
Choosing Duty-Cycle Parameters for
Context Recognition

Vito Janko
Jožef Stefan Institute

Jožef Stefan International Postgraduate School
Ljubljana, Slovenia

vito.janko@ijs.is

Mitja Luštrek
Jožef Stefan Institute

Jožef Stefan International Postgraduate School
Ljubljana, Slovenia
mitja.lustrek@ijs.is

Abstract—The recognition of the user’s context with wearable
sensing systems is a common problem in ubiquitous computing.
However, the typically small battery of such systems often makes
continuous recognition impractical. An efficient method to reduce
the strain on the battery is to employ duty-cycling – periodically
turning sensors on and off. Its benefits increase if the duration of
those periods is tailored to each context. In this work we present
a general mathematical model to predict the effect of different
duty-cycle parameters on the system and discuss ways of selecting
suitable ones. The methodology was tested on a real-life dataset
where it accurately predicted the system performance and found
duty-cycle parameters that were better than those found with
expert knowledge alone.

Index Terms—context-recognition, energy consumption, duty-
cycling, Markov model, multi-objective optimization

I. INTRODUCTION

Widespread accessibility of wearable sensing devices opens
many possibilities for tracking the users who wear them.
Possible applications range from measuring their exercise
patterns and checking on their health, to giving them location-
specific recommendations. For example, using accelerometer
data we could recognize if the user is walking, running, resting
or performing similar activities.

A major limitation of such continuous sensing and context
recognition is its heavy toll on the sensing device’s battery life.
This is especially relevant for smartphones, which have a very
limited battery that must be shared between many applications,
but the same limitation applies to basically any wearable
device. There is an inherent trade-off between a system’s
energy consumption and its recognition quality. Increasing
energy savings decreases the recognition quality and vice
versa. This issue is often neglected when discussing the design
of context-recognition systems, however, it is an essential
component if such systems are to be used in practice.

In our experience [1] the largest energy-consumption re-
ductions were made by using duty-cycling, so this will be the
main focus of the paper. Duty-cycling is a method where a
system is active for a given time, than turns off its sensors
for a given time (”sleeps”), than turns them on again and
repeats. By classifying, for example, only each tenth instance
and assuming that context has not changed in-between, one
can get a roughly tenfold decrease in energy consumed; much

greater than what can usually be achieved with other methods
(e.g. reducing sensor sampling frequency).

When designing a context-recognition system that employs
duty-cycling, one must choose its parameters – how many time
periods the system is active, and how many time periods it
sleeps (one time period represents one classification window).
Furthermore, one can decide on the sleep time for each
context individually. Contexts that seldom change can use long
sleeping times, while quickly-changing contexts need short
ones. In related work [2] [3] most authors solve the issue by
empirically trying a few parameters, or use expert knowledge
of the domain.

In this work we present a general methodology to determine
sensible duty-cycle parameters. It exploits the structure of
the data – how frequently do contexts change, in which
sequence they appear, and how well we can classify them.
We first present a mathematical model that can predict how
duty-cycling with different parameters affects the system per-
formance. This gives us the ability to try many different
parameters to find the ones that best suit our needs. We discuss
how to choose the parameters based on the required precision
and recall with an iterative method, and how to choose them
based on arbitrary criteria using multi-objective optimization.
To the best of our knowledge, we are the first to tackle the
problem of duty-cycle parameter selection in a general domain.

While we present our findings in relation to context recog-
nition, they can be applied in any area where duty-cycling is
sensible and useful.

II. METHODOLOGY

Suppose we have a context recognition system that classifies
sequential time periods into contexts c ∈ C. The quality of this
classification is given by the confusion matrix CM .

We then add the duty-cycling – with parameters a and len –
to this system in the following way: sensors are working for a
periods, classifying that many contexts. After a classifications,
the last classified context c defines the length of the sleeping
phase. The system then turns off the sensors for the next len(c)
periods, and classifies all contexts in this time as c; i.e., it
assumes that the context has not changed.

Our goal is two-fold. First, to create a mathematical model
that will predict the behavior of this system – the proportion

of the time the sensors are sleeping and the confusion matrix
of the newly classified activities. Second, to propose a way of
selecting appropriate parameters a and len(c) for each c.

A. Modeling duty-cycles

When building the model we assume that the context
sequence has the Markov property – the probability of the
next context depends only on the current one. Additionally,
we assume that the classification errors happen randomly, with
the distribution given by the confusion matrix.

