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Abstract   The Sussex-Huawei Locomotion-Transportation Recognition Challenge 

presented a unique opportunity to the activity-recognition community to test their 

approaches on a large, real-life benchmark dataset with activities different from 

those typically being recognized. The goal of the challenge was to recognize eight 

locomotion activities (Still, Walk, Run, Bike, Car, Bus, Train, Subway). This chap-

ter describes the submissions winning the first and second place. They both start 

with data preprocessing, including a normalization of the phone orientation. Then, 

a wide set of hand-crafted domain features in both frequency and time domain are 

computed and their quality evaluated. The second-place submission feeds the best 

features into an XGBoost machine-learning model with optimized hyper-parame-

ters, achieving the accuracy of 90.2%. The first-place submission builds an ensem-

ble of models, including deep learning models, and finally refines the ensemble’s 

predictions by smoothing with a Hidden Markov model. Its accuracy on an internal 

test set was 96.0%. 

Keywords   Activity recognition, machine learning, deep learning, ensembles, 

HMM, competition 
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Introduction 

Smart devices have become an indispensable part of our lives. Smartphones, smart 

watches and other wearables accompany us everywhere. The grand vision of ubiq-

uitous computing is that these devices will know as much as possible about our 

context in order to provide the best possible service, and contribute to our safety, 

health, comfort and overall quality of life. 

What we are doing at any given moment is a key element of our context, which 

is why activity recognition (AR) is intensely researched. Most research on AR is 

focused on our bodies, dealing with activities such as walking, sitting and lying. 

However, since we spend a lot of time in vehicles – transportation studies show that 

the average commute time is up to 80 minutes a day [17] and we also travel for 

other purposes – this is probably an area that deserves more attention. If the grand 

vision of ubiquitous computing is to be realized, our devices should know not only 

whether we are walking or sitting, but also whether riding a train or driving a car. 

The Sussex-Huawei Locomotion-Transportation (SHL) dataset consists of seven 

months of recordings of smartphone sensors during eight modes of locomotion. It 

was collected to develop methods for AR, traffic analysis, localization, sensor fu-

sion and other problems. These methods can support mobile services such as travel 

and traffic advice, adapting phone operation to the mode of locomotion (notifica-

tions, volume, Wi-Fi and GPS ...), using this mode in games, for music selection 

and a myriad of other purposes application developers will think of. Most im-

portantly for this chapter, the dataset provides an excellent challenge for ubiquitous 

computing researchers – to apply existing and new methods for locomotion AR on 

more data than most of them are able to collect on their own and of course to take 

on the SHL Challenge. 

This chapter describes two approaches to locomotion AR that placed first and 

second at the SHL Challenge. The first one is classical, based on over a decade of 

experience in the AR field. It starts with preprocessing the orientation data, contin-

ues with extracting a large number of expertly crafted features and selecting the best 

of them, and finishes with feeding the features into a classification model with tuned 

hyper-parameters. The second approach builds multiple models, some of which are 

trained with deep learning algorithms. The outputs of the models are combined into 

an ensemble, and the final predictions are smoothed with a Hidden Markov model 

(HMM). In designing both approaches, we applied the principle of multiple 

knowledge [13]: used different “viewpoints” (feature categories, models) and sen-

sibly combined them (via feature selection, in an ensemble), with the expectation 

that the result will be superior to using single (high-quality) viewpoints. The two 

approaches were originally described in two HASCA workshop papers [14, 25]. 

They are described in this chapter as a single approach with several improvements, 

particularly regarding smoothing, and post-competition commentary is added. 
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Related Work 

The AR domain has been thoroughly explored in the past using body-worn sensors, 

ambient sensors and combinations of the two. Here we focus only on body-worn 

sensors, since smartphones and smart watches are most frequently used for AR to-

day. 

The most frequent AR task is classifying activities related to movement, e.g., 

walking, running, standing still and cycling [4]. Different approaches using standard 

machine learning (ML) and feature extractions have been used and tested on various 

datasets [2, 3, 9, 10, 11, 12]. However, deep learning attempts are becoming in-

creasingly prevalent [5]. Surprisingly, this domain is still not dominated by deep 

learning, unlike computer vision and some other domains, most likely because deep 

learning in AR is not clearly superior to classical ML. 

