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Abstract

Activity recognition is an essential task in many
ambient assisted living applications. Activities are
commonly recognized using data streams from on-
body sensors such as accelerometers. An important
subtask in activity recognition is signal segmenta-
tion: a procedure for dividing the data into inter-
vals. These intervals are then used as instances for
machine learning. We present a novel signal seg-
mentation method, which utilizes a segmentation
scheme based on dynamic signal partitioning. To
validate the method, experimental results including
6 activities and 4 transitions between activities from
11 subjects are presented. Using a Random forest
algorithm, an accuracy of 97.5% was achieved with
dynamic signal segmentation method, 94.8% accu-
racy with non-overlapping and 95.3% with overlap-
ping sliding window method.

1 Introduction
Activity recognition using on-body sensors is required for
many ambient assisted living applications. This paper fo-
cuses on an important subtask in activity recognition: signal
segmentation, the process of dividing the data into intervals.
On-body sensors are collecting and continuously outputting
streams of data. These streams are used to recognize the
user’s current activity.

The problem tackled in this paper is how to segment the
data into intervals most suitable for activity recognition. Most
approaches use overlapping and non-overlapping sliding win-
dows, which means that the data is divided into intervals of
fixed length. On each interval features are computed and
then used as an instance for activity recognition. We present
a novel method for signal segmentation, which attempts to
match the intervals to the borders between different activities.

Dynamic signal segmentation method is based on search-
ing for significant differences between consecutive data sam-
ples. A significant difference is determined by a dynamically
computed threshold. It is updated whenever a new data sam-
ple is received, and adapts to changes in the data stream.

The paper is structured as follows. Section 2 gives an
overview of related work on activity recognition with on body

sensors. Section 3 describes two signal segmentation meth-
ods: the sliding window method and the novel dynamic signal
segmentation method. Section 4 lists the attributes extracted
from the input data that are fed into the machine learning al-
gorithms. Section 5 presents the experiments in which the
signal segmentation methods are compared. Finally, Section
6 concludes the paper and outlines the future work.

2 Related work
Various sensors are used for activity recognition: ac-
celerometers and gyroscopes, real-time locating systems
(RTLS) [Mircevska et al., 2009], cameras [Qian et al., 2004;
Vishwakarma et al., 2007] and environmental sensors [Zhan
et al., 2007]. Cameras pose a (real or perceived) threat to
privacy, RTLS are expensive, and both require installation
in the apartment as do environmental sensors. Because of
that accelerometers and/or gyroscopes, which are inexpensive
and portable, are most commonly for activity recognition, al-
though in some situations they are not unobtrusive to the user.

Koskimaki et al. [2009] used a single wrist worn ac-
celerometer to collect the acceleration and angular speed data.
They defined four activities and one class value to denote
”other” activities. Using the overlapping sliding window
method with the window size of half a second, almost 90%
accuracy was achieved. Ravi et al. [2005] tried to recognize
eight activities, using one accelerometer placed on the ab-
dominal area. Two of these activities are the same as in our
testing scenario, others are similar. They divided the signal
into overlapping five-second windows, and achieved accuracy
of 73.3%. Mannini and Sabatini [2010] tried to recognize
seven activities using five accelerometers placed on the body.
Four of these seven activities are identical to the ones in our
scenario. They achieved 98.5% accuracy when using the 6.7
second overlapping sliding window method. None of this re-
searches had tackled the problem of recognizing transitions
between activities.

Bifet and Gavalda [2007] have presented a segmentation
algorithm that is recomputing the size of the sliding window
accordingly to the rate of change observed from the data. The
window is growing when the data is stationary, and shrinking
when change is taking place. In order to work, the algorithm
has to be integrated into a machine learning algorithm. Nunez
et al. [2007] also presented an incremental decision tree algo-
rithm, which is adapting sliding window size to portions of



the target concept. Each leaf of the decision tree holds a time
window and a local performance measure. When the per-
formance of a leaf decreases, the size of its local window is
reduced. Some limitation may arise when dealing with large
amount of data as the decision tree has to be updated when
new examples are available.

3 Signal segmentation
Two methods are typically used to evaluate a stream of data
for activity recognition. The first method is to use a single
data point to determine the current activity. This method is
not commonly used as the information gathered from a single
data point is in most cases not sufficient for activity recogni-
tion. The second method involves signal segmentation. This
means that consecutive sensor data are grouped. In contrast
to the first method, multiple data points are used to determine
the current activity. Using multiple data points allows more
information to be extracted from the data, so the activities
can be determined more accurately. However, the question of
how exactly to group consecutive data needs to be tackled.

Some common methods for signal segmentation are over-
lapping and non-overlapping sliding windows, and signal
spotting [Junker et al., 2004; Benbasat et al., 2000; Amft
et al., 2005]. In this section a new method for signal segmen-
tation is proposed - dynamic signal segmentation method.