Given the assumptions, the evaluation of a system with
given duty-cycle parameters can be performed with the sub-
sequently defined steps. This evaluation needs only a few
matrix (of size |C|) multiplications and summations and can
be therefore done almost instantly; in any case much more
quickly than running a complete experiment (simulating duty-
cycling on a dataset, classifying all the instances). This allows
us to evaluate many different duty-cycle parameters and thus
increases the chances of finding a good solution.

1) Duty-cycle types: We break the data into duty-cycles of
different types that start with the last active period (”head”) as
shown in Figure 1. Cycle type depends on the true context of
that period, in addition to the context that period is classified
as – indices of these contexts are subsequently named t and
p respectively. For each of those cycle types, we can use the
following equations to estimate how many of each contexts
appear in both the sleeping (3) and active (4) phase.

Head Sleeping Active

len(p) a-11Length:

Phase:

t, p

Fig. 1. Structure of a 〈t, p〉 duty-cycle. Starts with the context t classified as
p, followed by the sleeping phase where all contexts are classified as p, and
an active phase. The last period in the active phase belongs to the next cycle.

ei = [0, .., 0, 1︸︷︷︸
i

0, ..., 0] (1)

Pt,i = etT
i (2)

ESt,p =

len(p)∑
i=0

Pt,i (3)

EAt,p =

len(p)+a−1∑
i=len(p)+1

Pt,i (4)

ei – i-th base vector. Represents the context distribution in
the first period of a cycle.
T – transition matrix, Ti,j represents the probability of the
next context cj , given the current context ci. Easily obtained
from the dataset.
Pt,i – probability distribution of contexts after i steps, given
the current context ct. Vector of size |C|.
ESt,p – average number of contexts that appear while
sleeping, given that this sleeping period started with the true

context ct that was classified as cp. Vector of size |C|.
EAt,p – average number of contexts that appear while active,
given that this cycle started with the true context ct that was
classified as cp. Vector of size |C|.

2) Distribution of duty-cycle types: We calculate propor-
tionally how many cycles of each type there are. This can be
done by estimating the probability that a cycle of one type is
followed by a cycle of another type (5).

〈t1, p1〉 → 〈t2, p2〉 = (Pt1,len(p1)+a)t2CMt2,p2 (5)

(Pi,j)k – k-th component of the vector Pi,j

〈t1, p1〉 → 〈t2, p2〉 – probability of the next cycle type being
〈t2, p2〉, given the current cycle type 〈t1, p1〉. This happens
if the last context of the previous cycle is ct2 , classified as cp2

.

Having the transitional probabilities, we can use basic
Markov-chain calculus [4] to calculate the ”steady state”,
which gives us the desired cycle-frequency proportions D:

D – Distribution of the cycle types. Di,j is the proportion of
〈i, j〉 cycles.

3) System evaluation: Combining points 1) and 2) we can
estimate the performance of the system in the form of its
confusion matrix (6) and its energy gain (7) compared to its
sensors always being active.

CM∗t,p =

|C|∑
i=0

Di,p(ESi,p)t +

|C|∑
i=0

|C|∑
j=0

Di,j(EAi,j)tCMt,p

(6)

gain =
1

a

|C|∑
i=0

|C|∑
j=0

len(j)Di,j (7)

CM∗t,p – Element (t, p) of the confusion matrix of the system
that employs duty-cycling with given parameters. The first part
of the equation is the performance in the sleeping phase, the
second in the active phase. Note: The sum of all elements in
this new matrix is different than in the original CM matrix;
this can be easily solved with normalization if needed be.
gain – Proportion of sleeping periods compared to the active
ones. If a classifier classifies each tenth time period, gain = 9.

B. Choosing duty-cycle parameters

Section II-A gives a way to evaluate the performance of a
system with given parameters, while here we discuss methods
for efficiently selecting sensible parameters for evaluation.
The space of possible parameters is usually large even if we
limit the maximum cycle length: if we have |C| contexts with
len ∈ [0,mc] and a ∈ [0,ma], then there are mam

|C|
c different

parameters – making the brute-force approach infeasible.
The first insight is that according to the described model,

there is no advantage in having the active period a longer
than the minimum of 1 in most cases. Intuitively, if a context
is assigned a sleeping phase with length l, then it is assumed

that the context will not likely change in the next l periods;
classifying multiple instances in a row is therefore unneces-
sary. The exception is when trying to get very small energy
consumption reductions (to minimally decrease performance),
as a gain smaller than 1 is impossible to achieve with a = 1.
There are two practical advantages, however, in having a > 1;
a) if there is a cost in turning the sensors on or off (GPS is a
notable example) and b) if the classification accuracy is poor,
since one might consider classifying more than one instance
and applying some smoothing before deciding on the next
sleeping phase length.