Several attempts have been made in the past towards classification of just one 

activity, or distinguishing between activities related to one domain (e.g. transporta-

tion) [6, 7, 8]. However, the SHL Challenge seems to be more ambitious, trying to 

classify a wide variety of activities both human movement- and transportation-re-

lated. Therefore, the main and most important related work to this chapter are other 

approaches submitted to this challenge, some of which are included in this book. 

Dataset 

The SHL Dataset used in this work is publicly available and thoroughly described 

[1]. The subset used for the SHL Challenge was recorded with a Huawei Mate 9 

smartphone carried inside the front right pocket (not fixed orientation) by a single 

participant over a period of four months for 5–8 hours per day.  

The data comes from a variety of sensors in the smartphone: accelerometer, gy-

roscope, magnetometer, linear accelerometer, gravity, orientation (expressed with 

quaternions) and barometer; all sampled with the frequency of 100 Hz. The data is 

labeled with eight classes: Still, Walk, Run, Bike, Car, Bus and Subway. A class 

label was applied to each sensor sample. In aggregate, around 266 hours of labeled 

data was provided. The goal of the competition was to train a model on this data, 

and then use it to classify an additional 100 hours of unlabeled test data.  

The provided data was split into 1-minute intervals, which were then shuffled -- 

with the original order for the labeled data provided as part of the dataset descrip-

tion. Since consecutive intervals can display substantial similarities (e.g., the phone 

may be in exactly the same orientation), it is essential that the dataset is placed in 

the original order before it is split into train, validation and test set. If this is not 

done, one of consecutive intervals is often placed in the train and the other in the 

validation/test set, making some irrelevant features (e.g., specific phone orientation) 

appear valuable for the prediction and thus resulting in overfitting. 
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We used 50% of the labeled data for training, 25% for validation and 25% for 

testing. After the parameters of the most accurate ML model were fixed, a different 

distribution – 90% for training and 10% for testing – was used to get an insight on 

how the behavior of the model changes if given more training data. For training of 

the final model, all the data was used. In all cases, we verified that the activity dis-

tribution remained similar in all listed splits. 

Features 

In order to apply most ML methods constituting our approach, the data had to be 

preprocessed and some features describing each signal extracted. 

Preprocessing 

First, the data was downsampled from 100 Hz to 50 Hz. This significantly reduced 

the computational load of the subsequent calculations, while not significantly af-

fecting the classification accuracy. The additional practical benefit of the downsap-

ling lies in reduced consumption of the sensor battery, should the system be used in 

a real-time setting.  

Second, “virtual” sensor streams were calculated based on the real ones. These 

sensor streams had the same frequency and were used in the same manner as the 

original data streams for calculating features. They can be grouped in three catego-

ries: 

 Magnitudes. Sensors with three axes had the magnitude (𝑚 =  √𝑥2 + 𝑦2 + 𝑧2) 

calculated, which was used in addition to the sensor streams of individual axes. 

 De-rotated sensors. These were computed by de-rotating acceleration and mag-

netometer data from body (phone) coordinate system to the North-East-Down 

(NED) coordinate system by multiplying them with the rotation matrix 𝑅𝑁𝐵 cre-

ated with quarternions [𝑞𝑤 , 𝑞𝑥 , 𝑞𝑦 , 𝑞𝑧] as given below. This was done in order to 

obtain orientation-independent sensor information, which is important to avoid 

overfitting to specific orientations of the phone. However, since orientation in-

formation can also be relevant, both groups of sensor streams were retained. 

𝑅𝑁𝐵 =  [

1 − 2(𝑞𝑦
2 + 𝑞𝑧

2) 2(𝑞𝑥𝑞𝑦 − 𝑞𝑤𝑞𝑧) 2(𝑞𝑥𝑞𝑧 + 𝑞𝑤𝑞𝑦)

2(𝑞𝑥𝑞𝑦 + 𝑞𝑤𝑞𝑧) 1 − 2(𝑞𝑥
2 +  𝑞𝑧

2) 2(𝑞𝑦𝑞𝑧 − 𝑞𝑤𝑞𝑥)

2(𝑞𝑥𝑞𝑧 − 𝑞𝑤𝑞𝑦) 2(𝑞𝑦𝑞𝑧 + 𝑞𝑤𝑞𝑥) 1 − 2(𝑞𝑥
2 +  𝑞𝑦

2)

] 

[
𝑥
𝑦
𝑧

]

𝑁

=  𝑅𝑁𝐵 [
𝑥
𝑦
𝑧

]

𝐵
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 Roll, pitch and yaw. Finally, quarternions were used to compute Euler angles – 

roll, pitch and yaw. Orientation is usually presented with quarternions to avoid 

the gimbal lock point of singularity, however, Euler angles are better for extract-

ing features since each of them has a clear real-world meaning, whereas 

queternion components are only really meaningful when taken all together. Be-

cause of that, we only used Euler angles in the subsequent steps. 

