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Abstract
The Sussex-Huawei Locomotion-Transportation
recognition challenge presents a unique opportunity to the
activity-recognition community – providing a large,
real-life dataset with activities different from those
typically being recognized. This paper describes our
submission (team JSI Classic) to the competition that was
organized by the dataset authors. We used a carefully
executed machine learning approach, achieving 90%
accuracy classifying eight different activities (Still, Walk,
Run, Bike, Car, Bus, Train, Subway). The first step was
data preprocessing, including a normalization of the phone
orientation. Then, a wide set of hand-crafted domain
features in both frequency and time domain were
computed and their quality was evaluated. Finally, the
appropriate machine learning model was chosen
(XGBoost) and its hyper-parameters were optimized. The
recognition result for the testing dataset will be presented
in the summary paper of the challenge [13].
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Introduction
The grand vision of ubiquitous computing is that our
devices will know as much as possible about our context
in order to provide best service. What we are doing at any
given moment is certainly an important part of our
context, which is why activity recognition is intensely
researched. Most research on activity recognition is
focused on our bodies, dealing with activities such as
walking, sitting and lying. However, since we spend a lot
of time in vehicles – transportation studies show that the
average commute time is up to 80 minutes a day [1], and
we also travel for other purposes – this is probably an area
that deserves more attention. If the grand vision of
ubiquitous computing is to be realized, our devices should
know not only whether we are walking or sitting, but also
whether riding a train or driving a car. The University of
Sussex and Huawei must have come to the same
conclusion, as they have collected a dataset consisting of
seven months of recordings of smartphone sensors during
eight modes of locomotion.

The Sussex-Huawei Locomotion-Transportation (SHL)
dataset [4, 9] can be used to develop methods for activity
recognition, traffic analysis, localization, sensor fusion and
other purposes. These methods can support mobile
services such as travel and traffic advice, adapting phone
operation to the mode of locomotion (notifications,
volume, wi-fi and GPS ...), using this mode in games, for
music selection and a myriad of other purposes
application developers will think of. Most importantly for
this paper, the dataset provides an excellent challenge for
ubiquitous computing researchers – to apply existing and
new methods for activity (locomotion) recognition on
more data than most of them are able to collect on their
own, and of course to win the SHL Challenge.

The paper – as the name of the authors’ team JSI1
Classic suggests – describes a rather classical approach to
activity recognition, but executed on the basis of decades
of experience in the activity recognition field. It starts
with preprocessing the orientation data, continues with
extracting a large number of expertly crafted features and
selecting the best of them, and finishes with feeding the
features into a classifier with tuned hyper-parameters.

Dataset
The SHL Dataset used for this work is publicly available
and thoroughly described [4]. Here we quickly list the
dataset characteristics relevant for this paper.

Data comes from a variety of sensors in a smartphone
(worn on the hip): accelerometer, gyroscope,
magnetometer, linear accelerometer, gravity, orientation
(expressed with quaternions) and barometer; all sampled
with the frequency of 100 Hz. The data is labeled with
eight classes: Still, Walk, Run, Bike, Car, Bus and Subway.
A class label was applied to each sensor sample. In
aggregate, around 266 hours of labeled data was provided.

The goal of the competition was to train a model on this
data, and then use it to classify an additional 100 hours of
unlabeled test data.

Data split
The provided data was split into 1-minute intervals, which
were then shuffled – with the original order for the labeled
data provided as part of the dataset description. Since
consecutive intervals can display substantial similarities
(e.g., the phone may be in exactly the same orientation),
it is essential that the dataset is placed in the original
order before it is split into train, test and validation set.
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We used the first 25% of the labeled data for validation,
the second 25% for testing, and the last 50% for training.
After the parameters of our machine learning (ML) model
were fixed, a different distribution – 90% for training and
10% for testing was used to get an insight on how the
behavior of the classifier changes if given more training
data. For training of the final model, all data was used. In
all cases, we verified that the activity distribution
remained similar in all listed splits.

Features
In order to apply classical ML, the data has to be
preprocessed and some features describing each signal
extracted.

