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Abstract: Context recognition using wearable devices is a mature research area, but one of the biggest
issues it faces is the high energy consumption of the device that is sensing and processing the data.
In this work we propose three different methods for optimizing its energy use. We also show how to
combine all three methods to further increase the energy savings. The methods work by adapting
system settings (sensors used, sampling frequency, duty cycling, etc.) to both the detected context and
directly to the sensor data. This is done by mathematically modeling the influence of different system
settings and using multiobjective optimization to find the best ones. The proposed methodology
is tested on four different context-recognition tasks where we show that it can generate accurate
energy-efficient solutions—in one case reducing energy consumption by 95% in exchange for only
four percentage points of accuracy. We also show that the method is general, requires next to no
expert knowledge about the domain being optimized, and that it outperforms two approaches from
the related work.

Keywords: context recognition; optimization; modeling; energy efficiency; Markov chains;
duty cycling; decision-trees

1. Introduction

In recent years, we have experienced a rise in the popularity of smart wearable
devices. Practically everyone owns a smartphone, with other devices like smart watches
slowly following this trend [1]. All these devices can use sensors to track the users who
wear them, detecting everything from their heart rate and movement to their location.
Collected sensor data can then be processed and interpreted using artificial-intelligence
methods. We will call this task of transforming sensor time-series data into something
semantically relevant about the user context recognition. For example, by using a single
sensor like an accelerometer, we can detect many locomotion activities, e.g., walking,
running, or counting the number of steps the user has made. If we have multiple different
sensors we can detect even more complex contexts, such as traveling, working, or eating at
a restaurant.

Context-recognition applications can be very convenient for the user, e.g., motivating
them to exercise, helping them navigate, changing their smartphone settings based on their
surroundings, etc. In some cases, they may also be used to assist their health management
by monitoring their physiological signals, analyzing their activity patterns, or even detect-
ing if they fell and injured themselves. As a result, they are widely adopted [2–4] and often
come preinstalled on wearable devices.

A major limitation of continuous sensing and context recognition, however, is the
increased battery consumption of the device that is collecting and possibly processing
the data. It is easy to see that if an application halves the battery life of a smartphone,
it will probably not be adopted by many users, regardless of its context-recognition ability.

Sensors 2021, 21, 766. https://doi.org/10.3390/s21030766 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-9549-9742
https://orcid.org/0000-0003-3219-2935
https://doi.org/10.3390/s21030766
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21030766
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/3/766?type=check_update&version=1


Sensors 2021, 21, 766 2 of 31

The same problem occurs with basically any other wearable device, making the energy-
efficiency one of the most important—yet often neglected—aspects of the design of a
context recognition system.

Some solutions for conserving the battery life of a device try to reduce the energy
consumption by finding the ideal sampling rate of sensors or by finding a good schedule
for turning them on and off periodically (duty cycling). Finding the best such sensor setting
for a particular context-recognition application is already a challenging task, but a single
setting for the whole application might be suboptimal. For example, it might be useful to
have the GPS active while the user is driving, but accelerometer could be more suitable
when they are indoors. This illustrates the need for dynamically changing sensor settings
based on the user’s current situation.

Many adaptive approaches already exist and a comprehensive review of them can be
found in Section 2. Most of these approaches, however, rely on having expert knowledge of
the domain. For example, in the work of Yi et al. [5], they propose to create a flowchart with
hand-picked states, stating for each state what sensor to use and under which condition to
transition into another state. An obvious problem with such approaches is that they are
domain specific, and when trying to recreate them for a different domain one would need
a lot of domain knowledge and/or experimentation.

Other proposed approaches are specialized and can only optimize a particular type
of settings (e.g., sampling frequency). Such approaches then obviously cannot be reused
to optimize a different type of settings (e.g., which sensors to use). It would be useful to
have a general method that can be provided with a context-recognition dataset and an
indication of what parameters can be optimized and from this generate dynamic energy-
efficient solutions.

A relatively simple and general solution for the above problem would be to select
the best sensor setting for each context, and then use it when such a context is detected.
However, since such selection is made for each context in isolation, the effect on the whole
system could be unpredictable. To illustrate: we could determine that the accelerometer is
the best sensor to detect walking, while the GPS is the best at detecting driving. However,
by using only an accelerometer when walking we might never detect driving, and the
sensor switch might never occur.

The problem becomes even harder if we want to adapt system settings not only to
the current context but also to the underlying data used for classification. If, for example,
the current user of the system is connected to a Wi-Fi access point, their location could
be inferred from the access point ID. If not, other sensors must be used for the task. This
opens up an enormous search space of possible energy-efficient solutions, as the data (or
the features calculated from it) can have many possible values. Traversing this search
space and finding sensible feature values to adapt to—especially without using expert
knowledge—is thus a very challenging task.

In this paper we present three different methods for generating energy-efficient solu-
tions. The first two were already presented in our previous work [6,7] and are here briefly
described, while the third one is entirely novel. In addition, we show how to combine all
three of them to get further energy savings. These methods optimize the energy efficiency
in different ways and are designed to complement each other.

In summary, our methodology uses mathematical models to provide an accurate esti-
mate of the system behavior under different configurations—taking into account possible
context switches and misclassifications—and then uses multiobjective optimization to
find good energy-efficient solutions. It aims to generate the whole Pareto-optimal set of
different trade-offs between the energy consumption and classification quality, giving the
system designer the possibility to make an educated choice between them and choose one
that most suits the application needs.

They all attempt to create good solutions for an arbitrary context-recognition problem,
without any expert knowledge of the domain, and two of them have no limitations on what
settings are being optimized. Furthermore, they require almost no hand-picked parameters



Sensors 2021, 21, 766 3 of 31

and work with an almost arbitrary function for evaluating either the system quality or its
energy consumption. Finally, the implementation of this methodology is openly available
in the form of a Python library [8].

2. Related Work

In this section we will first describe some of the different system settings that can be
optimized and some heuristics on how to optimize them (Section 2.1). Then in Section 2.2
we present some existing methodologies on how to make the system adapt—dynamically
change these settings—based on a variety of factors.

2.1. Optimization Modalities

The first common setting to be optimized is the sensor sampling frequency. Ideally,
the sampling frequency should be high enough to capture the relevant aspect of the data
but not any higher. It was shown in several domains [9,10] that the energy required in-
creases almost linearly with the increasing frequency, but the classification accuracy usually
increases rapidly up to a certain point, and then reaches a plateau and stops improving.
It has been empirically established that the frequency of 20 Hz is required and sufficient
for many context-recognition tasks [11,12] and can be used as a first approximation when
choosing a suitable frequency. This is, however, not always the case [13,14]. This “ideal”
sampling frequency can be determined in several different ways. One solution is collect-
ing high-frequency data and then iteratively downsampling it, testing the classification
accuracy at each step [10,15]. A different, statistical approach (using Kolmogorov–Smirnov
statistical test) that is not dependent on either the context-recognition task or the classifi-
cation model is presented in the work of Khan et al. [13]. It is also of note that different
features [16] or classifiers [17] may be more or less dependent on the sampling frequency.

Another very common setting is the duty cycling. The majority of contexts that
we may be interested in change only infrequently. For example, user activities such as
walking or resting usually persist for a few minutes before changing, while contexts like
home or work could persist for hours before changing. This naturally leads to the idea
of determining the context and then turning sensors and subsequent processing off for
a given time before turning them on again. During the off (also called sleeping) cycle,
an application usually assumes that the context has not changed. As a concrete example of
the benefits of duty cycling, Bosch et al. [18] were measuring the level of a person’s activity
and using them managed to preserve 60% of battery life in exchange for five percentage
points accuracy loss. Note that instead of constantly using only a fixed duty-cycle length,
many approaches [19,20] opt for changing the duty-cycle lengths based on a variety of
factors (e.g., the last classified context) as explained in Section 2.2.