𝑟𝑜𝑙𝑙 = arcsin (2(𝑞𝑤𝑞𝑦 + 𝑞𝑧𝑞𝑥)) 

𝑝𝑖𝑡𝑐ℎ = arctan (
2(𝑞𝑤𝑞𝑥 + 𝑞𝑦𝑞𝑧)

1 − 2(𝑞𝑥𝑞𝑥 + 𝑞𝑦𝑞𝑦)
) 

𝑦𝑎𝑤 = arctan (
2(𝑞𝑤𝑞𝑧 + 𝑞𝑥𝑞𝑦)

1 − 2(𝑞𝑦𝑞𝑦 + 𝑞𝑧𝑞𝑧)
) 

In the end, counting all separate sensor axes, we worked with 30 different data 

streams. 

Feature extraction 

Features were extracted from 1-minute windows of data. This window size was 

chosen as it was the largest possible given the limitations imposed by the nature of 

the competition, and we achieved the highest classification accuracy using it. Since 

transitions between activities are rare, long windows did not have a significant neg-

ative impact on the performance. Labels were calculated for each window as the 

most frequent label in that window. 

Nearly all features were extracted from each individual data stream. Three cate-

gories of features were computed. First, domain features that have proven them-

selves in our previous work in similar domains [22, 23] including in a previously 

won competition [4]. These features are described in the work by Cvetković et al. 

[23].  

Second, we tried to generate all features using the tsfresh library [19]. While the 

library is capable of generating a large number of features, is seemed too slow given 

the size of our dataset. Consequently, we only generated some features that seemed 

interesting and were not included in other categories – namely minimum, maxi-

mum, autocorrelation, number of samples above/below the mean and the average 

difference between two sequential data samples.  

Finally, we calculated some features from the frequency domain, which describe 

the periodicity of the signals. These features were calculated using power spectral 

density (PSD), which is based on the fast Fourier transform (FFT). PSD character-

izes the frequency content of a given signal and can be estimated using several tech-

niques. The simplest one is to use a periodogram, which is obtained by taking the 
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squared-magnitude of the FFT components. An alternative to periodogram is the 

Welch's method, which is also widely used and commonly considered superior to 

periodogram. It differs from a traditional periodogram in the fact that it computes 

the average of the periodograms of multiple overlapping segments of the signal to 

reduce the variance of the PSD. In our work, we opted to use the Welch's method 

to obtain the PSD. 

Using the PSD is only suitable when the signal is clearly periodic. As we chose 

to use a 1-minute window, any periodic pattern in the signals is successfully cap-

tured, as shown in Fig. 1. 

 

 

Fig. 1. Periodic pattern in a 15-second accelerometer segment during walking. 

We implemented the frequency-domain features as given in related work [24]. 

Some were slightly modified or expanded in accordance with our expert knowledge. 

The following features were computed. 

 Three largest magnitudes. Three peaks with the largest magnitude from the PSD 

were considered. These tell us the dominant frequencies in the signal. Both the 

magnitude values and the frequencies (in Hz) were taken as features. 

 Energy. Calculated as the sum of the squared FFT component magnitudes. The 

energy was then normalized by dividing it with the window length. 

𝑒𝑛𝑒𝑟𝑔𝑦 =  
1

𝑁
∑|𝑥(𝑛)|2

𝑁−1

𝑛=0

 

where x(n) is the n-th FFT component and N is the window length. 

 Entropy. Calculated as the information entropy of the normalized FFT compo-

nent magnitudes. It helps discriminating between activities with similar energy 

features. 

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 =  − ∑ 𝑥(𝑛)

𝑁−1

𝑛=0

log (𝑥(𝑛)) 
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 Binned distribution. A normalized histogram, which is essentially the distribu-

tion of the FFT magnitudes. First, the PSD is split into 10 equal-sized bins rang-

ing from 0 Hz to 25 Hz. Then, the fraction of magnitudes falling into each bin is 

calculated. 

