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ABSTRACT
The Sussex-Huawei Locomotion Challenge 2020 was an open com-
petition in activity recognition where the participants were tasked
with recognizing eight different modes of locomotion and trans-
portation with smartphone sensors. The main challenges were that
the training data was recorded by a different person than the valida-
tion and test data, and that the smartphone location in the test data
was unknown to the participants. We tackled the first challenge by
attempting to identify the persons with clustering, and then per-
formed cluster/person-specific feature selection to build a separate
classifier for each person. The smartphone location appears not to
make much difference. We also used semi-supervised learning to
classify the test data. Internal tests using this methodology yielded
an accuracy of 81.01%.

CCS CONCEPTS
• Computing methodologies → Supervised learning; Semi-
supervised learning; Unsupervised learning.
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1 INTRODUCTION
Smartphones, smart watches and other wearables have become
ubiquitous. By analyzing sensor data acquired via such devices,
one can develop applications and services that contribute to safety,
health, comfort and overall quality of life. For this reason, activity
recognition with wearable devices is a research topic studied by
many researchers.

The Sussex-Huawei Locomotion (SHL) Challenge is an activity
recognition challenge that has for three years in a row presented
different challenges for recognizing eight modes of locomotion and
transportation from the inertial sensor data of a smartphone. In
2020, the task was to recognise modes of transportation in a user-
independent manner with an unknown phone position. The test
data was composed of data from two users that were not included
in the train data, and only a little bit of validation data from these
two users was given. The location of the phone for the users in the
test data was also not given, although only one location was used.

So far, many approaches for activity recognition (AR) with wear-
able devices have been developed. A classical approach to detect
activities using sensor data would be to either use machine learning
[3][9], or deep learning [11]. A more challenging approach would
be to use semi-supervised learning [8][10]. Some authors have even
tried using unlabeled sensor data to recognise human activities
[8][7].

However, the main problem in this challenge is that the phone
location and the users in the test data were unknown. Thus, a major
part of the challenge was to figure out which phone location did the
users in the test data use, andwhich sample in the test data belonged
to which user. To identify the phone location, we used classical
machine learning methods, which showed that the users in the test
data were holding the phone on their hips. To identify to which
user the samples from the test set belonged we used unsupervised
clustering method.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Table 1: Summary of the provided datasets. "X" marks if the
data is available for a particular user or if the data includes
the activity label.

User 1 Users 2&3 Locations Labels Days
SHL-Training X 4 X 59
SHL-Validation X 4 X 6
SHL-Test X 1 (unknown) 40

2 SHL CHALLENGE DATA
The goal of 2020 SHL challenge was to recognize eight modes of
locomotion and transportation (car, bus, train, subway, walk, run,
bike and still) by using inertial sensor data of a smartphone. The data
was originally recorded using four smartphones worn at different
on-body locations (hips, torso, bag, hand) by three different users;
however only a subset of all the data was provided by the challenge
organizers.

The provided data came in three sets - Train, Validation, Test.
To distinguish original sets from train, validation and test sets in
specific experiments we use the SHL prefix. SHL - Train was the
largest and it contained data from one user (user 1) and all four
phone locations. The SHL-Validation set was much smaller and it
contained mixed data from the other two users (user 2 and user
3) again for all four locations. Finally, the SHL-Test only contained
data from users 2 and 3 and one unknown phone location. This
set was unlabeled - correctly labeling it was the competition’s goal.
Overall, the challenge data comprised of 4 x 59 days of SHL-Training
data (59 days of data for each of the four locations), 4 x 6 days of
SHL-Validation data and 40 days of SHL-Test data – as summarized
in Table 1.

The raw sensor data was sampled at a frequency of 100 Hz and
it included data from the following sensors: acceleration (x, y and z
axis), gravity (x, y and z), gyroscope (x, y and z), linear acceleration
(x, y and z), magnetic field (x, y and z), orientation (x, y, z and
w) and pressure. GPS, WiFi and other sensor data that could be
used to identify the location of the user was omitted. The data was
segmented using 5-second windows while the labels were provided
per-sample.

The distribution of the activities for the SHL-Training and SHL-
Validation data was very uniform, except for running activity, which
was understandably under-represented.

3 PRE-PROCESSING AND FEATURES
In this work we opted for the use of classical machine learning, as
it yielded better results then the deep learning. In order to employ
it, we pre-processed the data and then calculated a large body of
features from it.

3.1 Data ordering and split
Therefore, the unshuffling algorithm developed and used in the two
previous SHL competitions [5][4] was not useful for classifying
the SHL-Test data, but was still used to smooth the unsupervised
clustering on SHL-Validation data.