3.1 Sliding window method
The sliding window method is the most commonly used sig-
nal segmentation method for activity recognition with ma-
chine learning. The sliding window method accumulates
sensor data over a fixed time window. Features are com-
puted over one time window and are used as an instance for a
learning/testing set. Two approaches are commonly used for
data segmentation with sliding windows. The first approach
is non-overlapping sliding windows, where consecutive time
windows do not share common data samples. The second
approach is overlapping sliding windows, which share com-
mon data samples between time intervals; for example, two
consecutive time windows may have 50% of data samples in
common.

3.2 Dynamic signal segmentation
Dynamic signal segmentation method is a novel method for
signal segmentation. In principle the method can be used on
any domain where a stream of sensor data has to be processed
and the data has to be divided into segments. We tested the
usability of the method on an acceleration-based domain for
the purpose of activity recognition. We assume that, in addi-
tion to the acceleration data, the method can also be used for
ECG or thermometer data, but it has not been tested yet.

The method searches for a significant change between con-
secutive data samples and divides the data into intervals at
that point. The significant change is defined as a sequence
of consecutive data samples where the values are in descend-
ing order, and the difference between the maximum and the
minimum element in the sequence is larger than a threshold.
The condition that the values should be in descending order is

specific to our problem of accelerometer-based activity recog-
nition, since each strong deceleration is typically quickly fol-
lowed by an acceleration. Considering both would thus lead
to dividing the data twice when a significant change occurs.
For other types of data, both descending and ascending order
should be considered.

Examples of sequences with the values in descending order
are shown in Figure 1 denoted with a dotted line. When a
set of descending data samples is found, the last element of
this sequence is used as an ending point of one and starting
point of the next interval. Therefore, the length of an interval
is changing dynamically, as opposed to the sliding window,
where it is set to a specific length. The features computed
from each of the intervals are used as an instance for machine
learning.

Figure 1: Descending sequence, denoted with dotted line, on
a three-second time window.

The threshold, at each data sample, is computed from pre-
vious N data samples. Therefore, an initialization process of
the algorithm uses N data samples to compute the first thresh-
old. These data samples are used to compute the average min-
imum (avgmin) and average maximum (avgmax) values. The
average minimum value is defined as the average of the first
smallest ten percent of values in the last N data samples. The
average maximum value is defined as the largest ten percent
of values. In Figure 2, maximum values are denoted with cir-
cles and minimum values with squares. An average of each
of these points is computed.

When these two values are obtained, the threshold can be
computed:

threshold = (avgmax − avgmin) · C
where C ∈ [0, 1] is a constant selected prior to the start of
the algorithm. This approach for setting the threshold is bet-
ter than using only the minimum and the maximum values
on an interval . For example, if there are some errors in the
data, such as abnormal high or low peaks, these will be par-
tially corrected with the other values for averaging minimum
or maximum. The constant C can be computed from a learn-
ing dataset as follows:

C =
1
n ·
∑n

i=1 ai

amax − amin

The value n denotes the number of data samples in a learning
dataset, amin and amax are the minimum and the maximum



Figure 2: Four minimum and four maximum points on 40
data sample interval.

accelerations on the interval and ai is the length of an acceler-
ation vector at data sample i. Another way to set the constant
C would be to tune it by running the dynamic signal segmen-
tation on a separate dataset.

In addition to selecting the appropriate constant C, the de-
veloper has to determine which input signal should be used
for threshold computation. This depends on a diversity of in-
put signals and the domain. Our experiments were done using
two 3-axial accelerometers attached to the left thigh and the
chest. If, for example, we were driving a car, vertical accel-
eration would stay identical for almost all the time and same
would apply for the threshold. On the other hand, if sev-
eral activities, like walking, running, etc., were performed,
the vertical acceleration would probably be the best choice as
it would provide maximum information about activities.

A general solution when using one 3-axial accelerometer
would be to use the length of the acceleration. However, when
using more than one accelerometer, like in our example, the
input signal for a threshold computation should be derived
from multiple accelerometers. In our experiments the input
signal for threshold computation was the arithmetic mean of
lengths from both accelerometers and was derived as follows:

A =
1

2
·
√
a2x + a2y + a2z ·

√
b2x + b2y + b2z

where a⃗ = [ax, ay, az] and b⃗ = [bx, by, bz] are acceleration
vectors from both accelerometers.

4 Feature computation
In our experiments, once the stream of data was segmented
either by the sliding window method or the dynamic signal
segmentation, we used the same procedure to compute the
features activity recognition by machine learning. Some ad-
ditional information could be derived when using dynamic
signal segmentation method, for example the time duration
of an interval. However, in order to have comparable results,
these additional attributes were not used.