 Skweness and kurtosis. Calculated on the distribution-like PSD. Skewness and 

kurtosis describe the shape of the PSD. More precisely, skewness tells us about 

the symmetry of the distribution while kurtosis tells us about its flatness, as 

shown in Fig. 2. 

 

 

Fig. 2. Distributions with different skewness and kurtosis. 

In total, 1696 features were computed and used in the subsequent steps. 

Feature selection 

Since a relatively high number of features was computed, feature selection was used 

to remove redundant and noisy ones in order to reduce overfitting and speed up the 

training process. Our feature selection consisted of three steps.  

In the first step, the mutual information between each feature and the label was 

estimated [21], where larger mutual information means higher dependency between 

the feature and the label. 

After the features were sorted according to mutual information, correlated fea-

tures were removed based on the Pearson correlation coefficient [20]. This showed 

that roughly half of the features are redundant, which was expected because differ-

ent data streams contained similar information. Since calculating the correlation of 

all feature pairs was computationally too expensive, only 100 features were taken 

at a time, starting with those with the highest mutual information with the label. 

Correlation was then calculated for each these pairs. If the correlation was higher 

than a certain threshold (experimentally determined as 0.8), the feature with the 

lower mutual information was discarded. After that, the next 100 features were 

added and the correlation between each pair was calculated again. 

In the final step, features were selected using a greedy "wrapper" algorithm. A 

random forest (RF) model was first built on the train set using only the best scoring 
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feature. The model was used to predict labels for the validation set and the predic-

tion accuracy was calculated. Then the second-best feature was added and the model 

was built again. If the accuracy on the validation set was higher than without using 

this feature, the feature was kept. This procedure was repeated for all features. This 

strict selection initially led to overfitting to the validation set (the accuracy was 

much higher compared to the test set, on which the final model was tested), so the 

condition for keeping a feature was made less strict: the feature was kept if the ac-

curacy did not decrease by more than an experimentally set threshold. Using this 

rule, overfitting to the validation set was reduced. 

The best-performing features came roughly evenly distributed from each of the 

three categories, with those coming from the de-rotated magnetometer being the 

most significant, followed by those from accelerometer and gyroscope. The mag-

netometer came as a surprise, since it is the accelerometer that usually takes the 

spotlight in similar problems. It might be explained by the fact that the magnetom-

eter is especially useful for transportation classification. 

Machine learning 

In line with the principle of multiple knowledge mentioned in the introduction, we 

built an ensemble of ML models followed by a HMM (Fig. 3). The ensemble con-

sists of ten base models: nine models that take features as inputs, and one deep 

neural network (DNN) that takes spectrograms as inputs. Of the nine feature-based 

models, one is also a DNN, while the other eight were trained with different classi-

cal ML algorithms. The output class probabilities from the base models are fed into 

a Meta model, which outputs a class prediction. Finally, the class prediction of the 

Meta model is corrected by the HMM, which smooths the predictions. The details 

of each step are presented in the following subsections. 

 

 

Fig. 3. Our machine-learning architecture. 
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Base models of the ensemble 

The feature-based models are built using features extracted from the sensor data as 

described in the previous section. After the feature extraction, the data was fed to 

the following nine ML algorithms: DNN, Random Forest, Gradient Boosting, Ex-

treme Gradient Boosting, SVM, AdaBoosting, KNN, Gaussian Naïve Byes and De-

cision Tree. The algorithms were used as implemented in the scikit-learn python 

library. The models’ hyperparameters were tuned using 2-fold randomized param-

eter search. For the feature-based DNN, we experimented with different architec-

tures, and the best performing was the architecture with 2 fully connected dense 

layers with 256 and 128 neurons. 

For the spectrogram-based DNN, we again experimented with different architec-

tures, including convolutional neural networks (CNNs) and long-short term 

memory networks (LSTMs). The final architecture is depicted in the right half of 

Fig. 1. For each category of raw sensor data, i.e., 3D acceleration, 3D gyroscopes, 

3D linear acceleration, 4D orientation, 3D magnetometer and pressure data, a spec-

trogram representation is calculated using the Fourier transformation. The spectro-

grams are represented as vectors with dimensions P × T × N. P represents the num-

ber of spectral bands; T represents the time for which the spectral power is 

calculated; N represents the number of axes for the specific sensor type (e.g., the 

accelerometer has three axes, the orientation sensor has four axes and the pressure 

sensor has only one axis). The vectors are used as input to a fully connected DNN. 