Preprocessing
First, the data was down-sampled from 100 Hz to 50 Hz.
This significantly reduced the computational load of the
subsequent calculations, while not significantly affecting
the classification accuracy. The additional practical
benefit of the downsampling lies in the reduced
consumption of the sensor battery, should the system be
used in a real-time setting.

Second, “virtual” sensor streams were calculated based on
the real ones. Those sensor streams had the same
frequency and were used in the same manner as the
original data streams for calculating features. They can be
grouped into three categories:

• Magnitudes. Sensors with three axes had the
magnitude (m =

√
x2 + y2 + z2) calculated, which

was used in addition to the sensor streams of
individual axes.

• De-rotated sensors. These were computed by
de-rotating acceleration and magnetometer data

from body (phone) coordinate system to NED
(North-East-Down) coordinate system by
multiplying them with the rotation matrix RNB

created with quarternions [qw, qx, qy, qz] as given
below. This was done in order to obtain
orientation-independent sensor information, which is
important to avoid overfitting to specific
orientations of the phone. However, since
orientation information can also be relevant, both
groups of sensor streams were retained.
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• Roll, pitch, yaw. Finally, quarternions were used to
compute Euler angles – pitch, roll and yaw.
Orientation is usually presented with quarternions to
avoid gimbal lock (point of singularity), however,
Euler angles are better for extracting features since
each of them has a clear real-world meaning,
whereas queternion components are only really
meaningful when taken all together. Because of
that, we only used Euler angles in the subsequent
steps.

pitch = arctan
(

2(qwqx + qyqz)
1− 2(qxqx + qyqy)

)
roll = arcsin (2(qwqy − qzqx))

yaw = arctan
(

2(qwqz + qxqy)
1− 2(qyqy + qzqz)

)



In the end, counting all separate sensor axes, we worked
with 30 different data streams.

Feature extraction
Features were calculated from 1-minute windows of data.
This window size was chosen as it was the largest possible
given the limitations imposed by the nature of the
competition, and we achieved highest classification
accuracy using it. Since the transitions between activities
are rare, long windows did not have a significant negative
impact on the performance. Labels were calculated for
each window as the most frequent label in that window.

Nearly all features were calculated on each individual data
stream. Three categories of features were computed.
First, domain features that have proven themselves in our
previous work in similar domains [7, 8], including in the
previously-won competition [10]. These features are
described in the work by Cvetković et al.[8].

Second, we tried to generate all features using the tsfresh
library [5]. While the library is capable of generating a
large amount of features, is seemed too slow given the
size of our dataset. Consequently, we only generated some
features that seemed interesting and were not included in
other categories – namely minimum, maximum,
autocorrelation, number of samples above/below the
mean and the average difference between two sequential
data samples.

Finally, we calculated some features from the frequency
domain, which describe the periodicity of the signals.
These features were calculated using power spectral
density (PSD), which is based on the fast Fourier
transform (FFT). PSD characterizes the frequency
content of a given signal and can be estimated using
several techniques. The simplest one is to use a

periodogram, which is obtained by taking the
squared-magnitude of the FFT components. An
alternative to periodogram is the Welch’s method, which
is also widely used and commonly considered superior to
periodogram. It differs from a traditional periodogram in
the fact that it computes the average of the periodograms
of multiple overlapping segments of the signal to reduce
the variance of the PSD. In our work, we have opted to
use the Welch’s method to obtain the PSD.

Using PSD is only suitable when the signal is clearly
periodic. As we chose to use a 1-minute window, any
periodic pattern in the signals is successfully captured, as
shown in Figure 1.

Figure 1: Periodic pattern in a 15-second accelerometer
segment during walking.

We have implemented frequency-domain features as given
in related work [12]. Some were slightly modified or
expanded in accordance with our expert knowledge. The
following features were computed.

• Three largest magnitudes. Three peaks with the
largest magnitude from the PSD were considered.
These tell us the dominant frequencies in the signal.



Both the magnitude values and the frequencies (in
Hz) were taken as features.

• Energy. Calculated as the sum of the squared FFT
component magnitudes. The energy was then
normalized by dividing it with the window length.

energy = 1
N

N−1∑
n=0
|x(n)|2, (1)

where x(n) is the n-th FFT component.