The third common approach for decreasing the energy consumption is to change the
sensors used for the recognition task. For example, location can be accurately determined
by using the GPS, but it can also be determined (perhaps with a slightly lesser accuracy)
using the Wi-Fi signal [21]—consuming four times less energy [22,23]. Alternatively,
the location could be determined by location fingerprinting using ambient sound, light,
and color [24] or by getting the location information from another device that may be
connected to it [25]. The choice of sensors can thus affect both the energy consumption
and classification accuracy. In general there is no mathematical (domain-knowledge-free)
method to determine which sensors can be replaced with which, without first recording a
dataset using those sensors in addition to analyzing their energy requirements.

2.2. Dynamically Adapting Sensor Settings

Adapting the system settings to the circumstances (e.g., current context, feature values,
context stability, etc.) is the core of this research area, as there are many different factors the
settings can adapt to and many methods for deciding how to adapt.

In some domains expert knowledge suffices to design a useful sensor adaptation
scheme. An example can be found in the work of Wang et al. [5], where they used an
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xml scheme of instructions to determine when to use a specific sensor. Such a scheme
can be very flexible and able to adapt to different types of factors (properties of the data,
feature values, classified context, etc.). Many domain-specific approaches [26] would fall
into this category.

A big category of approaches is based on the last recognized context. Each context
has a setting assigned and that setting is used whenever the corresponding context is
recognized. Deciding which settings to use for which context, however, is nontrivial.
Even if both the set of contexts and the set of settings are fixed, the problem exhibits a
combinatorial explosion of possibilities. In fact, it can be proven that finding the optimal
assignment is at least NP-hard [6]. Approximate methods are thus required.

A simple example of such approximation is to decide for each activity in isolation
which setting is best for that activity [15,27]. This is done by testing each activity against
each possible setting, and determining, for example, that sampling frequency does not affect
the recognition of resting, but it needs to be high to detect running. In this example, a high
sampling frequency would be assigned to running and low to resting. This greatly reduces
the complexity of the search, but it may be a poor approximation for the performance of
the system. What often happens in practice, but is not modeled by this method, is that a
misclassification causes a switch to a setting inappropriate for the current context, which in
turn leads to further misclassifications.

A way to partially mitigate the described problem is to modify the system in a way so
that whenever a context change is detected, a “maximum” (all sensors, max frequency, etc.)
setting is used to determine the correct context [28]. After that, an appropriate setting for
that context is used as usual. This helps to mitigate misclassification chains but in turn has
the downside of using the “maximum” setting often, especially in a domain where either
frequent misclassifications or frequent context changes are expected.

Another variation is to base the sensor settings on the context that system believes
would happen next, instead of the current one. In the work of Gordon et al. [29], the next
most probable contexts were predicted using a Markov chain model, and then a sensor sub-
set that can best distinguish between them was used. The best subset is again determined
in isolation and thus has all the above-described problems. Nonetheless, they reduced the
energy consumption when working with the publicly available Opportunity dataset [30]
by 90% in exchange for three percentage points of accuracy.

An altogether different way of using context for adapting the system settings is track-
ing the context change. If the context is “stable” and has remained unchanged for a while,
sensing capabilities could be lowered. This approach is particularly useful in combination
with duty cycling. When the context is rapidly changing, a short duty cycle is used; when
the context is stable, an increasingly longer duty cycle is used instead [19,20,31,32]. In the
work of Au et al. [32] the duty cycle was lengthened linearly while the context was stable,
but its length was divided by a constant otherwise. Rachuri et al. proposed a similar
scheme, but they were multiplying the duty-cycle length in the case of the stable context.
Sarker et al. [31] also proposed multiplying but with a relatively complex formula. In all
cases, the minimum and the maximum duty-cycle length was bounded. A combination of
this and the previous approach can be found in the work of Lee et al. [10].

Context-based approaches are convenient as the number of possible contexts is usually
limited. On the other hand, it restricts the adaptation to the context itself. Imagine having
an application that recognizes the words people are speaking around it and wanting
to avoid using a complex processing pipeline when the surroundings are totally silent.
Silence is an attribute of the data and not a recognized context, hence no approach in
the previous section could model this behavior. This example in fact represents the most
frequent use of this adaptation method. System sensing capabilities lower when the
incoming data is in a way “uninteresting”. Typical indicators are sound sensors hearing
silence [33], movement sensors detecting no movement [34], or location sensor detecting
no location change [21]. A different type of “uninteresting” is presented in the work of
Lu et al. [33], where the data is discarded if it is too similar to the previously acquired
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(implying that the context has not changed). The last listed approach in fact used several
different techniques (different for each sensor) in a complex pipeline. To make the system
more robust, the setting is sometimes [34] only changed if the “uninteresting” data persists
for a longer time, or alternatively, the systems settings are gradually lowered [33] in that
case. Such systems can be simple to implement and usually work well in practice but are
inflexible as they can only adapt to some predefined notion of “uninteresting” data.

Another similar category of approaches uses a specific data pattern as a trigger. For ex-
ample, one may turn the GPS on only when the accelerometer detected movement [35].
Similarly, Park et al. [36] used a gyroscope in their work only when the accelerometer
detects data that could be a part of a hand gesture. In the work of Rahmati et al. [37], a
combination of acceleration data, time, and available cellular towers was fed to a mathe-
matical model to determine the probability of Wi-Fi being available, without turning on its
interface. The RAPS [38] system decides which location sensors to use based on which were
needed the last time the user was around this location at a similar point of day. Doing so,
they managed to reduce the battery consumption by a factor of four, while retaining their
localization accuracy.

Most approaches presented so far rely heavily on expert knowledge. Adapting to the
data, using a domain-knowledge-free method is done less frequently. The most popular
way of doing so is using a Markov decision process [39–41] that models which setting to
use given the current state. States are usually represented by discretizing different features,
while possible actions are defined as the possible settings to use for the next instance. In the
work of Au et al. [40] the states were defined with the help of expert knowledge, while in
the work of Cheng et al. [39], all features and the last predicted context were taken as a
possible state. This last approach thus implicitly combines the adaptation to data and
context. An alternative is to use cost-sensitive learning methodology which is used for
similar tasks in other domains and was adapted for context-recognition in our previous
work [42].

3. Methodology

In this section we present three different methods for energy-efficient context recogni-
tion and then show how to combine them to join their strengths. The first two adapt system
settings to the current context, while the last one adapts them directly to the sensor data.

For the first two methods—named Setting-to-Context Assignment (SCA) and Duty-
Cycle Assignment (DCA)—we assume that we have a system that works as follows:
the system is in one of the predefined contexts (e.g., the user’s activity), and the goal of
the system is to recognize it. Each context is associated with some setting. For the SCA
method (Section 3.1), the settings can be anything—e.g., which sensors are in use, or what
sampling frequency is used. For the DCA method (Section 3.2), only duty-cycling settings
are considered. Whenever the context-recognition system detects a new context, the setting
used switches to the one associated with that context. That setting is then used until a
different context is detected. An example for system behavior might go like this: when the
user is walking, use low sensor sampling frequency, but when running is detected, use
high sensor sampling frequency.

DCA specialization in duty cycling allows for more powerful modeling—an entirely
different mathematical model is built—which allows for a more efficient search of this
particular optimization modality. Duty cycles were chosen for this special treatment as
they can be used in virtually any context-recognition environment and often contribute the
most to the energy savings.

