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ABSTRACT
The Sussex-Huawei Locomotion Challenge 2019 was an open com-
petition in activity recognition where the participants were tasked
with recognizing eight different modes of locomotion and trans-
portation. The main difficulty of the challenge is that the training
data was recorded with a smartphone that was placed in a different
body location than the test data. Only a small validation set with
all locations was provided to enable transfer learning. This paper
describes our (team JSI First) approach, in which we first derived
additional sensor streams from the existing ones and on them calcu-
lated a large body of features. We then used cross-location transfer
learning via specialized feature selection, and performed two-step
classification. Finally, we used Hidden Markov Models to alter the
predictions in order to take their temporal dependencies into ac-
count. Internal tests using this methodology yielded an accuracy of
83%.

CCS CONCEPTS
• Computing methodologies→ Transfer learning; Supervised
learning.
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1 INTRODUCTION
Smartphones, smart watches and other wearables have become
ubiquitous. By analyzing sensor data acquired via such devices we
can reason about the user’s context which in turn enables personal-
ized context-sensitive services. One of the most exploited types of
context information is the user’s activity. For this reason, activity
recognition with wearable devices is a research topic studied by
many researchers [8][13].

The typical approach to activity recognition with wearable de-
vices is by applying machine learning to inertial sensor data. An
important, but often neglected challenge, is that machine-learning
models are normally location-dependent: a model that was trained
to recognize the user’s activity on data from inertial sensors in one
body location (e.g., the wrist) performs quite poorly when used
on data from another body location (e.g., a pocket on the hip). For
example, a significant decrease in the performance was observed
when a model trained using a smart watch worn on the left wrist
was tested on data from the right wrist [6]. The issue is even more
severe with smartphones, since they can be carried in many differ-
ent locations. It can be tackled by location-specific models [4], but
to train such models it is desirable to exploit cross-location data.

The Sussex-Huawei Locomotion-Transportation (SHL) recogni-
tion challenge 2019 [5][14] addressed exactly this problem. The goal
of the challenge was to recognize eight modes of locomotion and
transportation activities from inertial sensor data of a smartphone
in a location-independent manner. More precisely, the goal was
to recognize the user’s activity from the data from a smartphone
placed on the user’s hand, but most of the provided training data
was collected from smartphones on a torso, hips and in a bag.

The main machine-learning technique for dealing with such
problems is transfer learning. In general, transfer learning focuses
on storing knowledge gained while solving one problem and apply-
ing it to a different but related problem [16]. In the activity recog-
nition domain, the most utilized transfer-learning techniques are
transferring instances, transferring features and feature represen-
tations, transferring model parameters and transferring relational
knowledge [2] [12]. Recently, with the advancement of end-to-end
deep learning, transferring Convolution Neural Network (CNN)
filters has also become an established transfer-learning technique.
Although transfer learning was demonstrated to be feasible [1][10],
it still remains a challenging task. For example, Morales et al. [11]
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Table 1: Summary of the provided datasets. "X" marks if the
data is available for a particular smarthphone location or if
the data includes the activity label.

Bag Torso Hips Hand Labels Days
SHL-Training X X X X 59
SHL-Validation X X X X X 3
SHL-Test X 20

used the DeepConvLSTM deep-learning model to transfer CNN
layers across mobile AR datasets, sensor modalities and sensor lo-
cations. In their study, transferring filters across datasets was in
most cases outperformed by domain-specific baseline models.

In our study we tested transferring instances, transferring fea-
tures and transferring CNN filters from locations with a lot of
training data to the target location with only a small amount of
training data. While naive approaches to these types of transfer did
not outperform the target-location model, the transfer did prove
successful in the end. This can be attributed to the fact that the data
from the target location (hand) was quite scarce compared to the
data from the rest of the locations (torso, hips and bag). In this paper
we will describe the approach that yielded the best performance
based on our internal experimental results and was submitted for
the competition (team JSI First). The approach consists of selecting
features that perform best across locations (feature transfer), and
combining instances from the target and other locations (instance
transfer). Classical machine learning was used, since it yielded bet-
ter results than deep learning, even when transfer of CNN filters
was employed. An important element was also exploiting the tem-
poral information by smoothing the predictions with a Hidden
Markov Model (HMM).

2 SHL CHALLENGE DATA
The goal of the SHL challenge was to recognize eight modes of
locomotion and transportation – Car, Bus, Train, Subway, Walk,
Run, Bike, and Still – using inertial sensor data of a smartphone.
The data was originally recorded using four smartphones worn at
different on-body locations (Hips, Torso, Bag, Hand); however only
a subset of all the data was provided by the challenge organizers.