• Entropy. Calculated as the information entropy of
the normalized FFT component magnitudes. It
helps discriminating between activities with similar
energy features.

entropy = −
N−1∑
n=0

x(n) log(x(n)) (2)

• Binned distribution. A normalized histogram, which
is essentially the distribution of the FFT
magnitudes. First, the PSD is split into 10 equal
sized bins ranging from 0 Hz to 25 Hz. Then, the
fraction of magnitudes falling into each bin is
calculated.

• Skewness and kurtosis. Calculated on the
distribution-like PSD. Skewness and kurtosis
describe the shape of the PSD. More precisely,
skewness tells us about the symmetry of the
distribution while kurtosis tells us about its flatness,
as shown in Figure 2.

Figure 2: Distributions with different skewness and kurtosis.

In aggregate, a total of 1696 features were computed and
used in the subsequent steps.

Feature selection
Since a relatively high number of features was computed,
feature selection was used to remove the ones that do not
contribute to the accuracy of the model in order to reduce
overfitting and speed up the training process. Our feature
selection consists of three steps.

In the first step, the mutual information between each
feature and the label was estimated [2], where larger
mutual information means higher dependency between the
feature and the label.

After the features were sorted according to this value,
correlated features were removed based on the Pearson
correlation coefficient [3]. This has shown that roughly
half of the features are redundant, which was expected
due to the number of features and similar data streams.
To make the process computationally feasible, only 100
features were taken at a time, starting with those with the
highest mutual information with the label. Correlation was
then calculated for each pair. If the correlation was higher
than a certain threshold (experimentally determined as
0.8), the feature with lower mutual information was
discarded. After that, next 100 features were added and
the correlation between each pair was calculated again.



In the final step, features were selected using a greedy
"wrapper" algorithm. A random forest (RF) classifier was
first trained using only the best scoring feature. The
trained model was used to predict labels for the test set
and the prediction accuracy was calculated. Then the
second-best feature was added and the model was trained
again. If the accuracy on the test set was higher than
without using this feature, the feature was kept. This
procedure was repeated for all remaining features. This
strict selection initially led to overfitting to the test set
(accuracy was much higher compared to the validation
set), so the condition for keeping a feature was made less
strict: the feature was kept if the accuracy did not
decrease by more than an experimentally set threshold.
Using this rule, overfitting to the test set was reduced.

Best performing features came roughly evenly distributed
from each of the three categories, with those coming from
the de-rotated magnetometer being the most significant,
followed by those from accelerometer and gyroscope. The
magnetometer came as a surprise, since it is the
accelerometer that usually takes the spotlight in similar
problems. It might be explained by the the fact that the
magnetometer is especially useful for transportation
classification.

Machine learning algorithm
After obtaining the features we started building the ML
model that would be used for predictions. Different ML
algorithms were tried and we empirically determined the
Extreme Gradient Boosting model (XGB) [6] as the best
performing one. This was expected, since XGB is usually
the best-performing algorithm in ML competitions.

XGB is an upgraded version of the gradient boosting
algorithm. The implementation of XGB offers several

advanced features for model tuning, computing
environments (like parallelization across several CPU
cores, distributed computing for large models, cache
Optimization, ...) and algorithm enhancement (handling
missing values, optimal usage of memory resources, ...). It
is capable of performing the three main forms of gradient
boosting (Gradient Boosting (GB), Stochastic GB and
Regularized GB) and it is robust enough to support fine
tuning and addition of regularization parameters.
According to the author, the main difference is that XGB
uses a more regularized model formalization to control
overfitting, which gives it better performance.

But in order to obtain best results, XGB requires
hyper-parameter tuning. For comparison we first trained
the XGB model with default parameter values and then
improved the model through tuning its parameters. XGB
has three major groups of parameters:

• General parameters that relate to the boosting
algorithm that we use, commonly a tree or a linear
model. For this problem, we used the tree model.

• Booster parameters that depend on which booster
is chosen. We chose the tree booster, so the
parameters in this section will be tree-specific
parameters.

• Learning task parameters that decide on the
learning scenario, for example, which evaluation
metric should be optimized. Regression tasks may
use different parameters than classification tasks.