The drawback of the previous two discussed methods is that they can only create
systems that adapt to the current context (classification class of the system) but not to
the actual feature values. The last method—Model Trees (MT)—described in Section 3.3
tries to remedy this by splitting the feature space into different sections using a shallow
Model Tree, which in this case is a decision tree that has classification models in its leaf
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nodes. These classifiers use different system settings, usually different features that require
different sensors.

Finally, in Section 3.4 we adapt the context recognition system to both the underlying
data (expressed by features) and the context at the same time by combining all three
methods. Doing so combines the advantages of each method and usually generates the
most energy-efficient solutions.

3.1. Setting-to-Context Assignment (SCA)

Suppose we have a sensing system that works as previously described: the user is in
one of the predefined contexts c ∈ C (e.g., the user’s activity), and the goal of the system
is to recognize it. To each context we assign some setting s ∈ S and that setting is used
whenever that context is detected.

Given possible settings and contexts, the main task is to efficiently find a setting-
to-context assignment a : C 7→ S that generates good trade-offs between the system
energy consumption and its classification quality (for example: the accuracy of the sensing
system). What trade-off is the most suitable for a given domain is up to the system’s
designer, but instead of forcing them to choose an arbitrary weight between the two criteria,
we should try to present them the Pareto-optimal solutions to choose from. A solution is
considered Pareto-optimal if there is no other solution that dominates it, i.e., that is better
in one of the two objectives and at least as good in the other one.

A guaranteed way to find the Pareto-optimal set of assignments would be to determine
the performance of each one by testing them on the collected dataset, and then removing
all assignments whose performance is dominated by another assignment. This approach
of course quickly becomes infeasible when increasing the number of settings or contexts,
as the number of assignments becomes exponentially large: if we have |C| contexts and
|S| settings, we have |S||C| different assignments. As an example from the Commodity12
dataset (Section 4.3): having 10 sensors that can be either on or off gives us |S| = 210 = 1024
different settings. With 7 different contexts the total number of assignments becomes
10247 ≈ 1021. A second, additional, problem is the time of performance evaluation for
even one single assignment. One must traverse the dataset, simulating different settings
and classifying instances one by one in order to determine which setting to use for the
next one—a process that can be prohibitively slow if we plan to evaluate a large number
of assignments. In the Commodity12 example, the evaluation of one assignment lasts a
couple of seconds (model training time not included) on standard hardware, which still
results in the optimization process that can last several days even if only a small subset of
all possible assignments is tried.

A common alternative solution would be to use domain knowledge to determine a
small number of sensible assignments and test only those. However, such knowledge is
often either not available or not good enough to isolate all good potential assignments,
which calls for an automatic method for solving the task. In Sections 3.1.1 and 3.1.2 we
show how to reduce the evaluation time of a single assignment and then in Section 3.1.3
how to select a subset of assignments to evaluate.

3.1.1. Simple Evaluation Model

The goal is to mathematically model an assignment in order to be able to predict
its performance without doing actual experiments—or at least minimizing the required
number of them. Doing so allows us to test more assignments and gives us better odds at
finding good ones. In this scenario an experiment would be to classify all instances in the
dataset while simulating different sensor settings and switching between them based on
the assignment.

The simple approach considers each context and its potential settings in isolation. That
makes it similar to some methods from the related work [15,28] which also implicitly makes
a similar isolated choice. To use it, we first determine the accuracy using each of the settings
but without switching between different settings based on the context. This requires |S|
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experiments, exponentially fewer than |S||C|. Then, to evaluate the system accuracy when
using a specific assignment a we simply take the accuracy of detecting each context c using
the assigned settings a(c) and weight them by the proportion of that context in the dataset.

Accuracy(a) = ∑
c∈C

p(c)Acc(c|a(c)) (1)

a(c)—the setting assigned to context c.
p(c)—the probability of context c, estimated by its proportion in the dataset.
Acc(c|s)—the accuracy for recognizing context c, given the setting s is active.

Let us take the example of having two contexts c1, c2 and two corresponding settings
s1, s2. Additionally, we suppose that using s1, we can predict c1 with the accuracy of
60%, and using s2, we predict c2 with the accuracy of 100%, and that both contexts appear
an equal amount of time. In this case we can make a prediction that this assignment
will produce 80% accurate results. We can make a similar prediction about the energy
consumption, given the information about the energy requirement of each setting.

While this evaluation is both simple and intuitive it does not make the most accurate
predictions. What happens in practice is that due to the misclassifications, system often
switches to a setting not appropriate to the current context which can lead to further errors.
In addition, this model does not take into account the times when the context changes and
the current setting is not appropriate for detecting the new context. Thus, this model is only
presented as a benchmark and as a motivation on why a more powerful model is required.

3.1.2. Markov-Chain Evaluation Model

To improve upon the simple model, we propose [6], a Markov-chain model for making
the performance trade-off estimation. A Markov chain is a stochastic process that moves
through predefined states, with the probability of every transition being dependent only
on the start and end state. To use this model we have to make two assumptions about our
problem. First, that the probability of a transition between contexts depends only on the
current context (Markov property), and second, that the probability of classifying an instance
to a context depends only on the current context and the current setting. Both assumptions
should hold, at least to a large degree, in most cases of use.

The key insight in creating the Markov-chain evaluation model is to correctly define
Markov-chain states, so they (1) contain enough information to calculate transition proba-
bilities between them, and (2) allow us to infer assignment properties from them. To do
so we create a Markov chain that has |C|2 states. Each state represents a pair (current
context, context the system believes we are in), marked 〈c, c′〉 in short. An example of such
a Markov chain can be found in Figure 1. The current context (the first part of the pair)
is necessary to model how frequent that context is and which contexts are likely to come
next. Knowing which context the system believes we are in, or equivalently which context
did the system classify the current context to (the second part of the pair), is necessary for
modeling which sensor settings are active and thus the system performance using that
setting. It is important to emphasize that each assignment would have the same kind of
structure but with different transition probabilities between them. The precise procedure
on how to calculate the transition probabilities between these Markov states for a particular
assignment is described in Appendix A.

Instead of directly traversing the Markov chain (which would be time consuming),
we can calculate its steady state—that is the proportion of time spent in each of the states
given infinite or at least sufficiently long time. Knowing the steady state of the Markov
chain is enough to make accurate predictions of the context-recognition system perfor-
mance, both in terms of its energy consumption and prediction quality.
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Figure 1. Markov chain where each state represents a 〈true, predicted〉 context. The states are fully
connected, including connections to themselves, although most transitions were omitted for clarity.
For example, if the user is continually resting and resting is correctly detected, we can represent it
with the transition A. Then if the user starts walking, we can note that with transition B. Finally, if the
user continues to walk, but the walking is misclassified as running, we represent it with transition C.
This example is taken from the E-Gibalec dataset (Section 4.4).

For example, if one places the state probabilities of the steady state in a table that has
the same structure as the states in Figure 1, they would get exactly the confusion matrix of
the system that switches settings according to the given assignment. Summing the diagonal
would thus yield the accuracy of the system (Equation (2)), but any other metric derived
from the confusion matrix (e.g., F-score) could be used instead. Estimating the energy
consumption of the system is likewise simple: for each state we know what context was
detected and thus what setting is active and how much energy does that setting consume.
So by multiplying energy consumption in each state by the proportion of time spent in that
state, the total energy consumption is calculated (Equation (3)).