The provided data came in three sets. The SHL-Test set (the
SHL prefix distinguishes it from test data for specific experiments
discussed later on) contained only Hand location and was unlabeled
– correctly labeling it was the competition’s goal. The SHL-Training
set was the largest set, but it only contained data from non-hand
locations. Finally, in the SHL-validation set, a little validation data
was provided from all four locations including the Hand phone
location. Overall, the challenge data comprised of 3 x 59 days of
SHL-Training data (59 days of data for each of the three locations),
4 x 3 days of SHL-Validation data and 20 days of SHL-Test data – as
summarized in Table 1.

The raw sensor data was sampled at a frequency of 100 Hz and
it included data from the following sensors: acceleration (x, y and
z), gravity (x, y and z), gyroscope (x, y and z), linear acceleration
(x, y and z), magnetic field (x, y and z), orientation (x, y, z and w)
and pressure. Notably, data from all sensors that could be used
to identify the location of the user (e.g. GPS, Wi-Fi) was omitted.

The data was segmented using 5-second windows and labels were
provided per-sample. The distribution of the activities for the SHL-
Training and SHL-Validation data is presented in Figure 1. The blue
color represents the distribution of the SHL-Training labels. The
light-green color represents the distribution of the SHL-Validation
labels and the dark-green color is the intersection between the two
datasets. From the figure it can be seen that the label distribution is
quite similar between the two datasets. The biggest difference is in
the distribution of the Run, Bike, Train and Subway classes.

Figure 1: Distribution of the labels for the SHL-Training and
SHL-Validation datasets.

3 PRE-PROCESSING AND FEATURES
In this work we opted for the use of classical machine learning, as
it yielded better results then the deep learning. In order to employ
it, we pre-processed the data and then from it calculated a large
body of features.

3.1 Data ordering and split
The 5-second segments of the SHL-Training dataset were provided
in the correct order, but the segments of the SHL-Validation and
SHL-Test set were not – they were shuffled by the competition
organizers. We assume that this was done in order to enforce that
the competitors use a classification window of 5 seconds or less.

Shuffled validation data, however, presents a problem for any
kind of training and testing that would be performed on this set.
As an example: if we just split the SHL-Validation data in half to
form an internal training and test set, many consecutive instances
(that are very similar) would be one in the training and the other
in the test set – leading to overfitting and a high reported accuracy,
which would not translate to the SHL-Test set.

To remedy the issue, we designed an algorithm that can order
the shuffled dataset based on the similarity of the segments. This
ordering created clusters of data, that we believed were originally
sequential, with no information on how the clusters follow each
other. Note that this ordering was by no means flawless, but it was
good enough to both split the validation data into two equally sized
sets (Validation1 and Validation2) and to apply the Hidden Markov
Model smoothing on the data.
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3.2 Deriving data streams
SHL dataset provides 20 different sensor streams, if we are indi-
vidually counting each axis of the 7 provided sensors. From these
original sensor streams it is possible to derive additional sensor
streams that are useful for the AR. The subsequent steps treat these
derived sensor streams like any of the original ones.

First derived sensor stream is the magnitude of the data. It was
calculated for all the data that is coming from tree-axis sensors
(acceleration, linear acceleration, gravity, magnetic field and angular
velocity).

Second, additional sensor streams were created by rotating the
accelerometer and magnetomer data from the phone’s coordinate
system to the "world" (North-East-Down) coordinate system. This
could be useful for determining, for example, if the magnetic field
is coming from above or below, as the same axis is always pointed
upwards. In addition, they could be useful to match and compare
the data from different phone locations, as these phones all point
in the same direction after the rotation. This transformation was
done by multiplying the current values with the coordinate system
change matrix (details in [7]), using quarternions to determine the
current orientation [9].

3.3 Features
In order to use classical machine learning, features had to be cal-
culated from each five-second window of data. This window size
was chosen as it was the largest possible given the limitations im-
posed by the nature of the competition and because our previous
experience [7] on a similar problem showed that larger windows
outperform the smaller ones – presumably due to infrequent activ-
ity transitions. Labels were calculated for each window as the most
frequent label in that window.

Calculated features can be roughly categorized as being frequency-
domain or time-domain and the following two subsections describe
each category respectively. Altogether 858 features were calculated.

