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Abstract. Advances in ambient intelligence technologies achieved over recent 

years allow building ICT systems capable of supporting people in executing 

previously difficult tasks. This includes providing new opportunities to people 

with special needs, such as people with disabilities. In this paper we discuss our 

approach at designing and developing a smart platform that can assist people 

with profound intellectual and multiple disabilities (PIMD) in achieving a 

portion of independence. We apply this approach in the INSENSION project 

executed within the Horizon 2020 research and innovation programme of the 

European Commission. In this paper, we describe the characteristics of the 

disability in question, focusing on the main challenge, which is the inability of 

individuals with PIMD to use symbols in their interaction. Due to the fact that, 

to our best knowledge, the topic of constructing a system that could assist this 

interaction has not been undertaken so far, we were required to thoroughly 

analyze how individuals with PIMD interact using non-symbolic behaviors. We 

then defined requirements for the platform capable of supporting their 

interaction with other people and possibly living environment, designed the 

architecture and built the first version with the use of AI methods. The 

evaluation of this version confirmed the soundness of our approach, which 

enables us to continue our work towards successful implementation of the 

planned ambient intelligence system and its validation in real-life scenarios. 

Keywords: smart assistive technologies, non-symbolic interaction, accessible 

technologies 

1 Introduction 

The advancement of Information and Communication Technologies that can be 

observed in the recent years has allowed for the development of innovative 



technological solutions capable of fulfilling the ever increasing percentage of the 

needs of vulnerable people. This relates to the needs arising as people age and to the 

needs of people living with disabilities. The former of these topics has been the center 

of attention of a significantly big community of researchers and technical experts. 

This has resulted in a number of innovative solutions supporting older adults, often 

developed with the financial support of dedicated research programs such as the 

Active and Assisted Living Program. These solutions, often referred to as ambient 

assisted living (AAL) solutions, have been attempting to use various forms of ambient 

intelligence. For example the Fearless project developed a system that uses vision 

based sensors to detect risks in daily life of the elderly [1]. The PersonAAL project 

proposed a platform detecting behavior changes in older adults in order to persuade 

them to undertake healthier behaviors [2]. In our own previous work we developed a 

system that unobtrusively monitors physical activity, mental stress and health of the 

workplace environment of older adults to recommend relevant actions aimed at 

decreasing the risk of illness [3]. 

Ambient intelligence technologies are also applied as support for people with 

disabilities. Some of examples include smart sensing solutions for visually impaired 

[4] or smart sign-language interpreters for the deaf [5]. Thanks to these innovative 

applications of ambient intelligence technologies an ever increasing number of people 

with disabilities receive tools supporting their self-reliance. Nevertheless, there still 

exist populations with disabilities who have not had a chance to use the potential of 

today’s technologies. One such group are people with profound intellectual and 

multiple disabilities (PIMD – also referred to as PMLD – profound and multiple 

learning disabilities). 

 Individuals affected by profound and multiple disabilities are immobile or have 

severely restricted mobility and are subject to profound and multiple sensory 

impairment in combination with profound intellectual impairment [6]. Their capacity 

to perceive and act upon the interactive situation about them is significantly and 

severely diminished. Individuals affected by PIMD remain at a very early stage of 

development for a prolonged period of time, if not a lifetime. They often 

communicate on a pre-symbolic level and use unconventional behavioral signals (e.g. 

specific body movements or vocalizations) to express their needs. Consequently, they 

are usually unable to use existing technological devices, even those that use not using 

advanced ICT, as these tools require understanding of symbols. Moreover, the 

number of those interaction partners who are able of accurately perceiving and 

interpreting the specific and highly individual behavior signals is very limited in most 

cases. The exact understanding of the needs of people with PIMD is not often possible 

even for very familiar persons. This significantly restricts the participation of this 

group in all areas of life. 

Supporting people with PIMD is extremely challenging today as it requires 

constant support of a member of the very small – constituted by only a few people, 

group of professional and informal caregivers who are able to understand the 

communication signals expressed by a given individual with this type of disability. 

Nevertheless, in our opinion, the advancement of a number of technologies allows to 

construct a smart ICT solution capable of recognizing those behavioral 

communication signals, collecting information about context of these behaviors and 



analyzing this information in order to find meaningful patterns and to interpret them 

as specific intents of the given individual with PIMD. This can significantly change 

the quality of life of people with PIMD allowing to improve assistance that can be 

provided to them and in consequence to empower them to a certain level of their 

individual potential. We believe this is possible because computer vision techniques, 

sound analysis techniques, Internet of Things technologies and machine learning 

techniques can be appropriately applied to construct a comprehensive system capable 

of assisting people with PIMD in interacting with other people and changing their 

living environment according to their current needs. We perform such application of 

the mentioned technologies within the INSENSION project in which we design and 

develop a personalized intelligent platform enabling interaction with digital services 

to individuals with PIMD. In this paper we present the results of the research 

conducted during the first year of the project. This work allowed us to analyze the 

requirements connected with building such a platform, to confirm usefulness of 

specific technologies for the delivery of specialized system components and finally to 

design the architecture of this platform. We discuss these in Sections 2, 3 and 4 

respectively. 