The first layer of the network is a sensor-specific layer, which learns sensor-specific 

parameters. There are 128 neurons for each sensor type, thus there are in total 896 

(7 × 128) neurons in the sensor-specific layer. The output of the sensor-specific 

layer is merged using a shared Highway layer, which is followed by a fully con-

nected layer with 1024 neurons. The output of the model is obtained from the final 

layer with a softmax activation function yielding a class probability distribution. 

To avoid overfitting, L2 regularization and dropout methods were used for all 

DNN models. The dropout probability was set to 0.3. The training was fully super-

vised, by back propagating the gradients through all layers. The parameters were 

optimized by minimizing the cross-entropy loss function using the Adam optimizer. 

The models were trained with a learning rate of 10–4.  The batch size was set to 

2000. 

Meta model of the ensemble 

The Meta model takes as inputs the class probabilities output of each of the ten base 

models. We evaluated Meta models built with seven ML algorithms: Random For-

est, Gradient Boosting, SVM, AdaBoosting, KNN, Gaussian Naïve Byes and Deci-

sion Tree. Each Meta model was trained on the validation set and evaluated on the 
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test set. The models’ hyperparameters were tuned using 2-fold randomized param-

eter search on the models’ training data. The best-performing model on the test data 

was picked as the final Meta model. 

HMM smoothing 

Classification accuracy can be improved by considering the probability of a classi-

fied sequence. For example, the classified sequence: Train, Bus, Train, Train, Train, 

makes little practical sense, particularly in a short time interval, e.g., a couple of 

seconds. A misclassification of the “Bus” instance is much more probable than the 

user switching from a bus to a train and back in that time.   

In order to find and correct this kind of mistakes, we employed the HMM 

method. This method assumes that there are some hidden internal states (in our case 

activities) that emit some signal at each time step (in our case classifications). The 

parameters of such a system are both the probabilities of transitions and emissions. 

Both can easily be inferred from the dataset – all we need are transition probabilities 

between each pair of activities and the confusion matrix of the model. Having the 

parameters of the system, a sequence of sequential classifications is given to the 

HMM method, which returns the most likely sequence of internal states – activities.  

There are two possible scenarios where the HMM method can be used. In the 

first case (see Fig. 4) the whole classified sequence is known in advance. In this 

case, the HMM method can be used directly. In a real-life setting, this corresponds 

to reporting the classified activities to the user with a delay (as the HMM method 

uses instances classified after the current one). Different delays were tested to de-

termine the relation between the sequence length and the method’s usefulness. 

 

 

Fig. 4. Sequential classified windows, compared to HMM predictions. T = Train, B = Bus. 

In the second case (see Fig. 5), we have the entire history of classifications, but 

we cannot see the future ones. In a real-life setting, this corresponds to reporting 

activities to the user as they happen. This can be implemented by using the HMM 

to predict only the last element of the sequence, while iteratively lengthening it. 
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Fig. 5. Iterative HMM predictions. Sequence is iteratively lengthened as more of the history be-

comes known. Only the last instance in the sequence in changed after each step.  

The HMM method requires instances to be ordered in the correct temporal se-

quence. This was not a problem for the internal test set, where ordering was pro-

vided. However, for the final test data the correct sequence of instances was un-

known. To overcome this problem, we devised an algorithm that could 

automatically sort the one-minute intervals in the correct order. This was possible 

due to the fact that the last sensor reading of one window is very similar to the first 

sensor reading in the subsequent window, assuming the correct ordering. The algo-

rithm iteratively searched for the next window that matched the above criteria. Do-

ing so, it almost perfectly reconstructed the original ordering allowing us to use the 

HMM smoothing on the final prediction.  

Single-model alternative 

The previously described methodology – using an ensemble and HMM smoothing 

– is quite complex and thus risky. We could not ignore the possibility of a human 

error, and it was also possible that the labeled data available for internal testing prior 

to the submission of the results to the SHL Challenge was different from the com-

petition evaluation data. Because of that we decided to submit two entries, one of 

which used a single model and no smoothing.  

The single-model alternative used an Extreme Gradient Boosting model (XGB) 

[18], which performed best of the base models in the ensemble, and is also often the 

best-performing algorithm in various ML competitions. XGB is an upgraded ver-

sion of the gradient boosting algorithm. The implementation of XGB offers several 

advanced features for model tuning, computing environments (e.g., parallelization 

across several CPU cores, distributed computing for large models, cache optimiza-

tion, etc.) and algorithm enhancement (e.g., handling missing values, optimal usage 

of memory resources, etc.). It is capable of performing the three main forms of gra-

dient boosting (Gradient Boosting (GB), Stochastic GB and Regularized GB) and it 

is robust enough to support fine tuning and addition of regularization parameters. 