Accuracy(a) = ∑
c∈M

t(〈c, c〉) (2)

Energy(a) = ∑
〈c,c′〉∈M

t(〈c, c′〉)e(a(c′)) (3)

M—the set of all states in the Markov chain.
a(c)—the setting assigned to context c.
e(s)—the energy requirement of the setting s per time unit.
t(〈c, c′〉)—the predicted proportion of time spent in state 〈c, c′〉, or equivalently,
the probability of landing in that state.

3.1.3. Finding Sensible Assignments

In Section 3.1.2 we showed how to estimate the performance of any individual as-
signment, and Section 5.4 demonstrates that the estimation is both quick and accurate.
However, the number of possible assignments is still exponentially large and estimating
them all is infeasible. Thus, a more efficient search is required and given that we are
essentially solving a problem of multiobjective optimization (the two objectives being the
energy efficiency and the classification quality), we can use the methodology from that
research field.

We chose the NSGA-II [43], a genetic multiobjective optimization algorithm, for the
task. This algorithm is the most widely used for optimizing similar problems with few
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objectives and we gained good results using it (Section 5.2). Nonetheless, we believe that a
different, similar algorithm could be used instead.

The context-to-setting assignments are used as the input to be optimized. They can be
evaluated on the fly into energy/quality estimates as needed. This would be excessively
time-consuming if we used actual simulation instead of evaluations with the Markov-
chain model as hundreds of evaluations have to be performed for each generation in the
genetic algorithm.

The encoding of the inputs depends on the settings type and structure. For exam-
ple, for the Commodity12 dataset (Section 4.3) each setting represented which sensors are
turned on or off. This can be encoded by a binary string of length s, where s is the total num-
ber of sensors, e.g., “110000” would represent that only the first two sensors are working.
Each context can have a different setting assigned, thus the total length of the encoding is
cs, where c is the number of contexts, e.g., “110000-100000-00001-00001-00001-00001-00001”
represents having only the first two sensors active when the first context is recognized,
only the first sensor when the second context is recognized and only the last one otherwise.
We used bit-flip mutations and the classical crossover. The same type of representation
(with a different number of sensors) was used for the SHL (Section 4.1) dataset. For the
E-Gibalec (Section 4.4) and Opportunity (Section 4.2) datasets we enumerated each setting
and then used integer vector encoding; e.g., (2, 4, 35, 1) would signify to use the setting
that was enumerated as “2” for the first context, setting “4” for the second one and so on.
Mutations in this case are the transformation of one vector component into a random value
between 0 and the number of settings. Again, the classical crossover was used.

In all cases we used the population of size 100 and let the algorithm run for 500 gen-
erations. The crossover probability was set to 0.9 and the mutation probability was set
to 0.01 for changing each of the encoded variables. The final solution set includes all
nondominated solutions found throughout the entire search, not just those in the final
generation. The actual number of nondominated solutions found for each method is listed
in Section 5.3. Experimental tests showed that these parameters were adequate for all of
our problem domains. As always when using NSGA-II or any similar algorithm, the pa-
rameters have to be adapted to each particular problem—and one is encouraged to do so
when implementing this methodology on their own domain.

3.2. Duty-Cycle-to-Context Assignment (DCA)

Consider a context-recognition system that uses duty cycling with parameters w and
len. It works for w periods, classifying each into one of the contexts c ∈ C. Then, based on
the last classified context c it “sleeps” for len(c) periods—turning off all the sensors and
classifying all periods as c (it assumes that the context does not change while sleeping).

Our first goal is to create a mathematical model that can quickly and accurately predict
the energy consumption of such a system and the type of errors it makes due to duty cycling
(Section 3.2.1). The second goal is to use this model to find good parameters w and len(c)
for each c (Section 3.2.2).

The main intuition for setting appropriate duty-cycle settings goes as follows: in do-
mains with slowly changing contexts, long duty cycles can be used, while in domains with
quickly changing contexts, short duty cycles are required. Note that, if only one of the
contexts of interest is short, one might still be inclined to use short duty cycles in order not
to miss that context entirely. A good example of the latter is fall detection, where falling is
such a short “context” that long sleep cycles should be avoided. The effect of duty cycling
can be experimentally determined by discarding the appropriate parts of the data of a
recorded dataset. They can also be modeled directly as described in Section 3.2.1.

The problem being solved by the DCA method can be considered similar to the one
being solved by the SCA method (Section 3.1), with the exception that all settings are
simply the lengths of the duty-cyle phases (w and len). Using the SCA, we would start by
making an experiment for every (w, len) combination in a given range, which can be time
consuming given sufficient range. This method leverages the fact that the performance
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of a setting can be deduced without an experiment. Instead of doing |S| experiments
(one experiment for each setting), only one—the case with no duty cycling—is required.
This allows us to evaluate many different duty-cycle parameters and thus increases the
chances of finding a good solution.

3.2.1. Modeling Duty-Cycles

To mathematically model duty-cycling we again assume that the dataset has the
Markov property, i.e., the next context is dependant only on the current one. In addition,
we assume that each misclassification is independent of the others and happens with the
likelihood given by a confusion matrix.

Given the assumptions, the evaluation of a system with given duty-cycle parameters
can be performed as described in our previous work on the topic [7] and summarized in
Appendix B. The main idea is to split duty cycles into cycles of different types, the type be-
ing the pair 〈actual context, predicted context〉 just before the sleeping phase. Knowing the
predicted context lets us model the length of the sleeping phase, while the actual context
lets us model the probability of context transition during the sleeping phase. We can
then treat these cycle types as Markov states and estimate the probability of one cycle
transitioning into another. Similarly as with the SCA method, we then calculate the steady
state of the resulting Markov chain, and from it, the performance of the whole system.

The proposed model consists mainly of multiplications and summations of matrices
(|C| in size) and can evaluate the system given duty-cycle parameters almost instantly—at
least as long as the |C| is reasonably low. In Section 5.4 we show that this is much faster
than simulating duty-cycling on the actual dataset, classifying instance by instance.

3.2.2. Finding Duty-Cycle Parameters

The number of possible parameter combinations is typically quite large: mwm|C|s ,
assuming that the length of the sleeping period is capped at ms and the length of the
active period is capped at mw. Consequently, despite the speed of the evaluation model,
we cannot test every combination with a brute-force approach.

Similarly as when describing the SCA method, we have an optimization problem with
two conflicting objectives: reducing the system’s energy requirements, while retaining its
classification quality—accuracy/F-score/recall of the most important context or any other
metric that can be computed from the confusion matrix of the system. Given the similarity
of the problem, we used essentially the same methodology as described in Section 3.1.3:
We used NSGA-II [43] algorithm in combination with the previously described mathemati-
cal model that can evaluate the performance of an assignment on the fly. The result is once
again a nondominated set of solutions, each giving a different trade-off between energy
consumption and classification quality, from which the system designer, who knows the
requirements of the system, can pick a suitable solution.

The population was encoded as an integer vector, where the i-th component signified
the length of the sleeping phase of the i-th context. The length of the active phase w was not
included, as the experimental tests confirmed that the length w = 1 is ideal [7] (this is not
true in the case if there are some real-life restrictions on the sensors—this case is discussed
in our previous work [44]). The length of the sleeping phase had an artificial upper bound
that was determined independently for each dataset depending on the average lengths of
the contexts in it.

3.3. Model Trees (MT)

One can imagine that detected contexts divide the feature space into different regions,
each requiring different system settings for optimal performance. However, it could easily
be the case that each individual context could be further divided into finer-grained regions,
especially if the number of contexts is low.

As an example, if the context is running and the user is running fast, the motion is
easily recognizable using accelerometer alone. If the user is running slowly, however,
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another sensor (e.g., gyroscope) could be necessary to differentiate it from fast walking.
Another example comes from the fall detection problem, where we have only two different
contexts: falling and not falling. In addition to the low number of contexts, the falling context
is too short to meaningfully change system settings in. It would be more helpful for the
system to learn to use more expensive (and accurate) system settings in situations that
potentially occur before the fall, e.g., the user is moving fast.