2 Requirements for ICT-Supported Communication of People 

with PIMD 

We have already mentioned in Section 1 that the target users of the INSENSION 

platform communicate on a pre-symbolic level and that their interaction schemes are 

highly individual and known to only a few persons. This interaction is based on 

behaviors such as gestures, facial expressions or vocalizations of an individual with 

PIMD, or combinations of these. They can express demand, protest or comment 

towards a certain situation [7]. This situation is therefore the context of the specific 

meaningful behavior of an individual with PIMD. When attempting to interpret the 

need of the given individual with PIMD direct support persons link important 

elements of the situation happening around that individual with the particular 

behavior. This allows them to make a decision on what kind of support is needed at a 

given time. This may relate to prolonging an activity which is demanded by the 

individual with PIMD such as for example entertaining relaxation on a swing or 

playing with a favorite toy, or reacting adequately in the case of a protest against the 

crowdy room or cold temperature.  

That means that the core functions of the INSENSION platform should be 

recognizing these behaviors as one of the three generalized statements mentioned 

above and monitoring key elements of the contextual situation happening around the 

supported individual with PIMD. We discuss these two elements in the current 

section, together with the results of our wider analysis of requirements towards the 

system that is capable of utilizing these core functions for the benefit of the given 

individual with PIMD (also referred to as ‘primary user’ throughout the remainder of 

this paper, as opposed to ‘secondary user’ which refers to persons providing direct 

support to a given individual with PIMD). 



 

2.1 Non-Symbolic Behaviors of People with PIMD 

The first step in designing the INSENSION platform was to understand more exactly 

what kind of gestures, facial expressions or vocalizations are used by people with 

PIMD.  

Behaviors of a given individual with PIMD can be assessed using several 

specialized tools in order to gather a comprehensive view of the communication 

model of that individual. Such tools have been used by the INSENSION project to 

assess a group of 6 individuals with PIMD with characteristics as follows: 

 male, 8 years old, with Struge-Wender syndrome; 

 male, 9 years old, with cerebral palsy and epilepsy; 

 male, 11 years old, with cerebral palsy, hypotonic form, quadriplegia and 

erectile pattern in the lower limbs. 

 male, 14 years old, with post-inflammatory hydrocephalus and implanted 

placental system after purulent meningitis with etiology of e-coli in the 

non-infant period; 

 female, 41 years old, with significant intellectual disability and able to 

walk; 

 female, 30 years old, with cerebral palsy, hydrocephalus and epilepsy. 

The assessment was performed by a team of special pedagogy experts supervised 

by Prof. Peter Zentel of the Heidelberg University of Education. Zentel and his 

colleagues collected information on the above-listed individuals with PIMD using an 

assessment system that included tools allowing to assess: the general competencies – 

these are oriented towards tools described in [8] and [9], communication skills using 

the Communication Matrix [10]; expressions of mood with the use of The Mood, 

Interest and Pleasure Questionnaire [11]; behaviors related to pain with the use of 

Non-communicating Children’s Pain Checklist [12] and Non-communicating Adult 

Pain Scale [13]; and behaviors indicating pleasure and displeasure or distress with the 

use of Disability Distress Assessment Tool [14]. Next, the results of the performed 

assessment were combined with the video and audio recordings of the actual 

behaviors of the assessed individuals with PIMD. This was done with the use of the 

ELAN video annotation tool [15] and allowed to build non-symbolic behavior models 

for each of the assessed individuals. ELAN is applied in humanities and social 

sciences research. It provides a three step procedure in which the researcher who 

annotates the video material first defines tiers and their types, then selects time 

intervals and finally annotates the video. The software allows to use both: time and 

event sampling. 

For the material that was collected in the INSENSION project, our colleagues 

defined three main areas describing a specific situation observed in the recording. 

These were Behaviors indicating the actual behavior of the recorded individual, 

Communication and Inner States indicating the meaning of the recorded behavior and 

Context describing factors influencing the recorded individual to express through the 

current behavior. These areas were then divided into categories (such as for example 

Facial Expressions in the area Behaviors), categories into subcategories (such as for 

example Apperance of Eyes), and finally into nearly 100 tiers (such as for example 



Eyebrow Movement or Widened Eyes) allowing to precisely annotate the recordings. 

Material annotated in such a way was the basis of experiments leading to 

confirmation of the possibility of recognizing the meaningful behaviors using relevant 

smart technologies as described in Section 3. 