As stated above, two accelerometers were used in our ex-
periments. The following attributes were derived separately
for the acceleration vectors from each of the accelerometers:

• The average length of the acceleration vector within the
window, which could be of fixed size or computed with
dynamic signal segmentation.

• The variance of the length of the acceleration vector.
The variance within the window was defined as follows:

δ2 =

∑N
i=1(ai − a)2

N

where N is the number of acceleration data within the
window, is the length of the i-th acceleration vector and
a is the average length of the acceleration of all previous
samples.

• The average acceleration along the x, y and z axes.
• The maximum and the minimum acceleration along the

x, y and z axes.
• The difference between the maximum and the minimum

acceleration along the x, y and z axes.
• The angle of change in acceleration between the maxi-

mum and the minimum acceleration along the x, y and z
axes. It was defined as follows:

Ω = arctan

(
amax − amin

tamax − tamin

)
where amax and amin are the maximum and minimum
acceleration along one axis within the window, and
tamax and tamin are the times when they were mea-
sured. Figure 3 shows the principle of computing the
angle of change in acceleration in one time window.If
tamax > tamin the angle is positive, otherwise the angle
is negative.

Figure 3: The angle of acceleration in a time window.

• The orientation of the accelerometer. We assumed that
the acceleration vector a = [ax, ay, az], which con-
sists of the accelerations along the three axes of the ac-
celerometer, generally points downwards (in the direc-
tion of the Earth’s gravity). Let z be the axis pointing
downwards when the accelerometer is in upright posi-
tion. The angle ϕ between the acceleration vector and



the z axis thus indicates the person’s orientation, and was
computed as follows:

ϕ = arccos

 az√
a2x + a2y + a2z


To sum it up, 18 attributes were computed for each ac-

celerometer. The final attribute was the angle between ac-
celerometer vectors. It was obtained by computing the scalar
product of vectors, normalized to their length:

Θ = arccos

(
a⃗ · b⃗

∥a⃗∥ · ∥⃗b∥

)

Vectors a⃗ and b⃗ each represent the acceleration from both
accelerometers. One instance in learning/testing set was
thus represented with an attribute vector consisting of 37 at-
tributes.

5 Experiments
We compared the performance of the signal segmentation
methods on a scenario recorded by 11 healthy volunteers (7
male and 4 female), 5 times by each. Three of these record-
ings (2 male and 1 female) were used to create the training
set and the other 8 were used to create the test set.

The scenario included 6 activities and 4 transitions. Transi-
tions are defined as short actions between two activities. The
activities and transitions are listed in Table 1.

Activity Transition
1. standing 7. falling
2. walking 8. sitting down
3. on all fours 9. standing up
4. sitting 10. lying down
5. sitting on the ground
6. lying

Table 1: Activities and transitions

To classify new instances we trained a classifier using the
Random forest algorithm on our training set. The algorithm
was implemented in Weka machine learning suite [Hall et al.,
2009]. The constant C, used by dynamic signal segmentation,
was set to 0.4. This value was obtained by testing the dynamic
signal segmentation algorithm on a different dataset than used
for this paper. The same procedure was used to determine
the value N for the number of data required for threshold
computation. The value N was set to 100. The length of the
sliding window was set to 1 second.

Each data sample in our training and test sets was labeled
with an activity, whereas both the sliding window method
and dynamic signal segmentation recognize the activity of a
whole time interval. For training and testing purposes we thus
considered the true label of an interval to be the majority if the
labels of all the data samples in the interval.

5.1 Results
We compared the results of dynamic signal segmentation to
overlapping and non-overlapping sliding window methods.
We divided the scenario into two separate problems. The first
problem was to recognize only the activities, and the second
problem was to recognize both the activities and the transi-
tions. Both problems were tested on the same dataset with
one difference, in the first case the transitions were excluded
from the training and test sets. The performance of the three
methods was measured in terms of classification accuracy.
Table 2 shows the results of all the methods.

Methods
Non-

overlapping
sliding
window

Overlapping
sliding
window

Dynamic
signal

segmentation

Activities 94.8% 95.3% 97.5%
Activities

and
transitions

89.0% 89.6% 92.9%

Table 2: All the methods compared using just activities and
activities with transitions.

Based on these results we can conclude that there is a
difference between non-overlapping and overlapping sliding
windows, compared to dynamic signal segmentation method.
On the other hand, the difference between the two sliding
window methods and the dynamic segmentation method on
the problem without transitions is 2.9 and 2.4 percentage
points, and when the transitions are included it is 3.9 and 3.3
percentage points.