To decide on the sleeping period lengths, we can resort to
one of the following two methods.

1) Iterative method: Duty-cycling causes an error if a
sleeping period coincides with a transition between two (or
more) contexts: c1 and c2 for example. Two types of errors
(8) happen: a) Precision of c1 drops, as instances of c2 are
misclassified as c1. The drop in precision depends only on
len(c1) and the average length of c1 streak. b) Recall of c2
drops, and the drop depends on len(c1) and on the average
length of c2 streak.

c1 c1 c1

Precision of c1 and recall of c2 fall︷ ︸︸ ︷
c2 c2︸ ︷︷ ︸

sleeping period

c2 (8)

Therefore, len(c1) should take into account both the streak
length of c1 and streak lengths of the contexts that are likely to
follow it. If we have requirements on precision/recall for each
context we can iteratively find the upper bounds for len(c) for
each c. This can be done by increasing the len(c) for a given
c (while not duty-cycling any other context) until either the
precision or recall of some context drops below the required
boundary; and then repeating the process for all other contexts.
If we are only interested in precision, the found upper bound is
tight, and ideal given requirements. This method is guaranteed
to work only if we assume that the classifier works perfectly,
as it does not model errors generated by misclassifications.

Using this method can serve as a semantic explanation for
the sensible sleeping lengths – for example, it may show that
some contexts shouldn’t use long sleeping lengths because
they are too short or because they are followed by another
short context.

2) Multi-objective optimization: If we are optimizing some
other criterion – e.g., the accuracy, we can use multi-objective
optimization. The problem of choosing the parameters has
two conflicting objectives: reducing the system’s energy re-
quirements, while retaining its classification quality. Both are
easily calculable with the described model. We used NSGA-II
[5], a genetic multi-objective algorithm, but we assume that
any similar algorithm could be used for the task. The output
of this algorithm is an approximation of the Pareto front,
giving us sensible duty-cycle parameters. These parameters
give us different trade-offs between the classification quality
and consumed energy, from which the system designer, who
knows the requirements of the system, can pick a suitable
solution.

III. EXPERIMENTAL EVALUATION

A. Datasets
Our methodology was evaluated on two datasets. One

completely artificial, and another from real life.
1) Artificial dataset: This dataset contains 5 different con-

texts, generated in sequence with the Markov property. Since
our mathematical model assumes these properties, it should
perform almost flawlessly given a large enough sequence.
Transition probabilities were randomly selected, as were the
confusion matrix values.

2) Commodity12 dataset: A real-life dataset, where a
smartphone and a chest-worn heart-rate monitor were used to
monitor 10 participants. Each participant captured continuous
two weeks of data and hand-labeled the following contexts:
sleep, work, home, eating, transport, exercise, out (out of
house, but not in any of the previous contexts). The data came
from ten different physical and virtual sensors: acceleration,
pressure, light, GPS location, a list of visible WiFi networks,
location description by the Foursquare web service, sound,
time, heart rate and respiration rate. The first eight were
measured with the smartphone, while the last two with the
heart-rate monitor, which was connected to the smartphone
via Bluetooth. Features were calculated for each minute of
the data, and one minute became one learning instance. All
details can be found in our previous work [6].

While the classification accuracy was reasonably high, en-
ergy consumption of the application prevented it from seeing
any practical use. In our previous work we created a general
pipeline for assigning sensor settings to contexts [1] and found
that duty-cycling was the most efficient in reducing the system
energy consumption. In that work we used hand-picked duty-
cycle parameters that were the same for each context. We now
use our new methodology to pick better parameters.

B. Evaluation of the duty-cycle modelling
First we evaluated our mathematical model for modelling

duty cycles and evaluating their performance. To do so we
sampled 100 random duty-cycle parameters and than evaluated
their performance both with the model and by actually going
through the dataset and simulating real duty-cycles. We then
compared the two. This was done for both the artificial dataset
and for the Commodity12 dataset. The results are listed in
Table I and show a high fidelity of the values predicted by the
model to the real ones.

TABLE I
PREDICTION ERROR OF OUR DUTY-CYCLE MODEL, PREDICTING

ACCURACY AND ENERGY

Dataset Accuracy [%] Energy [gain]
Artificial 0.1 0.001

Commodity12 1.1 0.051

C. Evaluation of the duty-cycle parameters on the Commod-
ity12 dataset

In the first experiment we used NSGA-II to calculate
a Pareto front approximation for the Commodity12 dataset

0.05 0.10 0.15 0.20 0.25

Classification error

0

10

20

30

40

50

60

E
n
e
rg

y
 g

a
in

NSGA-II

Same lengths

Fig. 2. Non-dominated set of solutions, found both with multi-objective
optimization and by by setting the same sleeping period of the duty cycles
for all contexts (up to the duration of 60 periods).