 

2.2 Context of Behaviors of People with PIMD 

Behaviors of people with PIMD are usually a response to the situation that happens 

around them. This response relates to demanding that a certain situation continues, 

protesting against that situation or commenting it. Therefore, in order to interpret the 

actual meaning of these demands, protests and comments, we need to understand the 

situation that is concerned by them, i.e. the context of the behaviors of people with 

PIMD. To this end we used the results of the assessment of the six individuals with 

PIMD as described in Section 2.1 to derive the requirements for gathering information 

on the context of non-symbolic behaviors of people with PIMD. First, we created a 

list of all external circumstances influencing behaviors of the assessed individuals 

found in the assessment surveys. Next, we attempted to analyze them in relation to the 

technologies that could be used to monitor these circumstances. This allowed us to 

define requirements as to what the INSENSION platform should be monitoring in 

order to be able to correctly interpret specific behaviors of its target end users. 

The performed analysis showed that the following technologies could be used in 

order to collect information on the context: 

 video analysis, including identification of other people, monitoring 

position of the individual with PIMD, identification of specific objects 

such as toys, recognition of specific activities such as eating, and 

monitoring the temperature or other characteristics of objects with which 

the individual with PIMD interacts; 

 sound analysis, related to recognizing various types of sounds, including 

music, singing, other people’s voices and sounds of specific objects; 

 monitoring ambient parameters, related to measuring such parameters as 

temperature or illuminance, and recognizing sudden changes in the 

environment, e.g. sudden loud noises. 

 

2.3 Functional and Non-Functional Requirements for the Smart System 

Assisting Non-Symbolic Interaction 

In sections 2.1 and 2.2 we described the approach we used to define requirements 

concerning the use of specific technologies to recognize behaviors of people with 

PIMD and their context. The components built on top of these technologies constitute 

the core functionality of the developed platform. However, it was also important for 

us to define how this core functionality should be integrated into a working system 

capable of everyday support of people with PIMD, and indirectly their caregivers. To 

this end we performed the assessment of the potential functional and non-functional 

requirements for the INSENSION platform using the following methodology.  

First, we gathered an internal project group of experts on special pedagogy, 

business related to distribution of assistive technologies for people with disabilities 

and ICT. The group was constructed in such a way that the number of technological 



(ICT) and domain (special pedagogy and business) were equal. This group of experts 

participated in a brainstorming session aimed at listing all potential characteristics of 

the developed system. These were defined from the point of view of all potential 

users, including primary users (people with PIMD), secondary users (informal and 

professional caregivers) and tertiary users (other people). As a result of this 

brainstorming session we created a list of nearly 80 potential features of the 

developed system.  

Next, the members of the expert group assessed the defined system features 

according to their expert knowledge, rating each feature with one of the three grades: 

“OK”, “discard”, “decide later”. The experts could also suggest that a given feature is 

out of the scope of the current ICT system. The features which have been assessed by 

any group member as 'out of the scope' or marked as 'discard', were abandoned.  

The final step was to categorize the features according to the MoSCoW 

methodology [16]. This methodology allows to categorize the system features in order 

of their importance/priority. As a result we defined nine ‘must’ features that are 

critical for the success of the solution and its usefulness for the users, eight ‘should’ 

features that are equally as important, but could be implemented at a later stage, five 

‘could’ features that are desirable but not necessary for the user satisfaction, and four 

‘would’ features that are least critical, yet provide some added value for the end users. 

The ‘must’ features included, among others, making the platform to inform other 

people about the needs of the primary user – the individual with PIMD, interpreting 

the reactions of the primary user to the action undertaken by the platform as their 

feedback on the correctness of the behavior recognition and making sure that the 

direct support persons are not overwhelmed with the information provided by the 

platform to the them. The final list of prioritized system features was the basis for 

drawing the architecture of the INSENSION platform and defining its core 

mechanisms.  

3 Application of Advanced Technologies for Supporting Non-

Symbolic Interaction 

Following the definition of the requirements concerning construction of the smart ICT 

system capable of assisting non-symbolic interaction of people with PIMD, we 

performed a number of experiments with the technologies foreseen to enable 

recognition of the non-symbolic behaviors of people with PIMD. The goal of these 

experiments was to confirm that a given function of the INSENSION platform can be 

implemented successfully, to provide estimation of further work on each of the 

envisaged recognition components. In this section we discuss each of the considered 

recognition technologies and the resulting components. It is important to understand 

that all the reported experiments were performed using the excerpts from the video 

and audio recordings collected and annotated as described in section 2.1. 

 

3.1 Facial Expression Recognition 

Facial expressions are the facial changes in response to person’s internal emotional 

states, intentions or social communications. From a computer vision point of view, 



facial expression analysis refers to computer systems that attempt to automatically 

analyze and recognize facial feature changes from images. This analysis includes both 

measurement of facial motion and recognition of expressions. The general approach 

to automatic facial expression analysis (AFEA) consists of three steps: face 

acquisition, facial data extraction and representation, and facial expression 

recognition. 

Studies of automatic facial expression recognition have made a significant progress 

in the last two decades due to the advances in machine learning and computer vision 

techniques. The current research can be classified in two types: the recognition of the 

appearance of facial actions and the recognition of the emotions conveyed by the 

actions. Following our previous experience we proposed to use the former. This kind 

of system usually relies on the facial action coding system (FACS) [17]. FACS 

consists of 44 facial action units (AU), which are codes that describe certain facial 

configurations. 