According to the author, the main difference is that XGB uses a more regularized 

model formalization to control overfitting, which gives it better performance. 

In order to obtain best results, XGB requires careful hyper-parameter tuning. For 

comparison we first trained the XGB model with default parameter values and then 

improved the model through the tuning of its parameters. XGB has three major 

groups of parameters: 
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 General parameters that relate to the boosting algorithm that we use, commonly 

a tree or a linear model. For this problem, we used the tree model. 

 Booster parameters that depend on which booster is chosen. We chose the tree 

booster, so the parameters in this section will be tree-specific parameters. 

 Learning task parameters that decide on the learning scenario, for example, 

which evaluation metric should be optimized. Regression tasks may use different 

parameters than classification tasks. 

Since XGB has more than 30 hyper-parameters, the parameter tuning process 

could not be done in one step, so we did it iteratively. This means that we optimized 

one or two parameters at a time while keeping the other parameters at default values. 

After finding the optimal value for the selected parameter(s), we fixed this value 

and started optimizing another parameter. For this iterative process, we started with 

the more important parameters as follows: 

 We chose a relatively high learning rate. Learning rate defines the amount of 

"correction" we make at each step (each boosting round is correcting the errors 

of the previous round). So having a lower learning rate makes our model more 

robust to over-fitting and usually gets better results. But with a lower learning 

rate, we need more boosting rounds, which takes more time to train the model. 

Since we needed to fit a lot of parameters we started with a higher learning rate. 

 We tuned tree-specific boosting parameters (max_depth, min_child_weight, 

gamma, subsample, colsample_bytree) for the chosen learning rate and number 

of trees.  

 We tuned regularization parameters for boosting (lambda, alpha), which can help 

reduce model complexity and enhance performance. 

 We lowered the learning rate to obtain the optimal parameter values. 

We started by setting the initial values for the parameters that were going to be 

optimized. We chose: 

 max_depth = 5 

 min_child_weight = 1 

 gamma = 0 

 subsample, colsample_bytree = 0.8 

 reg_alpha = 0.005 

Note that these were just initial estimates and were tuned later. We took the de-

fault learning rate of 0.1 and checked for the optimal number of trees using the cv 

function of XGB which performs cross-validation at each boosting iteration and 

thus returns the optimal number of trees required. The obtained number of trees was 

140. 

The first parameters tuned were max_depth and min_child_weight as they were 

expected to have the highest impact on the model outcome. To start with, we set 

wider possible ranges and then we performed another iteration for smaller ranges 

around the best values obtained in the first step. The optimal obtained values were 

max_depth = 6 and min_child_weight = 1. 
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In the next step, we focused on tuning the gamma value. We used the parameters 

already tuned and searched for the optimal gamma value. The search showed that 

the initial value of gamma = 0 was the most suitable one. 

Next, we tuned the parameters subsample and colsample_bytree. The optimal 

obtained values were subsample = 0.65 and colsample_bytree = 0.75. 

Next, we applied regularization to reduce overfitting, even though the gamma 

parameter already substantially controls the model complexity. The best found 

value was reg_alpha = 0.0001. 

Finally, we reduced the learning rate and increased the number of trees. We used 

learning_rate = 0.01 and number_of_trees = 5000. With this step, we added a sig-

nificant boost in performance and the effect of parameter tuning became clearer. 

For comparison, the accuracy obtained with default parameter values was 88.3% 

and after parameter tuning we obtained the result of 90.2%. 

Experimental results 

The first step in developing our approach was to decide on the temporal length of 

the windows to classify. Different window lengths were tested in order to determine 

the optimal one. Window length of 1 minute was proven the best, as shown by the 

highest accuracy in Table 1. Only frequency-domain features were used in this ex-

periment to train a RF model, as these were the fastest to compute and evaluate. 

Table 1. Accuracy using frequency-domain features computed on windows of length 5 seconds, 

30 seconds and 60 seconds. Random Forest was used to train and evaluate the model. 