The quality of dynamic signal segmentation method de-
pends on the threshold computation. For example, if the value
N , which determines the number of previous samples used
for threshold computation is set too high, the threshold does
not update fast enough. As a consequence, transitions be-
tween activities are overlooked. On the other hand, if the
number of previous samples is set too low, the threshold is
over-fitted to the acceleration data. As a consequence data is
fragmented and not appropriate for proper activity recogni-
tion. Figure 4 shows the threshold values in a single record-
ing. We can notice that the threshold is changing according to
activities. When a static activity, e.g. lying or sitting, is per-
formed the algorithm updates the threshold to a small value,
but while a person is walking, the threshold is updated to a
higher value.

If the threshold computation was not implemented in the
algorithm, the data stream would be divided using a simple,
predefined threshold. Static activities like standing and sitting
would not be separated using this approach. Another problem
would be the determining the threshold.

As mentioned in section 3.2, the avgmin and avgmax val-
ues are used to compute the threshold. These values are ob-
tained by computing the mean value of minimum and max-
imum ten percent of values. Other approaches can be used
to obtain these values. Instead of the mean value, we could



Figure 4: Changing of threshold values in a scenario.

compute a median value or use only minimum and maximum
values. Results of these approaches are shown in Table 3.

Mean Median Only min and max values
Accuracy 97.5% 96.9% 96.1%

Table 3: Accuracy of different approaches for computing
avgmin and avgmax values.

By analyzing the confusion matrix [Kohavi and Provost,
1998] for the experiment excluding the transitions between
activities (Table 4), we can conclude that the accuracy of all
the activities except on all fours is above 90%. On all fours
is usually confused with lying on the stomach, because the
sensor orientation are the same (parallel with the ground and
facing the ground). Another reason for poor performance,
when recognizing on all fours activity, can be found in a small
number of instances of this activity in the learning set (only
0.6 %). One of the solutions would be to change our scenario
accordingly to extend the recording time when a person is on
all fours.

Sta Walk On4 Sit SitG Ly
Sta 95.2% 4.8% 0 0 0 0

Walk 2.0% 97.5% 0.4% 0 0 0.1%
On4 3.5% 10.6% 51.8% 0 0 34.1%
Sit 0 0.3% 0 95.9% 3.4% 0.4%

SitG 0 0.2% 0 5.2% 92.6% 2%
Ly 0 0.1% 0.1% 0.1% 0 99.7%

Table 4: Confusion matrix for activity recognition. Standing
(Sta), walking (Walk), on all fours (On4), sitting (Sit), sitting
on the ground (SitG), lying (Ly).

The results of activity recognition with transitions between
activities are presented in Table 5. The overall accuracy of ac-
tivities has decreased as there are four more classes that have
to be predicted. Recognition of transitions is 62.2% accurate.
This could have occurred due to the fact that the length of
the transitions is much shorter than the length of activities;

therefore the labels may not correspond perfectly to the data
in these short intervals. This can happened because of several
reasons: mislabeling, sometimes it is hard to determine the
correct limit between transition and activity even by hand.

Activity/transition Accuracy
standing 90.5%
walking 96.9%
on all fours 23.3%
sitting 96.9%
sitting on the ground 93.8%
lying 98.7%
falling 42.1%
sitting down 49.5%
standing up 69.7%
lying down 41.2%

Table 5: Accuracy of activity and posture recognition.

6 Conclusion

We have presented a novel method for signal segmentation,
which is an important subtask in activity recognition. Sig-
nal segmentation is a process of dividing the stream of data
into groups and is used for dividing of acceleration data, gy-
roscope data etc. Common methods for signal segmentation
are overlapping and non-overlapping sliding windows. These
methods divide the data into fixed time intervals. Our method,
dynamic signal segmentation, is dividing the data based on
patterns in data stream. The method is searching for signifi-
cant changes in the data based on the threshold. The thresh-
old is updated with every new data sample and is changing
dynamically, according to the signal. When such a change is
found in the data, it is used as a limit between consecutive
intervals. An interval is then used as an input for machine
learning.

We compared the performance of common signal segmen-
tation methods with our dynamic segmentation method on
a scenario recorded by 11 healthy volunteers (7 male and
4 female). Each scenario included six activities and four
transitions between activities. Using the Random forest al-
gorithm 97.5% accuracy was achieved with dynamic signal
segmentation, 95.3% with overlapping and 94.8% with non-
overlapping sliding window method. We have also showed
that transition have negative effects on accuracy of activity
recognition. All the methods had lower accuracy with transi-
tions instances in learning/testing set.

There are several directions for future work. The first is
the development of more acceleration related attributes and
augment them with feature selection techniques. The second
direction is automatic labeling of the data: an algorithm for
semi-supervised learning which would group similar intervals
together into clusters. User would only need to manually la-
bel these clusters after the experiments. The third direction is
in improvement of the existing algorithm with techniques for
statistical data analysis.
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