Since XGB has more than 30 hyper-parameters, the
parameter tuning process could not be done in one step,
so we did it iteratively. This means that we we optimized



one parameter or maybe two combined parameters at a
time, while keeping the other parameters on default
values. After finding optimal value for the selected
parameter, we fixed this value and started optimizing
another parameter. For this iterative process, we had to
start in a specific order, where first the more important
parameters are optimized in order to guide the
optimization toward the best overall parameter value
settings.

The general approach was as follows:

1. We choose a relatively high learning rate. Learning
rate defines the amount of "correction" we make at
each step (each boosting round is correcting the
errors of the previous round). So having a lower
learning rate makes our model more robust to
over-fitting and usually gets better results. But with
a lower learning rate, we need more boosting
rounds, which takes more time to train the model.
And since we need to fit a lot of parameters we
start with higher learning rate.

2. We tuned tree-specific boosting parameters (max
depth, min child weight, gamma, subsample,
colsample_bytree) for the chosen learning rate and
number of trees.

3. We tuned regularization parameters for boosting
(lambda, alpha), which can help reduce model
complexity and enhance performance.

4. We lowered the learning rate to obtain the optimal
parameter values.

We started by setting initial values for the parameters that
were going to be optimized. We chose:

• max_depth = 5

• min_child_weight = 1

• gamma = 0

• subsample, colsample_bytree = 0.8

• reg_alpha = 0.005

Note that these were just initial estimates and were tuned
later. We took the default learning rate of 0.1 and
checked for the optimal number of trees using the cv
function of XGB which performs cross-validation at each
boosting iteration and thus returns the optimal number of
trees required. The obtained number of thees was 140.

The first parameters tuned were max_depth and
min_child_weight as they were expected to have the
highest impact on model outcome. To start with, we set
wider possible ranges and then we performed another
iteration for smaller ranges around the best values
obtained in the first step. The optimal obtained values
were max_depth = 6 and min_child_weight = 1.

The accuracy increased after each step, but as the model
performance increased, it became exponentially difficult to
achieve even marginal gains in performance.

In the next step, we focused on tuning the gamma value.
We used the parameters already tuned and searched for
the optimal gamma value. The search showed that the
initial value of gamma = 0 was the most suitable one.

Next, we tuned the parameters subsample and
colsample_bytree. The optimal obtained values were
subsample = 0.65 and colsample_bytree = 0.75.



Next, we applied regularization to reduce overfitting even
though the gamma parameter provides a substantial way
of controlling complexity. The best found value was
reg_alpha = 0.0001.

Finally, we reduced the learning rate and increased the
number of trees. We used learning_rate = 0.01 and
number_of_trees = 5000. With this step, we added a
significant boost in performance and the effect of
parameter tuning became clearer. For comparison, the
accuracy obtained with default parameter values was
88.3% and after parameter tuning we obtained the result
of 90.2%.

Results
Different window lengths were tried in order to determine
the optimal one. Window length of 1 minute was proven
the best, as shown by the highest accuracy in Table 1.
Only frequency-domain features were used in this
experiment to train a RF model, as these were the fastest
to compute and evaluate.

Window length Accuracy [%]
5 seconds 67.1
30 seconds 72.5
60 seconds 74.9

Table 1: Accuracy using frequency-domain features computed
on windows of length 5 seconds, 30 seconds and 60 seconds.
Random Forest was used to train and evaluate the model.

All subsequent presented results were obtained by using
the 1-minute-majority labels, however, per-sample
accuracy was also computed. It was consistently around
0.5% lower, which is insignificant compared to the
accuracy gains when using larger windows. This can be
attributed to long-on-average activities, due to which

activities very rarely changed in the middle of a given
window.

Accuracies of the RF model after each stage of feature
selection are given in Table 2. One can note that the
accuracy on the test set increases with each step. The
accuracy on the validation set is slightly higher than on
the test set in the first three lines, presumably because
those instances were easier to classify on average. In the
last line ("Wrapper Strict"), the accuracy on the validation
set drops, suggesting that we overfit the training data.
The difference between "Wrapper" and "Wrapper strict" is
in the threshold to select a feature. The threshold was
higher in "Wrapper Strict", so fewer features were selected
– apparently such that did not generalize very well beyond
the test set. The same experiment was conducted with
the XGB model, obtaining similar results: overall, the
accuracy was higher, but the increase after each feature
selection step was retained. The "Wrapper" feature set
was thus chosen for the final model.