3.3.1 Frequency-domain features. These features were calculated
using the power spectral density (PSD) of the signal, which is based
on the fast Fourier transform (FFT). PSD characterizes the frequency
content of a given signal and can be estimated using several tech-
niques. The simplest one is to use a periodogram, which is obtained
by taking the squared-magnitude of the FFT components. An alter-
native to a simple periodogram is the Welch’s method, which is also
widely used and commonly considered superior to periodogram. In
our work, we opted to use the Welch’s method to obtain the PSD.
We have implemented the same frequency-domain features as in
the last-years competition [7]: Three largest magnitudes of the FFT
components, entropy of the the normalized FFT components and
their energy.

3.3.2 Time-domain features. We have used time-domain features,
that have proven themselves in our previous work [3][4] and pre-
viously won competitions [7][8]. These features were designed
for accelerometer data and most of them were calculated only on
the acceleration (and its derived) data streams. Some of the fea-
tures were also calculated on the gyroscope data streams, however,
some features such as linear velocity were left out as they have no
semantic interpretation when calculated on non-acceleration data.

A description and analysis of the expert features can be found
in our previous paper [4]. In summary, the magnitude data stream
provided the information on the intensity of the activity, while
the individual axes provided the information on the orientation
of the device and subsequently on the position of the user. Some
features come from statistics and describe the intensity and “shape”
of the signal: the mean, variance, Pearson’s correlation between
axes, their covariance, skewness, kurtosis, quartile values and range
between them. Others have a more physics-based interpretation,
such as velocity and kinetic energy. The rest came from expert
knowledge of the domain: the number and height of peaks in the
window, signal’s mean, its sum and squared sum, and the number
of times the signal crosses its mean value.

4 METHOD
The main difference and at the same time the main problem of
this challenge compared to the one previous year is that we were
required to classify data from the Hand location, while having
relatively small labeled training data for that location. We thus had
to heavily rely on data recorded on different locations (Torso, Hips,
Bag).

We first investigated to which degree is the data transferable
from one location to another, and then based on that designed a two
step classification pipeline that we used to create our predictions.

4.1 Cross-location training
Ideally, we would use all of the training and all of the validation
data for training the final model. Such model could then generalize
across all locations. In practice, however, this naive approach did
not generate good results (Figure 5).

To investigate the issue we compared both the raw data and
the features of the same time instance across different locations.
Pressure data – as expectedly – closely matched. Raw data was
loosely matching for the axis rotated into the universal coordinate
system (Section 3.2). Most of the calculated (non-pressure) features,
however, on average displayed a difference from one location to
another of more than 20% of their value range. This persisted even
if the values were first normalized into a [0 − 1] interval. This
explained the poor performance of the models that were tested and
trained on different locations.

The differences between feature values were not uniform – dy-
namic activities (run, walk, bike) displayed much greater disagree-
ments than the static activities (Bus, Car, Subway, Train, Still). Fo-
cusing on the Hand location during static activities – the differ-
ences were greatest when the hand was rapidly moving, but this
accounted for only roughly 3% of the data. These results were not
entirely surprising, as the smartphone worn in hand creates com-
pletely different trajectories during dynamic activities than the
smartphone worn in a trouser pocket. On the other hand, when
resting in a vehicle, all body locations are subject to similar vehicle
vibrations.

4.2 Proposed pipeline
Test dataset contained only data for the Hand location, and we
thus focused on optimizing the pipeline for only this location. The
main idea is that SHL-Training set is not suitable for learning the
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dynamic activities for the Hand location, however it can be helpful
when learning the static activities (as described in Section 4.1).
The resulting pipeline is schematically illustrated on Figure 2 and
described in the following steps.

• Create a Random Forest classifier c1 using Hand location in
the SHL-Validation set using all features.

• Use c1 to classify all instances in the SHL-Test set.
• Use HMM smoothing (Section 4.4) to alter the predictions,
taking into account their sequence.

• Create a Random Forest classifier c2 using Hand location
in the SHL-Validation set and a non-hand location in the
SHL-Train set. Only features selected by the feature selection
as described in Section 4.3 were used.

• Use c2 to re-classify all instances that were previously classi-
fied as either Bus, Car, Subway, Train, or Still.

• Use HMM smoothing for the second time, generating the
final predictions.

Figure 2: The proposed pipeline.

We expect the c1 classifier to perform well when classifying
dynamic activities (e.g. running, walking), as they are usually easy
to learn even with a smaller dataset, especially if both the train and
test data came from the recording of the same user. Nonetheless,
the first HMM smoothing step is performed in order to further
increase the accuracy, as the correct division between the static and
dynamic activities is key to the correct re-classification.

Random Forest classifier was used as it gave good results in the
last year competition, and was the most accurate in this year’s
internal tests. Note, that when we internally tested the pipeline,
Validation1 and Validation2 sets were used for training and testing.