(Figure 2), optimizing accuracy and energy gain. We compared
it to solutions where all contexts had the same duty-cycle
length. By not optimizing the sleeping length for each context,
we can see that for the same energy gain, we lose points of
accuracy. The error in the case of the optimized duty-cycling
is up to 5 percentage points smaller (which represents roughly
20% of the total error) than in the ”same lengths” case with the
similar energy consumption gain. In both cases, we ignored
the confusion matrix (replaced it with the identity matrix) to
isolate the error generated solely as the result of duty-cycling.
A similar shape of the solution set appears if we include
confusion matrices, although the difference is slightly smaller,
as the uncertainty of the classification discourages the use of
highly unbalanced duty-cycle lengths.

In the second experiment, we tried to to select the param-
eters in a way that maximizes the precision of the context
with the lowest precision. Solutions were found both with the
iterative method as well as with multi-objective optimization.
The results are shown in Figure 3. Both methods found mostly
the same duty-cycle parameters (iterative method was roughly
an order of magnitude faster), as they are optimal given the
problem description, and are much better than those that use
the same sleeping lengths for all contexts.

In all cases the longest duty-cycles were assigned to the
contexts ”Work” and ”Home”. This corresponds to our intu-
ition, as those two contexts changed the least frequently. In
the same spirit, the fast changing contexts such as ”Eating”
were assigned short cycles. The active period was chosen as
1 in all but a few border cases – as predicted in Section II-B.

IV. CONCLUSION

In this work we presented a mathematical model that allows
us to evaluate the performance of a context-recognition system
when using duty-cycling with different parameters. On the
tested real-life dataset it was shown to work quickly and
accurately. It needs no expert knowledge – it uses only the
information on context sequencing, and their classification ac-
curacy – and should work on any domain. In combination with

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

1-Minimum precision

20

0

20

40

60

80

100

E
n
e
rg

y
 g

a
in

NSGA-II

Same lengths

Iterative method

Fig. 3. Non-dominated set of solutions, found with multi-objective optimiza-
tion, iterative method and by setting the same sleeping period of the duty
cycles for all contexts (up to the duration of 100 periods).

the presented methods for efficiently selecting the duty-cycle
parameters, it provides a useful tool for a system designer
trying to make their system more energy efficient. In our case,
we found duty-cycle parameters for the Commodity12 dataset
that outperformed the ones we previously picked with expert
knowledge alone.

The presented methodology can be used in conjunction
with our other work on energy efficiency [1], which is able
to optimize different sensor settings – which sensors to use,
sampling frequency, duty-cycling... – and apply them to both
individual contexts as well as to individual sensors, but can
only work with fixed duty-cycle lengths. Future work on the
topic will include more smoothly connecting the two, as well
as testing our methodology on different domains.

V. ACKNOWLEDGEMENT

The HeartMan project has received funding from the Eu-
ropean Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No 689660.

REFERENCES

[1] V. Janko and M. Luštrek, “Energy-efficient data collection for context
recognition,” in Proceedings of the 2017 ACM International Joint Con-
ference on Pervasive and Ubiquitous Computing and Proceedings of the
2017 ACM International Symposium on Wearable Computers. ACM,
2017, pp. 458–463.

[2] H. Lu, J. Yang, Z. Liu, N. D. Lane, T. Choudhury, and A. T. Campbell,
“The jigsaw continuous sensing engine for mobile phone applications,” in
Proceedings of the 8th ACM conference on embedded networked sensor
systems. ACM, 2010, pp. 71–84.

[3] Y. Wang, J. Lin, M. Annavaram, Q. A. Jacobson, J. Hong, B. Kr-
ishnamachari, and N. Sadeh, “A framework of energy efficient mobile
sensing for automatic user state recognition,” in Proceedings of the 7th
international conference on Mobile systems, applications, and services.
ACM, 2009, pp. 179–192.

[4] “Finite-state markov chains,” http://www.rle.mit.edu/rgallager/documents/6.262-
4vaw.pdf, accessed: 2017-11-08.

[5] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist mul-
tiobjective genetic algorithm: Nsga-ii,” IEEE transactions on evolutionary
computation, vol. 6, no. 2, pp. 182–197, 2002.

[6] B. Cvetković, V. Janko, A. E. Romero, Ö. Kafalı, K. Stathis, and
M. Luštrek, “Activity recognition for diabetic patients using a smart-
phone,” Journal of Medical Systems, vol. 40, no. 12, p. 256, 2016.