We used the OpenPose library [18] for creating the component for the recognition 

of facial expressions. Four expressions – or AUs – were selected for performing the 

experiment. For each expression, a sample vector was built by means of computing 

the L2 Euclidean distance measure [19] from a reference key point (the tip of the 

nose) to the rest of face key points. Therefore, a vector of distances determines a 

particular facial expression. A different number of vectors of distances described each 

expression, because there could exist different head poses and orientations for the 

same expression, so the distances between key points vary for the same facial 

expression. Fig. 1 illustrates the location of the facial key points for which distances 

determining a facial expression are calculated. 

After building a model with a machine-learning algorithm, a validation of the 

model was performed with the previously selected test dataset. The obtained error test 

rate was 0.0824. Therefore, using this preliminary training and test dataset, an 

accuracy equal to 0.9176 was achieved for the facial recognition model for a set of 

four facial expressions. 

 

 

Fig. 1. Facial key points used for calculating distances determining facial expressions. 



 

 

3.2 Gesture Recognition 

A gesture is the use of motions of the limbs or body as a means of expression, to 

communicate an intention or feeling. Because gestures vary highly from one person to 

another, which is specifically true for people with PIMD, it is essential to capture the 

essence of the gesture – its invariant properties – and use this to represent the gesture. 

Besides the choice of representation itself, a significant issue in building gesture 

recognition systems is how to create and update the database of known gestures [20]. 

In general, a system needs to be trained through some kind of learning, there is often a 

tradeoff between accuracy and generality.  

Static gesture or pose recognition can be accomplished using template matching, 

geometric feature classification, neural networks (NNs), or other standard pattern 

recognition techniques to classify pose. Dynamic gesture recognition, however, 

requires consideration of temporal events. This is typically accomplished by using 

techniques such as time-compressing templates, dynamic time warping, Hidden 

Markov Models (HMMs) and Bayesian networks.  

Following the approach of the facial expression recognition, we used OpenPose to 

create the component for the gesture one. OpenPose’s pose key points have been used 

to classify different gestures like hand on head or raising leg. In the frontal view of 

the human body OpenPose detects 18 key points as presented in Fig. 2. The gesture 

recognition component builds a sample vector by computing the distances between 

the reference key point to all other pose key points. We used the neck key point as the 

reference point. The distance metric allows to uniquely classify different postures. 

 

 

Fig. 2. OpenPose’s key points of the human body used for calculating distances determining a 

given gesture. 



 

Next, we selected four gestures for the experiment. These were:  “hand_on_hand”, 

“foot_on_foot”, “raising_right_arm” and “raising_left_arm”. A sample vector 

codified each gesture by calculating the L2 Euclidean distance measure [19] from a 

reference key point to the rest of points that represent the body. As with facial 

expressions, a different number of vectors of distances described each gesture, 

because there could exist different head poses and orientations for the same 

expression, so the distances between key points vary for the same gesture. 

The gesture recognition was evaluated on excerpts from video files described in 

section 2.1. One part of the data was selected for the training phase and the other part 

was used for the test stage in a proportion of 67:33, respectively. A Time Distributed 

Feed Forward (dense) NN was used to train the recognition system using the set of 

training gestures.  

Finally, the validation of the constructed recognition component has been 

performed. The obtained accuracy was equal to 90% for the gesture recognition 

model for a set of four body gestures. 

 

3.3 Vocalization Recognition 

Vocalization recognition aims at detecting instances of non-linguistic sounds 

produced vocally by an individual under surveillance. Such sounds include laughing, 

wailing, heavy breathing etc. Similarly to other media of expression (i.e. facial, 

gestural), not all of these sounds have to correspond to interpretable messages 

communicated by a particular individual with PIMD. 

The classical approach to the vocalization recognition utilizes input signal 

parameterization of input signal and statistical analysis of extracted parameters in 

order to find out what predefined category it represents. The general procedure in 

these studies is as follows: (1) a set of characteristic features is extracted from short 

packages of sampled signal using statistical measures (mean, standard deviation or 

more complex, like Mel Spectrum or MFCC); (2) extracted features are classified into 

one of predefined states [21,22]. The rapid development of artificial neural networks 

(ANN) in recent years allowed to utilize ANN for detection and classification of voice 

signals. Here ANN are used on first or second step in connection with the classical 

feature extractor or classifier [23,24,25]. For the first trials of vocalization recognition 

in the INSENSION project we used the classical approach. 

 The vocalization recognition is a two-stage process. First, signal parametrization 

for uniformly spread short-time audio frames is performed with mathematical 

transformations (e.g. Mel-frequency cepstral coefficients (MFCC)). In this process a 

portion of acquired audio signals is taken, and from each such portion a vector of 

features is extracted. Our frames were overlapping windows of 25 ms of audio signal 

starting every 10 ms. Subsequently, these extracted feature vectors are fed into a 

statistical process-modeling framework based on Hidden Markov Models. The 

analysis based on statistical learning models allows to classify/categorize (by 

assigning labels, “tags”) particular groups of samples that were characterized by 

vectors of extracted features at the first stage of the detection process. The labels 

produced this way contain also information on the calculated accuracy of the 

recognition. 