Feature selection is especially crucial when creating the c2 clas-
sifier as some features are similar between locations, but most are
not. We suspect that a different feature selection procedure for
the c1 would also be beneficial, but was skipped due to the time
constraints of the competition.

4.3 Feature selection
Since a relatively high number of features was computed, feature
selection was used to remove the ones that do not contribute to
the accuracy of the model in order to reduce overfitting and speed
up the training process. This process also removed the features
that are very different from one location to another. Both the data
in the SHL-Train set and in SHL-Validation set were used for the
feature selection process. From the SHL-Validation set we always
used the Hand location, while from the SHL-Train we used one

of the non-hand locations, repeating the process for each one. In
all cases only the data from the static activities was used, as the
selected features were meant to be used only for the second step of
the proposed pipeline (Section 4.2).

The feature selection procedure consists of three steps. In the
first step, the mutual information between each feature and the
label was estimated, where larger mutual information means higher
dependency between the feature and the label.

After the features were sorted according to this value, correlated
features were removed based on the Pearson correlation coefficient.
This has shown that roughly half of the features are redundant,
which was expected due to the number of features and similar data
streams. To make the process computationally feasible, only 100
features were taken at a time, starting with those with the highest
mutual information with the label. Correlation was then calculated
for each pair. If the correlation was higher than a certain threshold
(experimentally determined as 0.8), the feature with lower mutual
information was discarded. After that, next 100 features were added
and the correlation between each pair was calculated again.

In the final step, features were selected using a greedy "wrapper"
algorithm. A Random Forest classifier was first trained using only
the best scoring feature on the SHL-Training set. The trained model
was used to predict labels for the Validation1 set and the predic-
tion accuracy was calculated (schematically in Figure 3). Then the
second-best feature was added and the model was trained again. If
the accuracy on the Validation1 set was higher than without using
this feature, the feature was kept. This procedure was repeated for
all remaining features. This strict selection initially led to overfit-
ting to the validation set (accuracy was much higher compared to
the test set), so the condition for keeping a feature was made less
strict: the feature was kept if the accuracy did not decrease by more
than an experimentally set threshold. Using this rule, overfitting to
the validation set was reduced.

Validation1 set was used instead of the whole validation set, so
we could use Validation2 set to verify that the model did not overfit.
After the feature selections procedure was completed we switched
the Validation1 and Validation2 set and repeated it. We then kept
only features that were selected by both iterations.

Figure 3: Cross-location feature matching.

4.4 Hidden Markov Model
Using only classical classification, all the windows are classified
independently from one another. This approach discards all the
information on temporal dependencies between them. If a user is
currently on a train, for example, but the next window is classified
as Bus, followed by another Train classification, it is far more likely
for Bus to be a misclassification than a vehicle switch (Figure 4).

This motivated us to use an extra step after each classification,
where the temporal information was taken into account. This was
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Figure 4: Top row shows a sequence of Train and Bus classi-
fications. They are corrected using HMM smoothing into a
sequence of only Train activities shown below.

Figure 5: Accuracy of models trained on the SHL-Training
set (different locations in columns) and tested on the SHL-
Validation set (different locations in rows).

done using an HMM model. In this model the hidden states rep-
resent the actual activity, while the visible output represents the
classified activities. The parameters of this model are the transition
probabilities between the states and the probabilities of observed
emissions in each state. The former can be estimated from the
transition matrix of the SHL-Training set (matrix of probabilities
that one activity is followed by another), while the latter from the
confusion matrix on either the Validation1 or Validation2 set.

5 EXPERIMENTAL RESULTS
5.1 Cross-location training
We started with the naive approach of training a model on the SHL-
Training set using data of individual phone locations, or merging the
data from all three locations into one training set. The models were
trained with the Random Forest algorithm. They were tested on all
four locations of the SHL-Validation set. The results are shown in
Figure 5. One can immediately see that the accuracy was the highest
when the same locationwas used for training and testing, whichwas
to be expected. It was quite low when different locations were used,
which is also not a surprise. The most interesting set of results is for
the model trained on all the SHL-Training data, including Bag, Hips
and Torso, but not Hand. On all the locations but Hand, this model
performed close to the location-specific models, which suggests
that location-independent models are possible. Unfortunately it was
not useful for the competition, though, since the result on Hand
was very poor. We speculate that the reason is both the lack of Hand
training data and the fact that the Hand location is more different
from the others than the others are between themselves.