Features Accuracy [%]
Test Validation

All features 1696 78.9 82.2
Correlation removed 816 80.7 83.0
Wrapper 359 82.0 83.6
Wrapper (Strict) 90 83.5 82.9

Table 2: Number of features kept and accuracy of Random
Forest after each step of feature selection on both test and
validation set.

After choosing the "Wrapper" feature set, we proceeded
to test different classification models on the validation set.
The results are shown in Table 3. XGB outperformed
others by a significant margin.



Model Accuracy [%]
k-nn 81.5
Random Forest 83.6
SVM 87.1
XGB 88.3
XGB optimized 90.2

Table 3: Accuracy of different ML models on the validation
set.

Since the competition entries are rated based on the
F-score metric, it should be noted that the best version of
our classifier achieved an F-score of 0.90. The most
common classification mistakes were between "Bus" and
"Car", and between "Train" and "Subway", which was
expected due to the similarity of activities within those
two pairs.

In the end we trained the XGB classifier with preselected
features and parameters (that worked best in previous
experiments) on the whole dataset and used it to classify
the unlabeled set. To get an insight in the behavior of the
"fully trained" classifier, we also trained a model on 90%
of the data and classified the remaining 10%, achieving
the accuracy of 93.7%. We compared its classifications
with the ones made with the classifier that was trained on
only 50% of the data and found them very similar (they
matched in 97.2% of cases).

On a "standard PC" (4 cores, 3.6 GHz and 16 GB of
RAM) the training pipeline – preprocessing, extracting
features, feature selection, training the model – required
roughly 6 hours, and produced a model of size 43MB.
Additional 3 hours were required to classify the data,
mostly due to computationally expensive process of
calculating the features on the whole set.

Conclusion
The SHL recognition challenge presents a uniquely large
and sensor-rich dataset with data from real life. It
provides a platform for creating and testing many
activity-recognition algorithms, and is open to all
researchers. By containing activities not common in
activity recognition, such as "Train" and "Subway", it
opens new challenges for the activity-recognition
community.

Our approach achievedaccuracy of 90% on the validation
set, far better than the baseline (70%) presented in the
dataset author’s paper [9]. This result is comparable with
the state-of-the-art methods on similar domains. The high
classification accuracy can be contributed to carefully
executing every step of the standard machine learning
pipeline, based on decades of experience. We started with
choosing the right window size and creating new sensor
streams, some of which were independent of phone’s
orientation. A complex set of features was computed,
trying to describe the data from many different
viewpoints. This process gained us roughly 10% of
accuracy compared to the baseline. It was the most
computationally expensive step and it required the most
domain knowledge. In the next step, a complex feature
selection procedure was used and increased the accuracy
by 1-2%. The final steps were choosing the XGBoost
model (5% accuracy gain) and optimizing its parameters
(2% accuracy gain).

There are further possibilities to improve the accuracy,
such as using ensemble methods, which are fairly standard
in recent years. However, the focus of this project was
achieving as good as possible results using only one
"classical" ML method and tuning the input, description
and all the parameters available. In our previous research



we often recognized that such carefully hand-crafted
approaches enable top results, competitive with more
advanced methods [11]. In addition, a solution with just
one ML method offers several advantages over more
advanced and complex methods: it is easier to use and
less likely to perform in some unexpected manner on
unseen data, whereas more complex methods can more
easily overfit.

In regards to smaller improvements, one of them is related
to detecting changes of activities within a one-minute
interval. Currently, the whole one-minute interval is
classified with only one activity due to several reasons,
such as simplicity and overall better accuracy. To detect
the change of activity inside a one-minute interval, we
would have to design a special procedure that detects
when the activity transition happens within an interval,
and then split it into smaller windows. Our estimation is
that with this and some additional modifications, the
accuracy could be improved by another 1-2%.
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