment from sensor data values and
electronic health record. The risk assessment module is supported by a configu-
ration module which can be used to meet the requirements of a specific patient.
The correctness and the accuracy of the risk assessment module proposed in this
paper will be evaluated at the end of the observational study. The thresholds will
be updated accordingly and the system will hopefully be ready for deployment
in real-life environment.
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