5.2 Proposed pipeline
We started our pipeline with the base model that classified all the ac-
tivities. This model was trained using the Random Forest algorithm
on all the features. During internal experiments, it was trained

Table 2: Accuracy of the classification after each step of the
proposed pipeline. H - Hand, B - Bag, P - Hips

Location H T+H B+H P+H P+T+B+H Voting
Base 64 64
Smoothing 1 81 81
Vehicle 63 68 66 67 68 69
Smoothing 2 82 86 78 84 80 83

on both halves of the SHL-Validation set: when it was tasted on
Validation1, Validation2 was used for testing, and vice versa. The
reported results are the average of both runs. The model that was
eventually used to classify the SHL-Test set was trained on the
whole SHL-Validation set.

The accuracy of the base model is shown in the first row of Table
2. It is fairly low – only 64%. However, after HMM smoothing, in
increases to respectable 81%, which is shown in the second row
of Table 2. The confusion matrix for the smoothed model can be
seen in Figure 6. The model did very well onWalk, Run, Bike and
Car. The most confused classes were Train and Subway, which are
indeed very similar. Bus was often confused with Still.

Since distinguishing the vehicles and Still proved problematic
with a model trained on the small SHL-Validation set, we trained
another set of models to distinguish the vehicle classes. Four models
were built: three trained on each of the three locations in the SHL-
Training set, and one trained on Hand data in the SHL-Validation set.
The first three used features chosen with the cross-location feature
selection in which half of the SHL-Validation set was used as the
validation set in the wrapper-based feature selection. Hand data
was also added to the training sets for these models. The feature
selection and training was repeated twice, once on Validation1 and
once on Validation2 set. The models that were eventually used to
classify the SHL-Test set used the union of both feature sets. We also
trained a model on the data from all three SHL-Training locations
combined with SHL-Validation Hand data, and a majority-voting
model aggregating the predictions of other models.

The results for the smoothed based model combined with un-
smoothed vehicle models are shown in the third row of Table 2.
The absence of smoothing of the vehicle predictions caused the
accuracy to drop substantially compared to the previous row, but
it was better than the accuracy of the base classifier. The Hand-
only model performed the worst, whereas the Torso + Hand model
performed the best. Apparently the motion of the torso is closest to
the motion of the hand, although the differences were not large. The
final row of Table 2 shows the results smoothed for the second time
with a HMM model. This step confirmed the benefit of the vehicle
mode, since the results are substantially better than after the first
smoothing. Torso + Hand remained the best location, performing
the same as the voting model. To classify the SHL-Test set we used a
majority-voting ensemble of the models that were equally good or
better than the Hand model: Hand, Torso + Hand and Torso + Hips.

5.3 Feature selection
For the Bag location, 37 features were kept; 32 were kept for the
Torso location and 40 for the Hips location. This presents only a
small fraction of all features – most of the kept features came from
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Figure 6: Normalized confusion matrix for the base model
with HMM smoothing. 2-fold cross-validation was used on
the SHL-Validation data.

Figure 7: Normalized confusion matrix for the final model
with HMM smoothing. 2-fold cross-validation was used on
the SHL-Validation data.

axis without the orientation – either magnitudes or de-rotated
sensor streams. Most features were generated from the data from
magnetometer sensor, with the acceleration data closely following.

6 CONCLUSION
Following the SHL Challenge 2018, which was fairly straightfor-
ward activity recognition – albeit with somewhat atypical (trans-
portation) activities – the 2019 edition brought an interesting new
twist. In the era of increasing availability of large datasets, transfer
learning is a hot topic, so it is quite appropriate it was chosen for the
challenge. The challenge also addressed a quite practical problem
of the smartphone being carried in a variety of locations on the
body. However, it was probably not entirely successful at achieving
the stated objective of developing an activity-recognition model
that is independent of the phone location. The reason is that the
evaluation was done on a specific location – Hand – so the com-
petitors presumably built models for that location (at least we did).
Our experiments indicated that location-independent models are
not very accurate, particularly on the Hand location which seems
to be most different from others.

Our approach relied on the observation that the data is more
similar across different locations if the user is stationary (either
still or in a vehicle) than if the user is walking, running or biking.
This encouraged us to use a two-step classification method that
uses data from multiple locations when the activity is assumed
stationary, and only hand data from hand otherwise.

The Hidden Markov Model smoothing had a great impact on
the recognition quality, increasing the accuracy by roughly 15%.
We thus encourage the use of this approach in similar domains
where the activities are long on average. Given that we created
an imperfect ordering of the SHL-Test, we expect the HMM to dis-
play a worse performance, slightly decreasing the overall accuracy.
However, given the relatively high internal accuracy of 83% we
still hope the results are good enough for a high placement at the
competition. The recognition result for the testing dataset will be
presented in the summary paper of the challenge [15].
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