A notable example of a method that iteratively splits the feature space into regions is
the classical decision tree. In particular, the Cost-Sensitive Decision Tree (CS-DT) [45] is
often used in other domains for this purpose (e.g., deciding which medical tests a patient
should undergo, given the results of previous tests). In our previous work [42] we thus
tried to adapt the CS-DT methodology for context recognition. Relying on CS-DTs for
classification proved to have two problems. First, the constraint of using a decision tree
as the classifier, instead of using a potentially more powerful one (e.g., Random Forest
or Deep Learning) and second, a CS-DT needs several consecutive instances to detect a
context for the first time. To elaborate, the implementation starts by using a sensor as
dictated by the root node of the tree, then after the sensor is activated and feature value is
determined, the tree is traversed into next node, which dictates which sensor to activate
next, all until a leaf node is reached—which is where an accurate classification can be made.
This becomes especially problematic if duty cycling is used and sensors are frequently
turned off, requiring constant repetition of this process.

To avoid both these issues we here propose a simpler approach that yields better
results in practice.

3.3.1. Creating Model Trees

The main idea behind the Model Trees (MT) method is to create shallow decision
trees—using one or two sensors (we used the tree depth of two layers in our experiments).
Each leaf node then gets assigned a classifier (of an arbitrary type) that uses some subset of
sensors. The term “Model Trees” [46] usually refers to trees that use linear regressors in its
leaves, but our application is similar enough in spirit to justify borrowing the term.

When an instance is being classified, it first descends this shallow MT to determine
which classifier the system should use. If all necessary sensors are available, then this
classifier is indeed used. If not, this instance is classified using the same classifier as the
previous instance and then the appropriate sensors are turned on. It is assumed that
sensors used to traverse the MT are always active, hence the recommendation to use as
few as possible (with low sampling frequency if possible). This requirement of one sensor
always being active is dropped when combining MTs with the SCA method (Section 3.4.2).
Thus the sensors used (or a similar setting) adapt to the values of the features chosen by
the MT.

To build a MT, the first part is to construct a decision tree: for this part any standard
decision tree suffices, given that it allows (or can be modified) for control of the tree depth
and that the features used come from a limited number of sensors. The second part is
the assignment of classifiers to each of the leaves. Note that the shallowness of the tree
ensures that the number of leaves is limited to avoid overfitting. To do so we trained
one classifier for each of the possible system settings (similarly to what one would do in
the SCA method). We then tested each classifier on instances that would fall in each of
the nodes to determine for each node, which classifier fits “best”. Best is here defined as
accuracy (or some other performance metric) minus energy cost weighted by a parameter λ.

In order to avoid hand-picking the λ parameter, we propose to test different values
of λ for generating different MTs, then test these MTs and report back the Pareto-front
approximation of the achieved trade-offs. As an additional note, each MT is evaluated
independently of others MTs, as the MT used is not based on the current context (as opposed
to the settings in the SCA/DCA methods). Thus multiobjective optimization is not required
and the number of solutions to test is limited. Consequently, empirical evaluation of the
dataset suffices and a mathematical model is not needed.
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A potential example of a MT (taken from the Commodity12 dataset, with depth set to
one) is shown in Figure 2. Such a MT dictates that Wi-Fi should always be in use while the
other sensors should be in use depending on the current access point the Wi-Fi is connected
to. For example, if the user is not connected to any Wi-Fi spot, GPS and heart rate sensors
are turned on to determine the context. Note that the split made by the tree only partially
overlaps with the contexts in this dataset and reveals some additional “regions”—in this
case the cafeteria.

Wi-Fi Access point

Home Work Cafeteria None

Sound
Time

Time
Sound 
Acc.

GPS
Heart rate

Wi-Fi

Figure 2. A model tree taken from the Commodity12 dataset. The blue node at the top shows the
feature used to create the tree, while other blue nodes represent potential values of this feature.
Orange nodes dictate which sensors should be turned on if that node is reached. The sensor in the
top orange node is always on.

3.4. Combining Methods

So far, we described three different methods for optimizing the energy consumption,
each having their own advantages and disadvantages. The Setting-to-Context Assignment
(SCA) method is very general and can work with basically any setting but can only optimize
at the granularity level of a context. It requires one experiment for each setting to predict
the performance of a system that dynamically switches between them. The Duty-Cycle
Assignment (DCA) method negates the last point by mathematically modeling the perfor-
mance of a setting but does so only for duty-cycle settings. Lastly, the Model Trees (MT)
method can optimize at the granularity level of the feature data but not on the context level.
To combine the advantages of the methods we propose combining them into one method.

3.4.1. Combining the SCA and DCA Methods

The DCA method assigns a duty-cycle setting to each context. To do so it requires only
the transition matrix between contexts and the confusion matrix of the system. As such it
can be applied alongside basically any other setting optimization. In this case, one could
use the SCA method to optimize all settings but the duty cycling. From the set of trade-offs,
a few could be chosen and the confusion matrix of the corresponding system (as calculated
by the SCA model) would then used as the input to the DCA method. This way the duty
cycling is added to whatever setting optimization was performed by the SCA method with
no additional experiments needed. Note that in most practical cases, the optimization of
duty cycling is completely orthogonal to the optimization of some other system’s setting.

To make the evaluation of the system performance when using this method combina-
tion slightly more accurate, one has to consider an interaction between the two methods.
For example, if the SCA method decides to use all sensors for context a and only a few
sensors for context b. Then when context a is detected, the duty cycling is more beneficial
than when context b is detected. The latter follows from the fact that classifications are more
costly for the context a. To account for this, we can calculate energy consumption in the
following way: we multiply the energy consumption of different settings (that are assigned
to each context) with the distribution of the corresponding duty-cycle types (Equation (4)).
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This gets us the average energy consumed when the sensors are active, from which it is
easy to calculate the total energy (Equation (5)).

ea =
|C|

∑
i=1

|C|

∑
j=1

e(a(cj))Di,j (4)

Energy = w ∗ ea + lenavg ∗ es (5)

D—the distribution of cycle types. Di,j is the proportion of 〈i, j〉 cycles.
e(s)—the energy consumption of the system setting s.
a(cj)—the setting used when context cj is detected.
w—length of the active phase.
lenavg—the average length of the sleeping phase.
ea—the energy consumption in the active part of the duty cycle.
es—the energy consumption in the sleeping part of the duty cycle. This can be either 0 or
the baseline cost of the context-recognition application.

This approach can be even more streamlined by using multiobjective optimization to
simultaneously optimize both the SCA and DCA component of the setting. This is achieved
by concatenating the settings vectors used for the SCA method with the setting vector used
by the DCA method. The fitness function of this concatenated vector is the classification
quality/energy achieved when running the two mathematical models, one after another,
with the modifications stated in the previous equation.

3.4.2. Combining MT with the Other Methods

The key insight is to imagine different Model Trees (MT) as system settings. If for
example, a “regular” setting would be “use accelerometer” or use “gps”, now a setting
would be a MT: “use accelerometer if accx feature value≥ 0 else use accelerometer and gps”.

Since we can estimate the performance (both in energy and accuracy) of a single MT,
we have all prerequisites for using it as a setting for the SCA method. A solution from
the SCA method would then be: if context 1 is detected, use MT A, if context 2 is detected,
use MT B, etc.