3.2 Deriving data streams
SHL dataset contains 20 (counting all the axis) different sensor
streams. From these original sensor streams it is possible to derive
additional sensor streams that are useful for the AR. The subsequent
steps treat these derived sensor streams like any of the original
ones.

First derived sensor stream is the magnitude of the data. It was
calculated for all the data that is coming from tree-axis sensors
(acceleration, linear acceleration, gravity, magnetic field and angular
velocity). Additional derived sensor streams were Euler angles,
derived from quarternion data. Quarternions are better to avoid the
"gimbal-lock", but Euler angles give better information on body’s
orientation.

3.3 Features
In order to use classical machine learning we calculated features
on each five-second window of data – this window size was the
largest possible, given the competition limitations, and our previous
experience [5][4] on a similar problem showed that larger windows
outperform the smaller ones, presumably due to infrequent activity
transitions. Labels were calculated for each window as the most
frequent per-sample label in that window.

Calculated features can be roughly categorized as being frequency-
domain, time-domain and those calculated using the tsfresh package.
The following three subsections describe each category respectively.
Altogether 1124 features were calculated.

3.3.1 Frequency-domain features. These features were calculated
using the power spectral density (PSD) of the signal, based on the
fast Fourier transform (FFT). PSD characterizes the frequency con-
tent of a given signal and can be estimated using several techniques.
Two of the most widely used and commonly considered are a simple
periodogram, which is obtained by taking the squared-magnitude
of the FFT components and theWelch’s method, which is a bit more
complex but also superior to periodogram.

In our work we used the Welch’s method to obtain the PSD. We
have implemented the same frequency-domain features as in the
previous competitions [5][4] – three largest magnitudes of the FFT
components, entropy of the the normalized FFT components and
their energy.

3.3.2 Time-domain features. We have used time-domain features,
that have proven themselves in our previous work [1][2] and pre-
viously won competitions [5][6][4]. These features were designed
for accelerometer data and most of them were calculated only on
the acceleration (and its derived) data streams. Some of the fea-
tures were also calculated on the gyroscope data streams, however,
some features such as linear velocity were left out as they have no
semantic interpretation when calculated on non-acceleration data.

3.3.3 TSfresh features. We also extracted a subset of time-domain
features from the tsfresh library that were not included in the
previous set of expert features. These features were: the signal
minimum, maximum, standard deviation, the number of times the
signal is above/below its mean, the signal’s mean change/absolute
change, and its different autocorrelations (correlations of the signal
with a delayed version of itself, for three different delays). All these



Tackling the SHL Challenge 2020 with
Person-specific Classifiers and Semi-supervised Learning UbiComp/ISWC ’20 Adjunct, September 12–16, 2020, Virtual conference

features were designed for the accelerometer and gyroscope data
(and their derived data streams).

4 METHOD
The main difference and at the same time the main challenge
of this competition compared to the previous years is that we
were required to recognise the mode of transportation in a user-
independent model using data from one unknown location. To
increase the chance for recognition of transportation modes on
SHL-Test set, we tried to recognize the unknown location and addi-
tionally to separate the SHL-Validation and SHL-Test test into two
clusters, which would hopefully indicate two users.

4.1 Recognizing the unknown location
We explored whether it is possible build a classifier for phone loca-
tion detection, which can be used for investigating the advantage
of location-dependent activity recognition models.

The sensor signals recorded while performing dynamic activities,
such as walking and running, are highly dependent on the location
of the sensors on the body, mainly because different body parts
vary in degrees of freedom and have different movement patterns.
On the other hand, the signals recorded while a person is using one
of the different transportation modes (train, bus, subway) are very
similar to each other, regardless on the location of the sensors on
the body. With this consideration, we performed the detection of
the phone location in two steps: i) walking/running detection step;
ii) location detection step. In the walking/running detection step,
we used data from all activities and all four locations (bag, hand,
hips and torso) for the training of the classification model. The task
was formulated as binary classification - all walking and running
instances were labeled as class 1, and the others were labeled as
class 2. In the location detection step, only instances referring to
the walking and running activity were used to train the location
classifier.

The same feature set was used in the activity recognition and
location detection step, i.e. we used all extracted features (a total
of 1,124 features) for both tasks. Random Forest was used for both
walking/running identification and phone location detection.

4.2 Person clustering
Wedecided to explore the possibility of clustering the SHL-Validation
and SHL-Test sets in order to separate the two users in both sets.
This would allow us to build user-specific models and hopefully
increase the performance of our model.