In our solution, vocalization types are represented by a list of distinct states for 

which a state transition matrix is defined. Each state corresponds to one stationary 

segment of audio observations. The stationary signal in a given state is thus 

represented by its Gaussian Mixture Model (GMM) that describes distributions of 

parameters extracted from the audio signal during the parameterization phase. It is 

also possible to extend the models by explicit state duration distributions, which 

formally makes them semi-Markov rather than HMM. 

The training procedure consists of two phases. In the first phase unsupervised 

audio frame clustering is performed using a GMM-based method. The second phase 

deals with re-estimation of the model parameters using Expectation-Maximization 

(EM) method whose objective is to increase the degree to which the model matches 

the training data. 

A separate model is constructed for each vocalization type. Input audio stream is 

processed using each of these trained models. Therefore, one observation can be 

classified as belonging to different vocalization types with various degrees of 

confidence. 

For labeling the samples we implemented a Token-Passing algorithm. A token 

represents a hypothesis that the given sample should be tagged with a certain label, 

because it is partially matched to some range of input observations, and ‘currently’ 

occupies one of the states of the trained model. Each token remembers its supposed 

start time, as well as its accumulated cost from this point; acoustics (GMM emission 

probability), transition/duration distributions and constant insertion penalties all 

contribute to the total cost. With each observation, i.e. short-time audio frame, tokens 

are passed from state to state according to the transition matrix. Tokens may be 

cloned, which happens when a state has more than one possible successor.  Whenever 

two tokens reach the same state of the model at the same time, the more expensive 

one (according to the cost) is discarded. To speed up computation, heuristic pruning is 

implemented, that puts out least promising candidates within a set of tokens belonging 

to the same model. Whenever a token reaches a final state of the model, it undergoes 

a final scoring; a weighted sum of acoustic and transition/duration average per frame 

costs is computed. The final scoring must be lower than a preconfigured threshold to 

treat the token as a candidate for output decision. Finally, only the most likely 

candidates are preserved from those overlapping ones. 

Using the approach described above, we have conducted an experiment to assess 

accuracy of our system using recordings of behaviors of two participants with PIMD. 

For them we have identified 7 distinct vocalization categories. Due to the limited 

number of vocalization instances (the highest number of occurrences of the same 

vocalization category was 9), we have experimented with the test-on-train setup 

(ToT). Each model was build based on all its known examples, and with the pseudo-

cross-validated (pXV) setup, in which for every category three separate models were 

built. For each model about ~1/3 of vocalization instances were excluded from the 

training process. All models were tested on all vocalization instances identified for the 

given individual. 

For these experiments, the maximal achieved F1 score was 0.814 for the pXV 

setup, for the vocalization category with 9 instances, while the combined F1 score for 

all tested vocalization categories in this setup was 0.593. The difference between the 

result for the vocalization category with the highest number of instances and result for 



all categories indicates that building a personalized vocalization recognition 

component for an individual with PIMD requires set of data larger than collected for 

the experiment. Nevertheless, the obtained results are promising as we were able to 

implement a vocalization recognition component capable of recognizing most of the 

identified vocalization instances for the most numerous category. Providing training 

data sets containing more samples (instances) should increase the accuracy in the 

future. 

 

3.4 Video-based Recognition of Physiological State 

In addition to the fact that non-symbolic behaviors constitute the core of the 

interaction models of people with PIMD we have also assumed that some additional 

information concerning the message communicated by an individual with PIMD can 

be derived from their physiological response. This assumption is based on literature 

reports which suggest that understanding the meaning of the observed non-symbolic 

behaviors in people with PIMD may be strengthened by supportive use of 

physiological parameters monitoring [26]. Studies have shown that “heart rate and 

skin temperature can give information about the emotions of persons with severe and 

profound ID”, similar to people without disability [27]. For example, it has been 

observed that participants to the studies showed “frequent consistent physiological 

reactions” to stimuli [28], and a “shallow, fast breathing pattern, used less thoracic 

breathing, had a higher skin conductance and had less RSA when experiencing 

positive emotions then when experiencing negative emotions” [29]. Due to this we 

aim to attempt using physiological parameters such as heart rate (HR), heart rate 

variability (HRV), breathing rate (BR), etc. to determine the physiological state to 

support the detection of intents of people with PIMD.  

Determining the physiological state from physiological data requires that the 

following three steps are completed: (1) the reconstruction of physiological signals 

from sensor data, (2) the calculation of physiological parameters from the 

physiological signals if this is not performed by the sensor device such as in the case 

of cameras and microphones, and finally (3) the determination of the physiological 

state from the physiological parameters. Due to the fact that we try to make the 

INSENSION platform a contactless system for the primary users, we look into the 

video-based methods for monitoring of the physiological parameters, particularly 

remote photoplethysmography (PPG). PPG values reflect the volume of blood in 

tissues, which increases when the heart pushes blood towards the periphery of the 

body, and decreases when the blood returns to the heart. PPG is typically measured 

with wristbands and fingertip devices, so it is called remote PPG or rPPG when 

retrieved from video.  

