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ABSTRACT
Continuous sensing of the user and subsequent context recog-
nition using wearable sensors is a popular area of research.
One of the big problems of such automatic context recogni-
tion is the battery life of the sensing device. To maximize
the energy efficiency, the context recognition system should
adapt its settings to the current situation. Choosing the ap-
propriate setting for each situation usually requires either a
lot of expert knowledge or extensive experimentation. We
propose a method that simulates all possible combinations
of contexts and settings using a Markov chain model, au-
tomating and speeding up the whole process. We show on
a small example that the simulation is accurate, and that it
allows us to quickly select best trade-off between the energy
efficiency and context-recognition accuracy.

Categories and Subject Descriptors
G.3 [Probability and statistics]: Markov processes; H.2.8
[Database Applications]: Data mining

Keywords
Context recognition; continuous sensing; energy efficiency;
Markov chain; acitivity recognition.

1. INTRODUCTION
Widespread accessibility of wearable sensing devices allows
for many possibilities for tracking the users who wear them.
Possible applications range from measuring their exercise
patterns and checking on their health, to giving them location-
specific recommendations. The recognition of user’s context
using sensors is a popular and mature area of research [2].
For example, using activity recognition, we can recognize
”walking, ”running”, ”resting” and similar activities from
accelerometer data. This task was made easier and more
practical with the increased use of smartphones, which have
many sensors built in and are often carried. Sensing with
multiple sensors, possibly at once, opens additional options
for context recognition: detecting one’s location, ambient

sound level, or some higher level activities such as ”shop-
ping”, ”traveling” or ”working”.

A major limitation of such continuous sensing and context
recognition is its heavy toll on the sensing device’s battery
life. This is especially relevant for smartphones, which have
a very limited battery that must be shared between many
applications, but the same limitation applies to basically
any wearable device. This issue is often neglected when dis-
cussing the design of context-recognition systems, however
it is an essential component if such systems are to be used
in practice.

Some solutions deal with this issue by optimizing the sam-
pling rate or sensor duty cycle for the particular recognition
task [1]. This alone however, might be suboptimal. We
might for example want to have the GPS active at a high
sampling rate while the user is driving, but at a very low
rate when he is working in the office. This calls for dynamic
changes in the settings for both the sensors and for the sub-
sequent processing. Many adaptive approaches already exist
[3][4][5][6].

A problem with these and similar solutions is that they have
complex pipelines and/or require many parameters specific
to the particular recognition problem. If we were to recog-
nize different activities using different sensors we would have
to adapt these parameters, requiring either a lot of experi-
mentation or expert knowledge. It would therefore be useful
to have a method that can be provided with a sensor-rich
dataset, and it would be able to tell which sensors or which
sensor setting to use in each context.

A relatively simple solution of the above problem can be
found in the work of Yan, et al. [6]. They select the sensor
and attribute settings based on the last classified activity.
For each activity they find the setting that best recognizes
it, by testing all the settings on their dataset, and then use
it when that activity is detected. However, since the selec-
tion is made for each activity in isolation, the effect on the
whole system can be unpredictable. To illustrate: an ac-
celerometer is very good at recognizing walking and resting,
while a GPS is very good at recognizing driving. However, if
we have only the accelerometer active while walking, driving
will never be detected and the sensor switch will never oc-
cur. To take such interactions into account, we would have
to run an experiment that has a specific setting for each
activity and switches between them in runtime. Since there
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are many (activity, setting) combinations, this process might
be prohibitively time consuming, possibly taking months on
large datasets with many possible settings.

We propose a Markov chain model to simulate runtime set-
tings switching and predict what would happen if we used
a particular setting for a particular context. Using this
model requires only a small amount of actual experimenta-
tion. Since the experimentation is a lot more time consum-
ing than the simulation, many more combinations can be
tried out and a better combination is therefore expected to
be found with the same resources. In this paper we explain
the proposed Markov chain and try it on a simple activity
recognition dataset.