To use MTs as possible system settings, we obviously need to generate many different
trees. This can be achieved in two different ways. One is to repeatedly, randomly select the
list of features for each tree to select from—the approach used in Random Forest classifier
and similar ensemble methods. The other approach is to modify the parameter λ that is
determining the trade-off between energy consumption and classification quality. In our
experiments we used a combination of both approaches—for each selected feature subset
we also tried many different values of λ. The MTs generated in this way were thus different
both in which features they use in nodes as well as what energy/quality trade-offs the
classifiers in the leaves make.

Using MT as settings thus makes combining the MT and SCA methodology pretty
straightforward. The only remaining implementation detail is to decide what setting to use
immediately after context change—as we switch to a new MT and need at least one time
period in order to determine the branch and thus the setting. We opted to use a classifier
that needs only sensors already required for the root MT node.

When adding the DCA method to the MT + SCA combination we need one final
adjustment. Since, as discussed before, MTs need more than one time period to decide on
the system setting, we also need to have the active period for duty cycling ≥ 2. This limi-
tation can greatly limit the energy-efficiency of duty cycling and can negate the benefits
MTs provide.

To counteract this limitation we propose the following implementation: after the
sleeping phase is finished, use the “current sensors”, then set the “current sensors” to the
senors dictated by the MT. This way an active period of 1 can be used, although the sensors
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change with a slight delay. We provide no mathematical formula on the effect of such delay
but have tested it empirically on the solutions provided by the method combination.

A summary of the three-method combination is found in Figure 3.

MT 1 MT N…

Current context

Split based 
on features

Classifier 1

MT 2 

Classifier 2 Classifier m

New context

Duty-cycle  based on context

Switch sensor settings
based on the MT leaf reached

USE SOLUTIONCREATE SOLUTION

Multi 
Objective 

Optimization

SCA model

DCA model

Sample solution:
IF context C1 : 
THEN

Use MT 2 
Sleep for 3 periods

IF context C2 :
THEN … 

C2 C1Cn

Split based 
on context

…

Evaluation

Different MT

Define sensor settings

Different duty 
cycle lengths

Using them create MT

Energy-efficient 
solutions

Figure 3. An overview of the three-method combination—both for creating energy-efficient solutions
(left) and then for implementing one of them on a device (right).

4. Datasets

The presented methodology was tested on four different real-life datasets. They cover a
variety of context-recognition tasks from the recognition of basic human activities (walking,
running, resting, etc.), high-level activities (work, home, etc.), to very specialized context-
recognition tasks (eating, using the fork, etc.) Datasets were collected by attaching various
sensors to volunteers and/or their environments. Two datasets used—the Opportunity
and SHL—are publicly available and often used for comparing different methods for
context recognition.

This section covers each of the datasets in enough detail for the reader to understand
their properties and be able to interpret the solutions returned by the presented methods
and references a dedicated paper with all the details on how the dataset was collected and
processed. In each case we also specify which sensing settings could be modified in order
to improve the energy-efficiency of the context-recognition method used for that dataset
and how we estimated the energy requirements of these modifications. The summary of
the datasets is given in Table 1.

Table 1. The number of classes, possible system settings (duty cycling not included) for each of the
datasets, and the magnitude of possible setting-to-context assignments. The type of system settings
being optimized is also listed.

# Classes Setting Type # Settings # Assignments

SHL 8 Sensors used, duty cycling 32 ≈1013

Opportunity 18 Sensors used, duty cycling 159 ≈1040

Commodity12 7 Sensors used, duty cycling 1024 ≈1021

E-Gibalec 4 Sampling frequency, duty cycling 8 ≈104

4.1. Sussex-Huawei Locomotion (SHL) Dataset

The SHL dataset is one of the largest, publicly available datasets, focused on human
activity and locomotion recognition using wearable sensor data. A part of this dataset was
used for the 2018 Sussex-Huawei Locomotion Challenge and this subset was also used for
our work. The dataset is available on the challenge website [47] and is described in detail
in the baseline paper [48].
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The participants wore several smartphones on different parts of their body, but in
this study we focused on the one worn in their trouser pocket. Data came from the
accelerometer, gyroscope, magnetometer, barometer and the orientation of the phone.
All sensor data was sampled at 100 Hz.

Altogether, there were 82 recorded days (62 for training, 10 for testing, and 10 for
validation). During the recording three participants were tasked with moving around the
city and annotating their mode of transportation. The annotated context were bike, bus, car,
run, still, subway, train, walk. Due to the nature of this scenario, the resulting contexts were
long on average and had sensible transitions from one to another. In addition, they had a
mostly uniform distribution—with the exception of running, which appeared less often.

The full pipeline of the devised context-recognition system can be found in our previ-
ous work [49] (this system achieved first place at the SHL Challenge). In summary, we first
downsampled the data to 50 Hz to make the system more energy efficient, while retain-
ing the classification accuracy. Next, the data was split into 60-second nonoverlapping
windows. Features were calculated separately for each sensor stream (and separately for
each axis of a sensor in case of 3 and 4-axial sensors), adding up to a total of 1696 features.
The classification was then performed using an ensemble of classifiers: Decision Tree,
Random Forest, Naïve Bayes, K-Nearest Neighbours, SVM, Bagging using Decision Trees,
Adaptive Boosting, Extreme Gradient Boosting, Multilayer Perceptron, and a Deep Learn-
ing model.

As the system setting to be optimized, we took all possible sensor subsets in addition
to different duty-cycle lengths. The energy cost function was defined as the proportion of
the data used when testing the system—using fewer sensors or having longer duty cycles
naturally leads to using less data. Since the data is downsampled by half, the baseline data
usage is 50%. This function is overly simplistic as the energy consumption details were not
given by the dataset authors. Note, however, that the presented methodology could work
just as well with any other complex cost function as seen in the Commodity12 example.

4.2. Opportunity

Opportunity [50] is a publicly available dataset designed as a benchmark for activity
recognition problems. For this dataset the authors recorded four users that followed a loose
scenario (waking up, walking around, and preparing breakfast).

Their motion was recorded by 30 sensor clusters—each usually containing an ac-
celerometer, magnetometer, and a gyroscope–placed at different locations on either the
participant’s body (on different parts of their arms and legs, in shoes and on the back) or
on their surroundings (on the doors, drawers, fridge, on utensils, on glasses, attached to
some food, etc.).

Different set of labels were provided to pose different context-recognition problems,
out of which we chose the ones where the goal was to recognize the object the user was
holding in their right hand. There were 24 possibilities: bread, salami, salami2, milk, cheese,
sugar, glass, knife, bottle, cup, spoon, plate, chair, table, dishwasher, drawer1, drawer2, drawer3,
door1, door2, fridge, switch, lazychair, and none. The class distribution was highly imbalanced
with the none being present in 57% of instances while some other contexts, e.g., lazychair
were present in only a few. Some of the objects were indistinguishable using only the
described sensors (opening door1 is the same as opening door2 from the point of view of the
accelerometer). We joined such classes—both doors into one class, the same for the three
drawers, both salamis, both chairs and the fridge with the dishwasher—which resulted in
a set of 18 classes.