Two main approaches are used for PPG reconstruction using RGB cameras. The 

first – color-based – approach uses the same physiological phenomena as wristbands 

do, i.e., it analyzes the changes in color of the skin that corresponds to blood volume 

changes, in order to reconstruct the PPG signal. As a light source, this approach uses 

the ambient light, which is less predictable than the light source of the wristband, 

which is in contact with the skin. Consequently, this approach is very sensitive to 

different environmental conditions. Therefore, it is no surprise that an independent 

evaluation on a publicly available dataset showed that several methods reported in 



literature are not precise enough to be used in real-world scenarios [30]. More 

precisely, this evaluation included three state-of-the-art methods for retrieving rPPG 

and the results show that there is low correlation between the reconstructed and true 

PPG. The second – motion-based – approach analyzes the small head movements that 

are induced by the pumping of blood into the head [31]. However, it should be noted 

that these small movements are very subtle and might not be recognized with a low 

quality camera. 

All of the reported camera-based methods use the face of the subject as the “field 

of interest” in their research, which also needs to be detected for facial expression 

recognition described in Section 3.1. 

Since retrieving the rPPG signal from video recording appears to be quite difficult, 

we tried five different methods for the color-based approach inspired by the related 

work. We also tried one motion-based method [31]. In this method, we track the 

vertical motion of facial pixels with the Lucas-Kanade flow-tracking algorithm [32]. 

Once we select the most PPG-like signal as a result of each method, we further refine 

it using a deep NN that takes a window of noisy rPPG signal as input and outputs a 

correct PPG signal trained on a reference signal from a fingertip device. Experimental 

evaluation showed that the NN-based method outperformed all six methods inspired 

by related work. We present example 10 seconds of the rPPG signal reconstructed 

using this method in Fig. 3. After obtaining the rPPG signal, physiological parameters 

are estimated by detecting the peaks in the signal, which correspond to heartbeats. 

This way, heart rate and heart-rate variability can be derived. In addition, features will 

be computed from the morphology of the segmented PPG cycles, with which we will 

attempt to estimate respiratory rate and blood pressure. 

 

 

Fig. 3. Example 10 seconds of the rPPG signal reconstructed using our experimental deep 

neural network 

 

Due to the fact that studies show that it might be extremely difficult to create a 

component for video-based monitoring of physiological parameters working in real-



world settings, we assumed that the INSENSION platform should enable a fallback 

solution based on a state-of-the-art wristband device. A simple experiment of testing 

whether people with PIMD find wristbands obtrusive that we performed with the 

participation of our test group has shown that such devices are in principle accepted 

by this population group.  

 

3.5 Behavior Pattern Recognition 

The interpretation of behaviors of people with PIMD requires that we are able to map 

the recognized behavior features (specific gestures, facial expressions and 

vocalizations) onto their meaning. In other words, we need to define behavior patterns 

and then recognize them as specific messages. The development of such a component 

requires that we extract relevant information from the components for recognizing 

gestures, facial expressions and vocalizations, the data collected with the use of the 

assessment system as described in Section 2.1, and real time feedback from secondary 

users and other ICT components such as assistive applications discussed in Section 

4.4.  

In order to learn the basic state of an individual with PIMD we first try to 

determine the behavior state (‘pleasure’, ‘displeasure’ or ‘neutral’) and 

communication attempt (‘comment’, ‘demand’, ‘protest’) from gestures, facial 

expressions and vocalizations. Since the capabilities of the users are not uniform, the 

models for extraction are user specific. To learn the gestures, facial expressions and 

vocalizations that are associated with the behavior state, we look at all the gestures, 

facial expressions and vocalizations that are associated with one state and are not part 

of the other behavior states. For example, if we want to extrapolate the behaviors 

associated with pleasure, we look at all the gestures, facial expressions and 

vocalizations that are associated with ‘pleasure’, but not ‘displeasure’ or ‘neutral’. 

When we are presented with an unclassified behavioral state we look at the 

gestures, facial expressions or vocalizations that are associated with it. For example, if 

we find behaviors that are associated with ‘pleasure’, we decide that the unclassified 

behavioral state is ‘pleasure’. While this is a rather naive approach, it provides the 

best results on the current dataset. The communication attempt is classified in the 

same manner with three classification classes (‘comment’, ‘demand’, ‘protest’). 

To validate our approach, we created a Prolog-based software component. It 

learned the communication attempt or behavioral state on a subset of all the 

annotations and validated the results by trying to classify the remaining annotations. 

We used annotations of the recordings collected from the test group as done by the 

special pedagogy experts (see Section 2.1). Due to the sample size we removed one 

example of annotated data for each class (i.e., we removed one example of ‘pleasure’, 

‘displeasure’, ‘neutral’) and tried to classify the behavioral state for all possible 

combinations of removed behavioral state for each user.  

