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Abstract
Detection of the user’s context with mobile sensing systems
is a common problem in ubiquitous computing. However,
the typically small battery of such systems is often mak-
ing continuous detection impractical. The strain on the bat-
tery can be reduced if the sensor setting is adapted to each
context. We propose a method that efficiently finds near-
optimal sensor settings. It uses Markov chains to simulate
the behaviour of the system in different configurations, and
multi-objective genetic algorithm to find a set of good non-
dominated configurations.
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Introduction
Widespread accessibility of wearable sensing devices al-
lows for many possibilities for tracking the users who wear
them. Data collected is often used to detect the user’s con-
text. For example, we could recognize if the user is walking,
running, resting or performing similar activities using ac-
celerometer data. This task was made easier and more
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practical with the increased use of smartphones, which
have many sensors built in. Sensing with multiple sensors,
possibly at once, opens additional options for context recog-
nition: detecting one’s location or contexts such as shop-
ping, traveling or work.

A major limitation of continuous data collection and context
recognition is its heavy toll on the sensing device’s battery
life. This is especially relevant for smartphones, which have
a very limited battery that must be shared between many
applications. This issue is often neglected when discussing
the design of context-recognition systems, however it is
an essential component if such systems are to be used in
practice.

Some solutions deal with this issue by optimizing the sam-
pling rate or sensor duty cycle for the particular recogni-
tion task [3]. This, however, might be suboptimal. We might
for example want to have the GPS active at a high sam-
pling rate while the user is driving, but at a very low rate
when they are working in the office. This calls for dynamic
changes in the settings for both the sensors and for the
subsequent processing. While many adaptive approaches
already exist [5] they have a problem in that they are de-
signed for a specific problem setting. If we were to recog-
nize different contexts using different sensors we would
have to adapt these methods, requiring either a lot of exper-
imentation or expert knowledge. It would be useful to have
a method that can be provided with a sensor-rich dataset,
and is able to automatically tell which sensors or which sen-
sor setting to use in each context.

A relatively simple solution of the above problem was pro-
posed by Zhixian Yan, et al. [6]. They select the sensor
settings and subsequent processing method based on the
last classified activity. For each activity, they find the set-
ting that best recognizes it and then use it when that ac-

tivity is detected. However, since the selection is made for
each activity in isolation, the effect on the whole system
can be unpredictable. To illustrate: an accelerometer is very
good at recognizing walking and resting, while a GPS is
very good at recognizing driving. However, if we have only
the accelerometer active while walking, driving will never be
detected and the sensor switch will never occur.

Our goal is to build upon this approach in two ways. First
we propose a Markov chain model to simulate runtime set-
ting switching and predict what would happen if we used
a particular setting for a particular context, taking into ac-
count above described interactions. Similar models were
successfully used in related domains [4]. Second, we use a
genetic multi-objective optimization - objectives being accu-
racy of the system and its energy consumption - to decide
which assignments of settings to contexts to evaluate.

Problem description and methods
Suppose we have a sensing system that works as follows:
the user is in one of the predefined contexts c ∈ C and
each context is associated with some setting s ∈ S. Set-
tings can be which sensors are in use, or what sampling
frequency or duty-cycle policy is active and so on. A set-
ting is used as long as the system believes that user is in
a context that corresponds to that setting. When a context
change is detected by the system, the setting is changed
accordingly. For example: if we are sitting we might use a
low sensor sampling frequency, but when walking is de-
tected, a higher sampling frequency can be turned on.

The main issue of this paper is to efficiently find an assign-
ment of settings to contexts that generates good trade-offs
between system energy consumption and system quality
(for example: accuracy of the context recognition). What
trade-off is considered best is of course up to the system’s



designer, but we should strive to present him Pareto optimal
solutions to choose from.p(c) – the probability of

context c, estimated by its
proportion in the dataset

Acc(c|s) – the accuracy for
recognizing context c, given
the setting s is active.

s(c) – the setting corre-
sponding to context c.
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Figure 1: Markov chain, where
each state represents a (true,
predicted) activity of the user.
Transition A, for example, models
the situation where the user is
continually resting, and their
activity is recognized as such. For
transition B, the user started
walking, which was correctly
recognized. Finally, transition C
implies incorrect classification from
walking to running.