First we tried to cluster SHL-Validation data using the K-means
algorithm on all possible features. Only a few consecutive samples
were put in the same cluster, which suggested that the clusters
did not correspond to persons. Additionally, clustering data from
different locations returned different clusters.

Next we tried to determine which features could be used for
distinguishing between different persons. We used 25% of SHL-
Train set (containing user 1) and the whole SHL-Validation set and
tried to separate user 1 from users 2 and 3. We ranked the features
for each location and selected the first 50 most important features
for each location.We tried to cluster the data using only the selected

features on each location. Clustering worked much better and the
clusters were almost identical on all locations, except the torso.

Finally we smoothed out the clusters, so that all the consecutive
samples belonged to the same cluster, by using the unshuffling
algorithm we developed at previous two SHL competitions [5][4].
Using the smoothed labels, we built a classification model to be
used on the unlabeled SHL-Test set.

4.3 Feature selection
Since we computed a large number of features, we selected the
most relevant ones with a three-step procedure. In the first step,
the mutual information between each feature and the label was
estimated, where larger mutual information means a higher de-
pendency between the feature and the label. In the second step,
Pearson correlation coefficient was computed for pairs of features.
If the correlation was higher than a threshold, the feature with
the lower mutual information with the label was discarded. In the
final step, features were selected using a greedy wrapper approach.
A Random Forest classifier was first trained using only the best
scoring feature on the training set. The trained model was used
to predict labels for the validation set and the prediction accuracy
was calculated. Then the second-best feature was added and the
model was trained again. If the accuracy on the validation set was
higher than without using this feature, the feature was kept. This
procedure was repeated for all the remaining features.

Feature selection is typically used to select generally good fea-
tures, but in our case we also used it to adapt the features to par-
ticular users. We first adapted the features to users 2 and 3 com-
bined. Two procedures were used. The first procedure used the
SHL-Training set (user 1) for training and SHL-Validation set (users
2 and 3) for validation. The second procedure used one half of the
SHL-Validation set for training and the other half for validation, and
repeated this with the halves switched. We used the intersection
of both selections as the output of the second procedure. Finally,
we used the union of the outputs of both procedures as the final
feature set for users 2 and 3 combined.

We also selected features specific for the two clusters obtained
with person clustering (hopefully representing two different per-
sons – user 2 and user 3). The SHL-Validation was split into two
clusters/users as described in the previous section. Afterwards, the
feature selection was done in the same manner as for users 2 and 3
combined: the two procedures were used on each cluster/user, and
their union was the final feature set for that user.

4.4 Semi-supervised learning
As previously mentioned, the unlabeled SHL-Test data is entirely
comprised of readings from user 2 and user 3, whilst their presence
in the labeled SHL-Train and SHL-Validation sets is significantly
smaller. To deal with the small number of examples from user 2
and user 3, we opted to use a semi-supervised learning scheme in
order to leverage the knowledge contained in the unlabeled data.
This process is independent of the use of clustering, as the labeled
and unlabeled data could represent data from one user or a mixture
of several different users.

In our semi-supervised approach, we first trained a classifier on
the labeled data and we used that classifier to predict the unlabeled
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data. Once the predictions were obtained, we selected which in-
stances from the unlabeled data would be transferred to the labeled
training set and used to train another classifier. The selection pro-
cess in our approach differed based on whether we used a single
classifier in the prediction process or an ensemble of classifiers
joined by a single majority voting classifier. In the case of a single
classifier, the selection of an instance was done by comparing the
prediction probability of the classifier for the given instance to a
threshold value. On the other hand, when using a majority voting
classifier, the selection was done by comparing the number of base
classifiers which voted in the same way to a threshold value. A
stricter version of this selection was also used in some experiments,
where, for an instance to be selected, all base classifiers had to vote
the same way and they all had to have a prediction probability
higher than some threshold value.

It is important to mention that the unlabeled instances were
transferred to the labeled training set by utilizing the predictions
which our classifier produced. Finally, the process of training a
classifier, predicting the unlabeled data, transferring instances back
in the labeled training set and retraining the classifier can be re-
peated several times (from here on we refer to these repetitions
as iterations) until convergence is achieved. The whole process is
represented in Figure 1.