The results of the validation of the constructed method show that the ‘neutral’ state 

is the least accurate and that the accuracy ranges from 45 % to 80 %. ‘Displeasure’ is 

the most robustly classified, being accurately predicted from 83.3 % to 96 %, while 

‘pleasure’ is correctly classified from 60 % to 86 %. Classification accuracy for 

communication attempts ranges from 70 % to 100 %, with the best results for 

‘demand’, where the lowest achieved accuracy is 89 %. When interpreting these 



results one must note that they were achieved based on the annotations done by the 

special pedagogy experts rather than the recognition components described above. 

That means that they were noise-free as opposed to the foreseen results of the real-

time automatic recognition. 

4 Insension Platform for Personalized Assistance of Non-

Symbolic Interaction of People with PIMD 

The components discussed in section 3 provide the key functionality of the intelligent 

system capable of assisting the non-symbolic interaction of people with PIMD. 

However, successful utilization of this functionality requires integrating it with other 

important functionalities such as data acquisition or data storage into a comprehensive 

environment, and finally enabling the results of the non-symbolic behavior 

interpretation for practical consumption. The latter is related to integrating those 

results to instruct a range of digital applications to undertake specific actions on 

behalf of the given individual with PIMD, typically in assistive scenarios. The 

primary foreseen scenario is communication of an individual with PIMD with other 

people, most importantly caregivers. Others may include controlling smart room 

facilities such as heating or playing favorite music based on automatic recognition of 

needs expressed by the primary user of the system.  

In the current section we discuss the issues related to the design of the platform and 

its practical utilization in real-life scenarios. 

 

4.1 Platform Architecture 

The analysis of requirements reveals that the main control flow of the platform 

consists of processing input video, audio, ambient and physiological data streams, 

detecting significant events and generating messages based on the result of this 

processing. Generated messages become the input data for further processing 

components that determine user intents. Finally, the user intents may be used by 

applications and services, typically of assistive nature as we state above. 

This kind of processing naturally indicates that the control flow is driven by events. 

Taking this into account, we proposed to use an Event Driven Architecture (EDA) 

[33] for the platform. EDA is an architectural pattern which is based on creation, 

consumption and reaction to events. Occurrence of an event causes generation of the 

notification which can be used by other system components or third-party services to 

change their internal state or trigger an action assigned to the event. EDA allows to 

create loosely coupled and highly distributed systems.  

The architecture of the INSENSION platform is presented in Fig. 4. The Sensors 

Layer represents the hardware components concerned with the collection of raw data 

from the user and their living environment. These are controlled by the Sensor Data 

Acquisition Layer which is responsible for the preparation and delivery of the data 

streams as expected by the recognizers that are the components that we discussed in 

more detail in Section 3. We describe this layer in more detail in Section 4.2. 

Recognizers are grouped on the Recognizers Layer. Due to the fact that multiple 



sensors of various types may be used to acquire data and at the same time it is crucial 

that these data are synchronized in time, we plan to use a Time Synchronization 

Server. Next, the platform features four specialized services. The Interaction Decision 

Support Service is a service that performs the contextualized behavior pattern 

recognition (as described in Section 3.5) on the one hand and is foreseen to produce 

the recommendations of actions to be performed on behalf of the given primary user, 

here referred to also as user intents, on the other. The Application Access 

Management and Control service is responsible for the communication with assistive 

applications that are external to the. We shortly discuss main assumptions concerning 

this service in Section 4.3. The Platform Management Service is an application with a 

graphical user interface for secondary and tertiary users to control, configure and 

interact with the platform and its services. Finally, the Repository is the data storage, 

capable of storing all kinds of data acquired and produced by the platform. The 

platform services are integrated through a messaging mechanism, i.e. the Message 

Broker. We based this component on the RabbitMQ framework. 

 

 

Fig. 4. The architecture of the INSENSION platform for personalized assistance of non-

symbolic interaction of people with PIMD 

4.2 Data Acquisition 

The contextualized recognition of non-symbolic behaviors of people with PIMD 

requires the acquisition of two types of data: a) multimedia (video and audio) streams 

collected from the primary users and their environment, and b) data from ambient 



sensors installed in the living environment of the primary user, used to monitor 

specific parameters of the environment, such as temperature or illuminance, capable 

of generating events related to the measurements of these parameters.  

The multimedia streams are intended to serve as data sources for recognizers. The 

video streams feed facial expression recognizers, gesture recognizers and video-based 

physiological state recognizer. Audio streams are processed by vocalization 

recognizers. Multimedia streams are transported in a local network over RTP, 

especially suited for real-time multimedia transport over IP networks. The 

transmission is established and torn down by RTSP. Video streams are encoded using 

the widespread H.264/AVC encoder. This encoder allows transmission of high 

quality, high resolution video streams in a reasonably small bandwidth portion. The 

audio streams may be encoded using a variety of audio codecs, however considering 

our assumption of using hardware such as Odroid devices, we foresee to use AAC LD 

or Opus.  