The most straightforward way to determine the optimal as-
signment of settings to contexts for such a system is to
simply try out every assignment. This approach has two
obvious problems that make it infeasible for a large num-
ber of settings and/or contexts. The first is the exponential
number of assignments; if we have |C| contexts and |S|
settings, we would have |S||C| different assignments. Given
that sensing system can have many sensors, each having
many ways to be configured, we can expect the set of sys-
tem settings to frequently be large. The second is the time
of evaluation of one assignment; one must create appropri-
ate machine learning models and then run through all the
data in the dataset, classifying instances while simulating
different settings and switching between them accordingly –
a process that can be prohibitively slow (lasting seconds or
minutes), if we plan on evaluating a large number of assign-
ments.

The often used approach is to use expert knowledge to
determine sensible assignments and test only those. How-
ever, such knowledge is often either not available or not
good enough to isolate all good potential assignments,
which calls for an alternative, automatic method for solving
the task.

Reducing the time of evaluation
To evaluate as many assignments of settings to contexts
as possible, we strive to reduce the time of each evaluation
by mathematically estimating the energy consumption of
the system and its classification quality and avoid actual ex-
periments. One experiment is considered to be classifying
all instances in the dataset using appropriate settings, and
creating new classification models if so needed for the task.

Naive evaluation model
A simple approach, similar in spirit to the work of Zhix-
ian Yan, et al. [6], is to first determine the accuracy of the
system using each setting, by experimental evaluation.
In these experiments the same setting is kept through-
out, without switching depending on the context. This re-
quires |S| experiments, exponentially fewer than |S||C|.
Then, to evaluate a specific assignment, the accuracies of
each context c, using the corresponding setting s(c), are
summed up, weighted by the proportion of that context in
the dataset.

Accuracy =
∑
c∈C

p(c)Acc(c|s(c))

We can make a similar prediction about the energy con-
sumption, given the information about the energy require-
ment of each setting.

This evaluation, while easy to compute, models only how
the system behaves when the correct setting is active.
However, it does not model what happens when context
changes or when the classifier makes a classification mis-
take and the system subsequently switches to a setting
inappropriate for the current context.

Markov-chain evaluation model
To improve upon the naive model, we propose a Markov-
chain model. We create a Markov chain that has |C|2 states.
Each state represents a pair (current context, context the
system believes we are in), marked (c, c′) in short (example
on Figure 1). Our goal will be to calculate the "steady-state"
of this Markov chain, which gives us the proportion of the
time we would spend in each of those states, given infinite
or at least large enough time. Using this information, we
can then make various predictions about the system perfor-
mance that are much better than the ones using the above
described naive approach.



We begin by making experiments where for each setting,
a confusion matrix is calculated. Again this is done without
sensor switching and requires |S| experiments. Addition-
ally, we need the transition probability T (ci, cj) from each
context to each other; that can easily be inferred from the
dataset. Finally, we must make energy consumption estima-
tion per time unit for each setting e(s).

P ((a, b) → (c, d)) – the
probability of a transition
from state (a, b) to state
(c, d)

T (a, c) – the probability in
the dataset that the next con-
text will be c given that the
current one is a.

Cs(d|c) – the probability
that the classifier that works
with setting s will classify
an instance to d, if the true
context is c.

s(m) – the setting corre-
sponding to state m.

c(m) – the context corre-
sponding to state m.

acc(c, s) – the accuracy of
the classifier that works with
setting s, if the true context is
c.

M – the set of all states in
the Markov chain.

t(m) – the predicted pro-
portion of time spent in state
m.

e(s) – the energy require-
ment of a setting s per time
unit.

Confi,j – the value of the
confusion matrix, for correct
context i and predicted con-
text j. Note: all the values
are normalized to sum to 1.