Figure 1: Semi-supervised learning scheme

4.5 Proposed pipeline
Our final approach is a combination of the methods previously
described in this section and is shown in Figure 2. The pipeline starts
with the creation of a labeled training set which consists of the data
in the SHL-Train set (user 1) and the data from the SHL-Validation
set (user 2 and user 3), regardless of the sensor location. Next, we
divide the unlabeled SHL-Test data into two distinct clusters, which
hopefully represent two different users. Once divided, we reduce
the dimensionality of each cluster by using only those features that
showed best results in the feature selection stage, for each cluster
respectively. In addition to this we also create two versions of the
labeled data, once with features selected for one of the clusters and
once for the other. From there, we create a XGBoost classifier of

each of the clusters and we start the process of semi-supervised
learning, as described in Section 4.4, with just one iteration. The
selection criterion in the semi-supervised learning stage is that
the classifier predicts a label for the instance with a prediction
probability greater than 70%.

Figure 2: Proposed pipeline.

5 EXPERIMENTAL RESULTS
5.1 Recognition of unknown location
We evaluated the performance of the location detection on the
validation set by performing 4-fold cross-validation, where each fold
is exactly 1/4 of the validation set. The main reason for using only
the validation set is that it provides more significant information
about the position of the phones since it contains data from the
same users as the test set.

The first step towards phone location detection was the identifi-
cation of walking/running instances. The walking/running recog-
nition showed an accuracy of 95.5%. However, for the purpose of
phone location detection, the overall accuracy in this step was not
the main concern. Instead, we were more interested in the number
of false positives (instances falsely classified as walking/running ac-
tivity), which might affect the performance of the location classifier.
In total, roughly 2% of all instances from the validation set were
falsely classified as walking/running activity. We assumed that this
number is insignificant and would not affect the location detec-
tion process, considering the fact that nearly 90% of the instances
identified as walking/running activity were true positives.

Afterwards, we tried to identify the location only on the instances
that were classified as walking/running in the previous step. This
includes the true positives (20,391 instances) and the false positives
(2,532 instances). The highest location accuracy was noted for the
hand location – 98.2% of the instances referring to this location
were truly assigned to this location. The accuracy for the other
locations was as following: 76.1% for the bag location, 74.2% for
the hips location, and 84.2% for the torso location. These results
encouraged us that it is possible to achieve a high classification
accuracy in phone location detection, so we proceeded with phone
location detection on the test set.

Eventually, we trained a final model for walking/running activity
detection using the whole validation set and used it to classify the
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Table 2: Location distribution on the test set.

Bag Hand Hips Torso
No. of instances 95 2,430 12,901 38

Table 3: F1-score for each location when using different
training sets (either all data, or data from that location).

Bag Hand Hips Torso
Train on all locations 0.76 0.70 0.64 0.75
Train on specific location 0.74 0.66 0.64 0.67

instances from the SHL test set. The final results for the test set
regarding the location detection are presented in Table 2. In total,
15,464 instanceswere classified as eitherwalking or running activity.
Later, 83.4% of them were classified as hips location, 15.7% as hand
location, while less than 1% of the instances were classified as bag
and torso location. Based on these results, we assumed that the
unknown phone location of the test set is hips.

With this information, we further explored if location-dependent
model might bring us higher classification accuracy than a general,
location-independent model. More specifically, we investigated the
influence of including only data from a specific location in the
model’s training set and including data from all four positions on
the accuracy of the models, for each position separately. These
experiments were also evaluated using a 4-fold cross-validation
scheme on the SHL-Validation data. In each iteration, the model
was trained using the SHL-train set + 3 folds of the SHL-Validation
data, and evaluated on the remaining fold. The results from these
experiments are presented in Table 3.

These results show that there was no advantage in training
location-specific models using only data from the same location.
The results for the hips location were the same with both setups,
while for the other locations the accuracy decreased when using
data only from the specific location. Therefore, we proceeded with
location-independent models.

5.2 Person clustering
We performed the clustering as described in section 4.2 and shown
in Figure 3.

Figure 3: Clustering pipline

The classification problem of separating SHL-train set from SHL-
Validation set was very straightforward.We used the Random Forest

classifier and its integrated attribute to rank features by importance.
We selected 50 most important features for each location. These
features were then used to cluster the SHL-Validation set. We found
two quiet clear clusters (silhouette score 0.58). To make sure that
clustering didn’t just cluster the activities, we run the clustering
algorithms on each of the activities subsets and compared them
with the clusters we got when running the clustering algorithm on
entire SHL-Validation set.The clusters matched. On three locations
(hand, hips and bag) clusters were very similar, as seen in the Figure
4. Clustering did not work as well on the remaining location (torso),
but as we have predicted with a very high confidence that this is
not the unknown test location.