The data acquisition stack for the measurement of ambient parameters related to 

the interaction context is based on existing, relatively low-level Internet of Things 

platforms, which are designed to be a backbone for physical sensors systems. Based 

on our previous experiences we assumed to use the Node-RED IoT platform [34]. 

This is an open source framework that allows easy adaptation to specific needs of a 

give IoT project. Moreover, its software components do not consume lots of 

resources, making it available for deployment on relatively cheap minicomputers. 

Node-RED reads data from a microcontroller device that handles physical sensors, 

and processes them to provide meaningful measurements of specific parameters. This 

microcontroller device is logically part of the Sensor Data Acquisition Layer. 

Initially, we included sensors capable of measuring air temperature, air humidity and 

luminosity level. 

As it was already mentioned, one of the important mechanisms is synchronization 

of time within all the data acquisition and processing components. A simple solution 

is using the NTP service, as it allows to synchronize clocks within 1 ms in local 

networks.  However we are also considering using 1588-2008 - IEEE Standard for a 

Precision Clock Synchronization Protocol for Networked Measurement and Control 

Systems in case more precise synchronization is needed. 

 

4.3 Integration of assistive applications 

To adequately assist the primary users in interacting with other people and their 

ambient, the INSENSION platform should allow connecting many assistive 

applications at the same time. In case the Interaction Decision Support Service does 

not interpret the intent precisely enough, the intent could trigger multiple applications 

(e.g. the primary user’s need – if interpreted only generally – could trigger playing 

music and turning up the lights). To avoid this, applications have priorities, which 

define which of them receive intents first. If there are many applications running at 

the same time and registered to receive intents of the same type but with different 

priorities, the INSENSION platform sends the primary user intent message to an 

application with the highest priority. If this application decides not to process this user 

intent, the message will be passed to the next one. We also propose one default 

application that can process any detected user intent. It is foreseen that this default 



application is an application allowing the primary user to communicate their needs to 

other people. 

5 Conclusions and Future Work 

In the current paper we presented the initial design of the INSENSION platform that 

aims to provide functionality of recognizing meaningful non-symbolic behaviors of 

people with profound intellectual and multiple disabilities in order to assist these 

individuals in interacting with others and their ambient. The presented work was 

conducted during the first year of the INSENSION H2020 project and allowed us to 

understand whether the initial assumption that it is possible to construct a working 

system in question is valid. To this end, we elaborated requirements of such a system 

and collected video and audio material containing non-symbolic behaviors of people 

with PIMD. This allowed us to define use cases and analyze the collected data in 

order to identify the types of behaviors in question as well as the range of 

circumstances that influence them.  

In the next step we performed early experiments concerning methods to be used for 

developing the intelligence of this system. In these experiments we applied known 

methods of video and audio analysis, as well as pattern recognition, to select the most 

suitable methods for future work. The components built on top of these methods are 

required to recognize facial expressions, gestures, vocalizations and 

psychophysiological state in video and audio streams acquired from the primary user 

with PIMD, and to collect important information on the context of the recognized 

behaviors in video, audio and sensor data streams acquired from the ambient of the 

user. They should be integrated into a comprehensive ambient intelligence system that 

is capable of assisting non-symbolic interaction of people with PIMD in real-life 

scenarios. 

Upon conducting the work that we describe herewith it can be concluded with a 

high level of certainty that such a system can be designed and developed. 

Nevertheless, there are some areas which need special attention in our further work on 

this platform. First of all, we need to carefully address the process of configuring the 

system to work for a given individual with PIMD. Due to the fact that the non-

symbolic behaviors cannot be generalized and are highly personal, we foresee a 

training phase when preparing the system to work for that given individual. Further 

on, as we have expected, the development of components for gesture recognition, 

facial expression recognition and vocalization recognition requires additional data 

collected from the end users. Nevertheless, the selected methods to be used for 

developing those components are promising. We encountered a different situation 

with the video-based physiological state recognition. The methods described in the 

literature do not work in real-life scenarios. Therefore, we need to assume a more 

complex approach to attempt building a working component providing this type of 

functionality. Due to the fact that we are unable to confirm it is possible to implement 

such a component by the end of the INSENSION project, we decided to evaluate a 

fallback solution using a wristband. A simple acceptance test confirmed that the end 

users are fine with wearing such devices. We foresee using the Empatica E4 device 

for this purpose, if needed. 



The further work that has been planned for the nearest future considers collection 

of further data from the representative group of the end users, usage of these data to 

develop final versions of intelligent components, and full development of the whole 

system that incorporates these components in real-life scenarios. This development is 

planned to be conducted using an iterative approach with the direct participation of 

end users. Starting with the mockup of the whole system that is capable of 

demonstrating the whole concept to the end users, we plan on iteratively verifying the 

current concept and working components, and on developing new versions of system 

components using the feedback collected from the current interaction. Once we 

achieve a fully working prototype of the whole INSENSION system, we aim to 

perform a real-life validation of its functionality. 
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