To evaluate a particular assignment, we have to calculate
the transition probability from one Markov state to another.
They can be calculated from the transition probabilities of
the contexts and data from the previously computed con-
fusion matrices. Intuitively: we get in a state (c, c′) if the
context really changes to c and if the system classifies this
instance into c′.

P ((a, b)→ (c, d)) = T (a, c)Cs(b)(d|c)

Having all the transition probabilities, we can use the basic
Markov chain calculus to calculate the steady state of the
Markov chain. This gives us the amount of time the system
will be in each of the Markov states. Since we know how
much time any setting is active and how much energy this
setting consumes per time unit, the energy consumption of
the whole system can be estimated. Additionally, since the
confusion matrices give us the accuracy for each state, we
can calculate the accuracy of the whole system.

Energy estimation =
∑
m∈M

t(m)e(s(m))

Accuracy estimation =
∑
m∈M

t(m)acc(c(m), s(m))

It should be noted that many other metrics can be deter-
mined from such a model. Example: precision, recall, F-
score or the latency of activity-change detection. They can
be used instead of the accuracy when evaluating the per-
formance of the system using a chosen assignment. Most
of those metrics can be calculated directly from the confu-
sion matrix for the whole system, which in turn is trivially
calculable from the steady state.

Confi,j = t(m(i, j))

Multi-objective optimization
An individual assignment can be accurately and quickly
evaluated using a Markov-chain model. Their number how-
ever, scales rapidly with the increasing number of settings
and contexts. For large |S| and/or |C| a more efficient
search is required. Since we are essentially solving a prob-
lem of multi-objective optimization, we can use methodol-
ogy from that research field.

We used the NSGA-II [2], a genetic multi-objective opti-
mization algorithm, with good results. We assume that
some other similar algorithm could be used in its place.
Assignments of settings to contexts are used as the inputs
to be optimized. If the settings themselves have a sensible
structure – and if we have a huge amount of settings, they
are almost bound to have it – we can use this structure to
encode the inputs, to make algorithm operations (permuta-
tions, mutations) more natural. Example: if our setting is a
combination of sensors that can be turned on or off, it can
be written as a binary string, where 1 represents an active
sensor. We can then concatenate all those strings for each
setting that is associated to one of the contexts to get the
final input for the algorithm.



Dataset
The method was evaluated on the Commodity12 dataset
[1]. In the Commodity12 project we were collecting data
of diabetic patients that were wearing a smartphone and
a chest heart-rate monitor. The data came from ten differ-
ent physical and virtual sensors: accelerometer, barometer,
light sensor, GPS location, a list of visible WiFi networks, lo-
cation description by Foursquare webservice, sound, time,
heart rate, and respiration rate. From it, we were interested
in recognizing the following contexts: sleep, work, home,
eating, transport, exercise, out (out of house, but not in any
of the previous contexts). While our classification accuracy
was reasonably high, sensors drained the phone’s battery
in less than a day, which called for energy optimization.

Name I [mA]
/ 20
A 46
B 45
W 30
S 55
A,B 52
B,W 75
B,S 68
A,W 70
A,S 61
W,S 84
A,B,W 74
A,B,S 70
B,W,S 90
A,W,S 85
A,B,W,S 100

Table 1: Energy cost of different
sensor combinations measured in
mA. Sensors that were active were
labeled A – accelerometer, S –
sound, B – Bluetooth, W – WiFi.

Naive Markov
Acc. [%] 5.2 3.0
F-score 0.04 0.02
Energy[mA] 4.7 1.4

Table 2: The average prediction
mistake of 300 random
assignments, made on energy
consumption, F-score and
accuracy for the naive and
Markov-chain model.

We started by choosing the sensor settings. Every sensor
can be either active or not. We also included the option of
the sensor in a "duty-cycling" mode, meaning that it is ac-
tive some set amount of time (1 minute in our case) and
then inactive for some time (14 minutes in our case). Using
this list we have 10 sensors with 3 options giving us 310 set-
tings for any given context. Since we have 7 different con-
texts, and a setting must be chosen for each one, this cor-
responds to (310)7 ≈ 1033 different system configurations.
Given this number, it is easy to see that any brute-force ap-
proach is bound to fail, and any handpicked configuration is
likely to be sub-optimal.