We then smoothed the clusters by making sure that all of the
consecutive samples were in the same cluster. The smoothed clus-
ters were used to build a classifier (Random Forest) which predicted
the clusters for the SHL-Test data. To check the "validity" we also
tried to use the previously described unsupervised clustering on the
SHL-Test data and compared it with the predicted clusters. There
was a 72% match.

Figure 4: Example of clustered data on all four locations
(from top down: hand, hips, torso and bag) for walking. The
clustering works very similar for all other activities.

5.3 Proposed pipeline
In order to determine the effectiveness of using user-specific (cluster-
specific) models which use semi-supervised learning, two different
evaluation scenarios were devised. The first focused on obtaining
an evaluation of a user-independent model, and the second on the
evaluation of a user-dependent one. Since the results in Table 3
suggested that training a location-specific model worsens the re-
sults, both evaluation scenarios used examples from all four sensor
locations.

The user-independent models were evaluated using a 4-fold cross-
validation scheme on the SHL-Validation data, where each fold
contained exactly 1/4 of the instances. In each of the iterations, a
model was trained using the SHL-Train set + 3 folds of the SHL-
Validation data (referred to as the training set) and evaluated on
the fold which was left out when training. During the training and
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Table 4: Evaluation results of different user-dependent and
user-independent models

XGB MV XGB + SSL MV + SSL
User-independent 73.05 74.63 N/A 76.56
User-dependent 79.18 77.64 81.01 79.02

Table 5: Evaluation results of a XGBoost classifier with and
without using feature selection

XGB-noFS XGB-withFS
User-independent 71.2 73.05
User-dependent 77.62 79.18

evaluation of these models, only the features selected as best on
the whole validation set were used.

In the experiments which involved semi-supervised learning,
the data in the fold which was left out during training was treated
as unlabeled and instances from it were transferred back in the
training set. The results, averaged across folds, of this evaluation
can be found in Table 4.

The user-specific modelswere evaluated using a slight variation of
the aforementioned 4-fold cross-validation scheme. This variation
first split the SHL-Validation set into two clusters and further split
each of those clusters into two halves. This way we ended up with
four different subsets of data (which do not have the same number
of instances) which were then used in the 4-fold cross-validation.

All the other aspects of the evaluation scheme are the same with
the previously described one, except for the fact that when training
and evaluating these models, we use the feature set selected for
the cluster to which the left out fold belongs. The results, averaged
across folds, of this evaluation can also be found in Table 4.

The use of feature selection in both of these evaluation scenarios
is supported by the results in Table 5.

The first two columns of Table 4 serve as baseline and show
results from training a single XGBoost classifier (XGB) and a ma-
jority voting classifier (MV) in both a user-dependant and indepen-
dent fashion, without using semi-supervised learning. The next
two columns represent the best results that both XGBoost and the
majority voting classifier achieved when using semi-supervised
learning (SSL).

In the case of the user-independent scenario, the best result is
achieved by MV + SSL. In this case the selection strategy is based
on all classifiers voting in the same way. One iteration was used
in the SSL process. The results for XGB + SSL were not computed
as we had no indication at that time that a single classifier might
outperform majority voting.

Finally, in the case of the user-dependent models the best results
were achieved by XGB + SSL. In this case the SSL process was
repeated once and the selection strategywas based on the prediction
probability being above 70%. The best score achieved by MV + SSL,
used one iteration of the SSL process and a selection strategy based
on all classifiers voting the same way.

6 CONCLUSION
The main idea behind the Sussex-Huawei Locomotion Challenge
2020 was to identify eight modes of transportation and locomotion
using data recorded on sensors with an undisclosed location on the
user’s body. Another difficulty was that the subjects in the test set
had an extremely low presence in the training and validation data.

Using machine learning, we were able to determine the actual
location of the test data (hips). However, our experiments showed
that using location-specific models did not help in improving the
accuracy of the classification task. On the other hand, using clus-
tering to identify different users in the validation and test sets
helped us build user-specific models which greatly improved our
classification ability. In particular, one use of the clustering was to
select features for particular users, which reduced the computation
complexity of our models and showed improved results in compar-
ison to user-independent features. Also, the feature selection step
helped us to adapt the features from user 1 to user 2 and 3. This step
enabled us to use the whole training dataset (user 1) for training
the final model, without worrying that we will overfit to that user.
Finally, we discovered that using semi-supervised learning to train
our models extracted valuable knowledge from the unlabeled data,
which helped us tackle the problem of the small number of labeled
instances for the users in the test set.
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