2. METHOD DESCRIPTION
Suppose we have a sensing system that works as follows:
the user is in one of predefined contexts (for example, the
context can be the current activity) and each context is as-
sociated with some setting. Settings can be which sensors
are in use, or what sampling frequency or duty-cycle policy
is active, or which feature set is used for classification, and
so on. Using the current setting, we watch for a possible
context change, and if it happens, we switch the sensor set-
ting to the one assigned to the new context. For example: if
we are sitting we need a lower sensor frequency, compared to
when we are walking. To determine the optimal parameters
for such a system, we might want to try every combination
of assignments of reasonable settings to possible contexts. If
we have c contexts and s settings, we would have sc different
combinations. Our goal is to make only s experiments and
simulate the rest, gaining a drastic increase in efficiency.

We begin by selecting all reasonable settings. For each of
them, we make an experiment where the classification model
is trained and tested with this particular setting. For each
experiment, we calculate and remember the confusion ma-
trix. Additionally we need the transition probability from
one state to the next one; that can easily be inferred from the
dataset. Finally we must make energy consumption estima-
tion for each setting. Energy consumptions for most sensors
at different configurations are known or can be estimated
with simple measurements.

To simulate an experiment where the settings are dynami-
cally switched depending on the current activity, we create
a Markov chain. This model has a state for each possible
(context, setting) combination. The Markov state (c,s) rep-
resents that we are currently in context c, with the system
having setting s (which depends on which context the sys-
tem believes we are currently in).

Next we have to calculate the transition probability from
one Markov state to another. They can be calculated from
the transition probabilities of contexts and data from the
previous computed confusion matrices. Intuitively: we get
in a state (c,s) if the context really changes to c and if the
system classifies this instance into one of the contexts that
have assigned setting s.

S(c1, s1) → S(c2, s2) = T (c1, c2)
∑

c∈C(s2)

Cs1(c|c1)

S(c1, s1) - the Markov state with context c and setting s.
T (a, b) - the probability in the dataset that the next context
will be b given that the current one is a.
C(s) - the set of all contexts that use setting s.
Cs(c1|c2) - the probability that the classifier that works with
setting s will classify an instance to c1, if the true context is
c2.

Having all transition probabilities, we can use the basic
Markov chain calculus to calculate the steady state of the
Markov chain. This gives us the amount of time the system
will be in each of the states. Since we know how much time
any setting is active and how much energy this setting con-
sumes per time unit, the energy consumption of the whole
system can be estimated. Additionally, since confusion ma-
trices give us the accuracy for each state, we can calculate
the accuracy of the whole system.

Energy estimation =
∑
m∈M

t(m)e(s(m))

M - the set of all states in the Markov chain.
t(m) - the predicted proportion of time spent in state m.
e(s) - the energy requirement of a setting s in a given time
unit.
s(m) - the setting corresponding to state m.

Accuracy estimation =
∑
m∈M

t(m)acc(c(m), s(m))

acc(c, s) - the accuracy of the classifier that works with set-
ting s, if the true context is c.
c(m) - the context corresponding to state m.

It should be noted that many other metrics can be deter-
mined from such a model. Example: the accuracy for a par-
ticular activity or the latency of activity change detection.
They can be used instead of the accuracy when evaluating
the performance.

Every simulated experiment represents a possible trade-off
between the accuracy and energy consumption. Simulating
all the combinations, the Pareto optimal trade-offs can than
be presented to the application designer, which - knowing
the energy and accuracy requirements of the application -
can then choose the ideal settings for it.

3. EXPERIMENTAL SETUP
We will demonstrate our method on a simple example. We
have a dataset of accelerometer data generated by a smart-
phone, and we want to classify basic activities (Table 1) from
it. We can do this by using two different settings: a high
frequency sampling (50 Hz) and a low frequency sampling (2
Hz). Two extremes were chosen for simplicity. In practice
we would perhaps also try other frequencies (10 Hz, 20 Hz
etc...) and duty cycles. We assign one of the two frequencies
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to each activity, generating 16 different combinations. All
16 combinations will be simulated by doing only 2 actual
experiments. In this case we might expect that the best
combination would be using the low frequency for the activ-
ity rest, and the high frequency for the other activities, but
the trade-offs are not so clear in general.