Our base context-recognition system matched the one from the dataset introductory
paper [30]. That is, we used the windows of size 0.5 s, and the features were the mean and
the standard deviation for each sensor in these windows. The data was classified using the
k-NN classifier and its performance was evaluated using F-score as we wanted a balanced
accuracy when detecting all classes despite their imbalanced distribution. The (train,
validation, test) split was made by taking (50%, 25%, 25%) of data respectively.
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As the settings for the optimization of the energy consumption, we used the different
sensor subsets and different duty-cycling lengths. Due to the unusually high number of
sensors (30 sensor clusters) as well as the high number of contexts (18), we used only some
sensor subsets (not all, as usual) as the settings for our methods. These subsets were chosen
in the following way: we started with an empty set. Then the sensor cluster that increased
the F-score on the validation set the most was added to set. This was repeated until adding
no single sensor cluster could increase the F-score. All resulting sensor subsets—each one
cluster bigger than the other—were then used as sensor settings. We then repeated the
procedure for each context, this time focusing not on the overall F-score but on the ability to
detect that particular context only. Again all subsets were added as sensor settings. The idea
behind this procedure is that each subset selected is beneficial for recognizing at least one
context (and could be potentially used when that context is detected). This eliminated most
subsets (159 sensor settings remained) even before starting the optimization process as
they would artificially bloat the search space.

Given that the dataset authors did not specify the energy consumption of each sensor,
we assumed that it is roughly similar for all of them (this assumption is party validated by
the fact that most of them are of the same type). The energy consumption in this case is then
directly proportional to the number of sensors active. Consequently, we tried to optimize
the average number of sensors active when the context-recognition system is running.

4.3. Commodity12

The goal of the Commodity12 project was to create a system that would be used by
diabetic patients—it would monitor their activities, helping them to manage their lifestyle
more easily. All details can be found in our previous work [51].

As part of this project we monitored 10 volunteers for two weeks using a smartphone
and a chest-worn heart monitor. In this time period they could continue their daily lives
with no predetermined scenario to follow, but they had to annotate each activity they
performed. These activities were then condensed into seven different contexts: work, home,
transport, exercise (e.g., running and calisthenics), eating, out (out of house, but not in any of
the previous contexts) and sleep.

We were then tasked with recognizing these contexts using the sensors they carried—
we used the accelerometer, light sensor, barometer, GPS, heart rate, and respiration rate. We
also used the list of visible Wi-Fi networks and the location description using Foursquare
web service to help with the localization. Bluetooth was not used directly but had to be
turned on when we needed the data from the heart-rate monitor. Finally, we used phone’s
time as a virtual sensor.

Features were calculated for each minute of the data, and one minute became one
learning instance. In this work we recreated the highly personalized setting where the
first week of data (from “user 1”) was used for training, while the second week was
cut in half for testing and validation. This setting was chosen as we hoped it would
produce interesting user-specific solutions. Random Forest was determined to be the best
performing classification model and was thus chosen to be used in this work on this dataset.

System settings used are again the sensor subsets that is in use and duty-cycling
lengths. For this dataset, however, we decided to use a more realistic energy estimation
function. We used a multimeter attached to the target device’s battery (Samsung Galaxy S4)
and measured the current while having different sensors active. The current is assumed
to be proportional to the energy consumption, given constant voltage. When doing the
energy estimation, we also had to take into account that energy costs of sensors are not
independent. Due to sharing the same hardware, software optimizations, and processor
activity, it is often the case that two sensors working in parallel consume less energy than
the sum of their individual energy consumption. To take this into account, we manually
measured most sensor combinations.

The resulting measurements are presented in full in our previous work [51]. As a quick
recap we can mention that using no sensors resulted in the baseline cost of 20 mA, while
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using all the sensors had a cost of 140 mA. The cheapest “sensor” was time, which pro-
vided no additional energy cost, followed by the low frequency accelerometer. The most
expensive sensor was unsurprisingly the GPS followed by the Wi-Fi when scanning for
visible networks.

4.4. E-Gibalec

E-Gibalec was a project aimed at encouraging a more active lifestyle in elementary-
school children. The developed mobile application could detect the activities of its user,
so they could be rewarded for their active lifestyle. It allowed the child to set its daily
movement goals, compete with classmates, and keep upgrading its virtual avatar using the
won virtual awards. The whole system is thoroughly described in our two previous works
on the topic [52,53].

Ten volunteers (aged 10–12) performed a one-hour-long predetermined scenario,
which included different physical activities (lying, sitting, slow walking, fast walking,
slow running, fast running, stretching, sit-ups, push-ups, jumps, dodgeball, basketball,
volleyball, football, cycling). While a detailed description of their activity was being an-
notated, the labels were later joined into four elementary activities: walking, running,
cycling, other.

The smartphone recorded only with the three-axial accelerometer and did so with
the sampling frequency of 50 Hz. Data was split into five-second nonoverlapping win-
dows, and features (average of magnitudes, the value of the third quartile, the variance,
the coefficient of variation, and the number of peaks) were calculated for each window.
To make the train/test/validation split, we used five/two/three volunteers respectively.
Random Forest was used as the classifier in this system.

While the reduced computation time and using only one sensor already reduced the
energy consumption, we additionally used the presented methodology to optimize two
other system settings: the sampling frequency (choosing from: 1, 2, 5, 10, 20, 30, 40, 50) and
duty-cycle length.

To determine the energy consumption of the defined settings we started with the
empirical measurements that were made as part of the Commodity12 dataset (Section 4.3).
From them we determined that the sampling frequency of 5 Hz needs 24 mA of current,
while the frequency of 50 Hz needs 46 mA. For the rest of the sampling frequency values
we linearly interpolated the energy consumption. This can be justified by the finding of
the related work [9,10] that the energy consumption of the accelerometer device increases
roughly linearly with its sampling frequency.

When using our energy-reducing methodology on this dataset, a problem arises
as the transitions from one activity to another are predetermined and the same for all
recorded users. This, however, does not reflect the actual real-life state and may cause
the system to overfit to these artificial transitions (e.g., running was always followed by
cycling which always transitioned into other). To partly alleviate the issue we first used the
expert knowledge to assemble a sensible transition matrix between the activities and then
shuffled the dataset with respect to these transition probabilities.

5. Results

To get a better intuition for the type of energy-efficient solutions being generated
by the methodology we first (Section 5.1) show some sample solutions from each of the
methods. Then in Section 5.2 we show the performance improvement achieved when
combining two or all three methods. In Section 5.3 we compare our methods to two similar
methods from the related work. Finally, in Section 5.4 we discuss the accuracy of the
presented mathematical models and their computational speed.

In the presented experiments, the training set is used to train the classification models,
the validation set is used for determining setting-to-context assignments and assignments
of classifiers in MT trees, and finally the test set is used to estimate performance of all
our methods.
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5.1. Sample Solutions

To showcase solutions from the SCA method we started with an example from the
SHL dataset, shown in Figure 4. In this figure we plot the performance of all nondomi-
nated solutions found. Solutions displayed in this way are said to form the Pareto-front
approximation (not the complete Pareto front, because some Pareto-optimal solutions may
not have been found).
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Figure 4. Comparison of assignments, where all contexts have the same sensor combination assigned (Static solutions),
to the assignments where active sensors dynamically change based on the last classified context (SCA). Some points of
interest are marked with letters A–D. This comparison was done on the SHL dataset.

The settings to be optimized are which sensors to use for each detected context.
We compared the solutions found to the “static solutions” where the same subset of sensors
was always used. Different points on the graph show different trade-offs between the
classification accuracy and energy consumption. In this case the energy consumption was
measured based on what percentage of recorded data was used—starting at a baseline of
50%. Since the “ideal” point is the bottom-left one, it is easy to see that dynamic solutions
generated by the SCA algorithm consistently outperform the static ones.

Figure 4 also marks some sample solutions. Their details are shown in Table 2.

• Solution A uses the accelerometer regardless of the activity, which is not surprising as
the accelerometer is often used in similar context recognition tasks. Additionally it
uses the magnetometer whenever a vehicle is detected, which makes it easier for the
classifier to distinguish them. Pressure is used when detecting subway and walking
(potentially towards it)—as the pressure is different underground. These automati-
cally found sensor assignments thus neatly match the human intuition about the task.
Additionally, it is interesting to note that the accuracy of this assignment is 1 percent-
age point better than of any of the static solutions.