Window length Accuracy [%] 

5 seconds 67.1 

30 seconds 72.5 

60 seconds 74.9 

 

All subsequent results were obtained by using the 1-minute-majority labels. Per-

sample accuracy was also computed, but it was consistently around 0.5 percentage 

point lower, which is insignificant compared to the accuracy gains when using 

larger windows. This can be attributed to long-on-average activities, due to which 

activities very rarely changed in the middle of a given window. 

Accuracies of the RF model used in feature selection are given in Table 2. One 

can note that the accuracy on the test set increases with each step. The accuracy on 

the test set is slightly higher than on the validation set in the first three lines, pre-

sumably because the test instances were easier to classify on average. In the last line 

("Wrapper Strict"), the accuracy on the test set drops, suggesting that we overfit to 

the validation data. The difference between "Wrapper" and "Wrapper strict" is in 
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the threshold to select a feature. The threshold was higher in "Wrapper Strict", so 

fewer features were selected – apparently such that did not generalize very well 

beyond the validation set. The same experiment was conducted with the XGB 

model, obtaining similar results: overall, the accuracy was higher, but the increase 

after each feature selection step was retained. The "Wrapper" feature set was thus 

chosen for the final model. 

Table 2. The number of features kept and accuracy of the RF model after each step of feature 

selection on both validation and test sets. 

 Features Accuracy [%]  

Validation  Test 

All Features 1696 78.9 82.2 

Correlation removed 816 80.7 83.0 

Wrapper 359 82.0 83.6 

Wrapper (Strict) 90 83.5 82.6 

 

After choosing the "Wrapper" feature set, we proceeded to test different machine 

learning algorithms on the validation set. The resulting models were used as base 

models in our ensemble (with the exception of XGB, which was also used on its 

own). Table 3 summarizes the experimental results. The first column represents the 

accuracies of the 10 base models + the majority classifier. The middle column rep-

resents the accuracies of the complete ensemble using Meta models trained with 

different machine-learning algorithms. The rightmost column represents the accu-

racies of the ensemble with its predictions smoothed by the HMM method.  

HMM-Past considers only the past data, HMM-2 and HMM-6 provide the output 

after a 2 or 6 time slots, while HMM-All had all the data as input.  

 

Table 3. Accuracy on the internal test data. 

Test Accuracy 

Base models Meta models HMM models 

Majority 16.0% RF-Meta 92.0% HMM-Past 94.0% 

RF 84.8% SVM-Meta 90.6% HMM-2 95.0% 

SVM 87.1% GB-Meta 92.2% HMM-6 95.5% 

GB 89.5% ADA-Meta 68.5% HMM-All 96.0% 

ADA 60.0% KNN-Meta 90.8%   

KNN 81.5% NB-Meta 85.9%   

NB 76.2% DT-Meta 87.5%   

DT 74.1%      

XGB 90.2%      

DNN-Feat. 89.4%      

DNN-Spec. 81.8%      
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For the base models it can be seen that the highest accuracy of 90.2% is achieved 

by XGB. This model was used for the SHL Challenge submission that placed sec-

ond. The spectrogram-based DNN (DNN-Spec.) had 7.6 percentage points lower 

accuracy compared to the feature-based DNN (DNN-Feat.), suggesting that the se-

lection of high-quality features importantly contributed to our success. For the en-

semble using Meta models, it can be seen that the Meta model built with the Gradi-

ent Boosting algorithm (GB) had the highest accuracy of 92.2%. 

Finally, the results using the HMM method show that the HMM significantly 

increases the accuracy up to 96%. When working with past data only, this benefit 

is halved, but it is still present. The small accuracy difference between HMM-6 and 

HMM-All indicates that a couple of time slots are sufficient to smooth the data. 

Also, HMM-Past has the lowest achieved accuracy compared to the other three 

HMM variations, indicating that classifying with some delay is better than classify-

ing immediately. HMM-All was used for the SHL Challenge submission that placed 

first. Fig. 6 presents the normalized confusion matrix for this model. The normali-

zation is performed per row (i.e., the sum in each row is 100). From the confusion 

matrix it can be seen that the most problematic activities are Train and Subway. 

 

 
Fig. 6. Normalized confusion matrix on the internal test data for the model with highest accu-

racy, the HMM-All model. 

 

For the submission that won the SHL Challenge, we used the predictions of the 

HMM-all model. For the submission ranked as second at the challenge, we trained 

the models on all the available labeled data and used them to evaluate the unlabeled 

competition evaluation data. To get an insight in the behavior of the "fully trained" 

model, we also trained an XGB model on 90% of the data and classified the remain-

ing 10%, achieving the accuracy of 93.7%. We compared its classifications with the 

ones made with the model that was trained on only 50% of the data and found them 

very similar (they matched in 97.2% of cases). 