The confusion matrices are in Table 2 and Table 3. States
of the generated Markov chain are in Figure 1. Note that
such a chain is in principle fully connected, including the
connections of each state to itself.

s w r c
62.7 21.1 10.4 5.8

Table 1: Proportion (in %) of each activity in the
dataset. The values are in %. s - rest, w - walking,
r - running, c - cycling

s w r c
s 97.6 1.4 0.0 1.0
w 5.6 86.2 5.5 2.7
r 0.7 10.0 89.1 0.2
c 22.9 16.4 0.0 60.7

Table 2: The confusion matrix using the high fre-
quency. The values are in %.

s w r c
s 97.2 2.3 0.1 0.4
w 9.5 82.4 7.2 0.9
r 3.9 28.4 67.7 0.0
c 46.8 32.6 1.5 19.1

Table 3: The confusion matrix using low frequency.
The values are in %. We can observe that the accu-
racy for rest does not change much compared to the
high frequency case, while the accuracy loss when
cycling is quite drastic.

We also did a simpler simulation in the spirit of Yan, et.
al [6], where every activity was considered in isolation. In
this case, the accuracy of the system was computed simply
by computing the accuracy for each activity given its set-
ting and then weighted by this activity’s proportion in the
dataset.

4. RESULTS
The method was evaluated in the following way. First all
the simulation trade-offs were computed (both Markov chain
simulation and the simple one). Then we ran the actual
experiments we were simulating, switching classifiers and
sampling frequencies during the runtime. All three sets of
results were plotted in Figure 2.

The trade-offs in Figure 2 are marked with letters that cor-
respond to the activities where the low frequency was used.
The case where only rest was used with the low frequency
(marked as ’s’) could be considered the best trade-off be-
tween the energy gained compared to the accuracy lost.

Figure 1: Markov chain states for our example. Ver-
tical axis signifies the true activity, while the hori-
zontal signifies the setting, which depends on the
last classified activity.

We also plotted the Pareto front that shows the sensible
solutions. We see that the Markov chain simulation points
very closely correspond to the non-simulated ones. The sim-
ple simulation captures the general trend of the Pareto front,
but makes substantial mistakes in predicting the actual val-
ues. If the interaction between sensors and activities were
more complex, we expect the error to be be even greater.
The error is numerically evaluated in Table 4.

acc. energy
Markov 2.03 0.35
Simple 12.82 1.83

Table 4: The average prediction mistake, made on
energy consumption and classification error for the
simple and Markov chain model. The values are
given in % with respect to the maximal value for
the corresponding axis.

We also explored what happens if the underlying activity
distribution in the dataset changes. This can be easily simu-
lated by modifying the transition probabilities of the Markov
chains. It turns out that while the values themselves change
drastically, the overall shape of the Pareto front remains sim-
ilar. This means that the best simulated trade-off likely re-
mains the best with most other activity distributions. Such
simulation is also handy to see if the energy requirements ex-
ceed the application limits if some condition changes. Note
that no additional experiments with the actual data were
needed to generate this information, which is an additional
benefit of our method.
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Figure 2: Black points are real trade-offs, blue
points are simulated with Markov chains, red points
are simulated with the simple model. The Pareto
fronts are drawn using corresponding colors. The
lower left corner represents the point with the low-
est error and the lowest energy consumption. We
can see that Markov chain simulation corresponds
very closely to the values of real experiments.

5. CONCLUSION AND FUTURE WORK
The simulations display a very high decree of fidelity to the
actual experiments and are very fast. Our method can thus
effectively tackle the important but difficult task of selecting
system settings that give us a good compromise between the
accuracy and energy efficiency.

Future work on the topic will include testing the proposed
method on a more complex dataset that contains more sen-
sors and activities to see if the results still have the same
fidelity. Another improvement will be to explore options for
searching the settings combination space more efficiently.
Since this is essentially a multi-objective optimization prob-
lem, many approaches from that area can be then used to
further increase the effectiveness of our method.
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