Energy consumption
We must estimate the energy requirements for different
combinations of sensors being active. Since the individual-
sensor energy consumptions do not add up linearly, we had
to try every combination. Fortunately this process was sim-
plified by the following factors: 1) for both the heart rate and
respiration rate only the Bluetooth connection is required
and its power consumption is the same with one or two data

streams; 2) having one, two or all of the following sensors
– accelerometer, light and pressure – resulted in a very
similar energy consumption, perhaps because they share
many resources to operate; 3) Foursquare is "free" if WiFi
and GPS sensors are active and it costs as those two oth-
erwise (it needs both to work); 4) time "sensor" is free; 5)
GPS added an extra 40 mA on average regardless of other
sensors. This narrows the number of required combinations
to test down to 16. The results are listed in Table 1.

Results
We used the NSGA-II algorithm to find a set of nondomi-
nated solutions, approximating the Pareto front, and used
Markov chains for the evaluation of the points that the al-
gorithm was iteratively selecting. The resulting set can be
found in Figure 2.

We started by estimating the mean absolute error of pre-
dicted values compared to those we got in real experiments
with runtime sensor data switching. We tested both on ran-
dom 300 assignments and on points on the resulting Pareto
front. Results are listed in Table 2 and Table 3. The F-score
was added to demonstrate that other metrics of classifica-
tion quality can be predicted and used instead of the accu-
racy. In all cases, the Markov-chain model outperformed the
naive one and its predictions were very close to the actual
values.

Point A on Figure 2 shows an assignment that performs
as well as the original system with all the sensors turned
fully on. However, it consumes almost half less energy as
the original (which consumed 140 mA). Point B has only
the sensor "time" active. As this data is essentially free,
the sensing system consumes as little energy as the base-
line case. Even so, it performs at a 65% accuracy, much
higher then the majority classifier would (the majority class



occurs in in 46% cases). Since the training and test data
came from the same person, it is easy to explain why the
time of the day might be an informative feature. Lastly we
have the point C, which looks like a reasonable trade-off. It
consumes little energy, but loses negligible accuracy com-
pared to the best case. It accomplishes this by discarding
the sound entirely and uses the GPS sparsely. All the other
sensors are almost always in the "duty-cycle" mode, which
can be considered reasonable as the daily activities in this
dataset do not change often. Two most frequent activities
"home" and "work" can also be retrieved solely by using the
list of visible WiFi networks.

Naive Markov
Acc. [%] 5.8 2.3
F-score 0.09 0.03
Energy[mA] 4.9 1.1

Table 3: The average prediction
mistake of assignments in the
nondominated set, made on
energy consumption, F-score and
classification error for the naive
and Markov-chain model.

Figure 2: Nondominated set of
assignments evaluated in the
Commodity12 experiment. Three
points of interest were labeled, and
their value is displayed as
classification accuracy [%] / energy
consumption [mA].

The Markov-chain model performs on average roughly
37 000 times faster on the Commodity12 dataset then an
average experiment, needing 1.5 ms for a single evalua-
tion in comparison to 55 000 ms for an experiment (time of
building a model excluded). Using multi-objective optimiza-
tion we were able to find solutions shown in Figure 2 after
evaluating 100 000 assignments, magnitudes less than the
1033 assignments in the search space.

Conclusion
The results in this paper show that using Markov chains, we
can accurately and quickly predict the behaviour of a sens-
ing system that is switching between its settings based on
the current context. Markov-chain model, combined with an
efficient search implemented using a multi-objective genetic
algorithm, provides a powerful tool for optimizing the en-
ergy needs of a data collection system while maintaining its
context classification accuracy.

Using this approach we found some good solutions for the
Commodity12 system, one of them consuming 5 times less
energy in exchange for 2% accuracy loss, better then any
solution we found using expert knowledge alone.
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