Since the used dataset is large and the approach complex, it is worth mentioning 

the computational complexity. A workstation with a four-core 3.3 GHz CPU, 16 

GiB of RAM and nVIDIA GeForce GTX1070 graphic card was used. The prepro-

cessing and feature extraction required ~6 hours, the model training required ~30 

minutes, and the model testing required ~1 minute on the internal test data (once the 
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features were extracted). Additional 3 hours were required to classify the competi-

tion evaluation data, mostly due to computationally expensive process of calculat-

ing the features. 

Conclusion and discussion 

The SHL Dataset presents a uniquely large and sensor-rich dataset from real life. It 

provides an open platform for creating and testing various AR and other algorithms. 

By containing activities not common in AR, such as "Train" and "Subway", it opens 

new challenges for the AR community. The SHL Challenge was an effective way 

to jumpstart the research on the dataset, yielding the first solutions to the basic lo-

comotion AR problem. 

We approached the SHL Challenge systematically, first by paying attention to 

the organization of the work. The group of 11 people consisting of senior and junior 

researchers as well as a few of students was split into two teams. The first team – 

JSI-Classic – concentrated on processing the input data and applying one best clas-

sical ML method [14], finally placing second in the competition. The second team 

– JSI-Deep – focused on deep learning, ensembles and smoothing, placing first. 

At the beginning, the teams did not share information in order to encourage orig-

inal thinking and maximize the benefits of multiple knowledge [13]. Only in the last 

weeks did they start exchanging ideas, data and software, so that both teams con-

verged to the best solutions within their strategy. The strategy of JSI-Classic was to 

use a classical and safe approach, while the strategy of JSI-Deep was to use the 

maximally sophisticated and complex approach. 

The high accuracy reported in this chapter can be attributed both to careful pre-

processing, feature extraction and selection, as well as to successful use of multiple 

knowledge, implemented in the form of an ensemble, and on successful smoothing 

using the HMM method. If we assume 70% accuracy reported in the SHL Dataset 

authors’ paper [1] as the baseline, the contribution of preprocessing, feature extrac-

tion and selection, and selection of a good ML model amounts to roughly 20 per-

centage points, corresponding to the accuracy of around 90% achieved by the JSI-

Classic team [14]. This can be broken down into 12 percentage points for the pre-

processing and feature extraction, 1–2 percentage points for the feature selection, 5 

percentage points for using XGB over the commonly used RF, and 2 percentage 

points for tuning its hyperparameters. 

The additional 2 percentage points due to the ensemble and 4 percentage points 

due to HMM smoothing, corresponding to the accuracy of 96% achieved by the JSI-

Deep team, do not seem much compared to the 20 percentage points of the JSI-

Classic approach, but are still rather significant, having in mind that 100% is the 

absolute limit. The DNNs deserve special comment, since they are the name-sake 

of the JSI-Deep team and not commonly used for AR. The spectrogram-based 

model had a 7.6 percentage points lower accuracy compared to the feature-based 

model. This indicates that the features contain more information than spectrograms, 
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which seems reasonable, since they contain additional specialized time-domain in-

formation, i.e., hand-crafted features that are based on the sensor’s amplitudes. The 

spectrograms, on the other hand, only contain information about the change in the 

frequency bands over time. The DNN model using features was comparable to the 

best classical models, demonstrating that deep and classical approaches are compa-

rable in this case. 

 The competition results were reported in average F-score, and we achieved the 

F-score of 0.94 which closely matched the F-score we achieved in our internal test-

ing (0.96). Looking at the results of other competitors, one can see a large discrep-

ancy between the results reported on their internal test sets and the results provided 

by the organizers on the competition evaluation dataset. The easiest explanation is 

that many competitors did not restore the labeled dataset to the original order, al-

lowing them to heavily overfit to the training data as explained in the dataset de-

scription. Based on this, we can conclude that a key achievement for success was 

avoiding overfitting, although all the elements of our approach were needed to over-

come the closest competitors. 

Winning the first and second place suggests that the approach described in this 

chapter represents the state of the art in (locomotion) AR, both in technical and 

organizational terms. As such, it might be of use to researchers in the AR commu-

nity. 
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