• Solution B uses only the accelerometer during all activities and the magnetometer
when a vehicle is detected. While not using three of the five sensors reduced the accu-
racy, the reduction was quite minimal compared to the solution A (cca. 3 percentage
points). Some similar solutions (not explicitly shown here) used the gyroscope instead
of the accelerometer when either walking or running—implying that both sensors are
roughly equal for the task.
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• Solution C uses only the accelerometer for all activities. Its performance therefore
matches one of the static solutions.

• Solution D starts abandoning the recognition of some activities altogether by not
using any sensors when that activity is detected. The train and subway activities were
the first to be dropped, probably due to having the worst recognition accuracy even
when appropriate sensors were used. Note that if no sensors are active, the majority
classifier is used—classifying everything as car.

Table 2. The sensors used when the corresponding activity is detected for each of the four so-
lutions marked in Figure 4. Sensors are abbreviated: acc—accelerometer, mag—magnetometer,
ori—orientation sensor, gyr—gyroscope, bar—barometer. Both accuracy and energy costs (measured
in the percentage of data used) are provided as well.

Solution A Solution B Solution C Solution D

Accuracy [%] 88.7 85.5 82.0 71.3
Energy [%] 29.6 14.2 10 8.3

Bike acc, gyr, ori acc acc acc
Bus acc, mag, gyr acc, mag acc acc
Car acc, mag acc acc acc
Run acc, gyr acc acc gyr
Still acc, gyr, ori acc acc acc
Subway acc, mag, bar, ori acc, mag acc \
Train acc, mag, gyr, ori acc, mag acc \
Walking acc, bar acc acc acc

As an additional example of SCA solutions, we show two sample solutions from the
Commodity12 dataset (Table 3). Solution 1 uses GPS whenever the user is detected as
potentially “outdoors” (Out, Eating, Exercise, Transport), sound to differentiate if the user is
sleeping or “active” and accelerometer when Exercise (and somewhat curiously Eating is
detected). Solution 2 is much more streamlined and more energy-efficient: relying on the
current time and the visible Wi-Fi spots to differentiate between most contexts.

Table 3. The sensors used when the corresponding context is detected for two sample solutions. Some
sensors are abbreviated: sqr—FourSquare webservice, wifi—Wi-Fi, acc—(accelerometer, pressure,
light), hr—(heart rate, respiration rate). Multiple sensors are listed in brackets as they all share a cost
and are thus either all included or excluded.

Points A Solution 1 Solution 2

Accuracy [%] 85.2 80.7
Energy [mA] 65.6 38.6

Eating acc, time, gps time, gps
Exercise acc, time, gps, wifi time, wifi
Home sound, time, gps time, wifi
Out hr, gps, wifi acc, time, gps
Sleep sound, time sound, time
Transport time, gps time, wifi
Work wifi wifi

Next, we show DCA solutions for the SHL dataset (Figure 5) compared to “static
solutions”, where all contexts use the same duty-cycle length. Again, some sample solutions
are marked with letters (A–E) and their exact parameters are listed Table 4. They show
that activities run, walking, and still have short duty cycles assigned. Intuitively, run is
a relatively short activity, while walking and still activities act as hubs from which other
activities often transition. The car and train activities are the longest on average and
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have correspondingly long duty cycles. Interestingly, bus has longer duty cycles assigned
than train, maybe due to the fact that bus classifications are more likely to be correct than
train classification.
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Figure 5. Comparison of assignments on the SHL dataset where all contexts have the same duty-cycle
length assigned (Static solutions) to the assignments where duty-cycles lengths dynamically change
based on the last classified context (DCA).

Table 4. Sample solutions returned by the DCA method for the SHL dataset. For each activity
the assigned duty-cycle length is given (the length of the sleeping phase of the cycle). In addition,
both the accuracy and energy costs are listed. Duty-cycle length of 0 implies that duty cycling should
not be used.

Bike Bus Car Run Still Subway Train Walk Acc. [%] Data Used [%]

A 0 2 5 2 1 1 0 1 85 26
B 4 4 7 4 3 5 4 3 81 10
C 4 10 13 3 5 7 7 5 77 7
D 7 13 13 6 6 10 11 6 74 5
E 11 13 20 7 8 14 15 9 70 4

Finally, we show an example of a MT from the E-Gibalec dataset (Figure 6). This tree
always uses the accelerometer sensor with the sampling frequency of 1 Hz but can prescribe
a higher sampling frequency depending on the feature values.

Standard deviation

Mean

Acc (1 Hz) Acc (50 Hz)

Accelerometer (1Hz)

Acc (2 Hz) Acc (10 Hz)

Standard deviation

< 0.03 > 0.03

< 10.2 >10.2 < 0.35 > 0.35

Figure 6. An example of a MT from the E-Gibalec dataset. Orange nodes prescribe the sensor settings
required, while the blue nodes represent features used to determine these settings.

The left most leaf node is reached in cases where no motion is being detected, and the
lowest sampling frequency is thus chosen. The following leaf node (going from left to right)
represents the case where the user is either walking or cycling—the two hard to distinguish
contexts—and the highest possible sampling frequency is chosen. The last two nodes
represent values that happen when walking and running respectively. Running needs
higher sampling frequency as it is the fastest moving motion recorded.
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Another example of a MT (although simplified) from the Commodity12 dataset was
shown in Figure 2 in Section 3.3.

5.2. Method Performance and Comparison

The performance of all the presented methods and their combinations is shown in
Figure 7 for each dataset. In all cases the static solutions (always use the same setting for
each context) are the worst performing one. The DCA method usually outperforms the SCA
method, showing the importance of the duty-cycle settings in many context-recognition
tasks. Importantly, after the MT method is combined with the SCA method, their joint
performance improves. The same goes for the SCA + DCA combination.
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Figure 7. Comparison of all our methods and their combinations. All tests were performed on
four datasets.

The benefit of combining all three methods, however, is less clear. In the case of
E-Gibalec (Figure 7d) and Commodity12 (Figure 7c), the three-method combination domi-
nates all others. In the case of SHL (Figure 7a), it dominates only on the “right”—lower
accuracy, greater energy efficiency—part of the solution space, compared to the SCA + DCA
combination. Finally, on the Opportunity dataset (Figure 7b), the performance substantially
decreases when the three-method combination is used. This could be by chance, but a
reasonable explanation could lie in the number of contexts. The E-Gibalec dataset has only
four different contexts, thus SCA can only work with coarse granularity and is improved
by the MT method. The Opportunity dataset, on the other hand, contains 18 contexts
and by splitting them based on feature values might create too large an assignment space,
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given the dataset size—leading to overfitting. An empirical argument for the overfitting
is that the MT solutions on the Opportunity dataset are actually worse than the static
solutions—which in theory should not happen as placing the same classifier into all leaf
nodes effectively results in a solution that is equivalent to the static one. Thus we should
expect at least equal if not greater performance from the MT solutions. Due to overfit-
ting, however, the increased performance only showed on the training set but not on the
testing set.

Another explanation comes from the delayed sensor switching introduced by combin-
ing the MT and DCA methods (Section 3.4.2). After testing the same solutions, but with
the delay artificially removed (not feasible in practice), the results improved—and started
to dominate all the solutions in the SHL dataset (but were still worse on the Opportunity
dataset). We believe that the two listed causes result in the inconsistent performance of the
three method combination but will need additional testing in other domains to confirm it.

5.3. Comparison to Related Work

Finally, we compare our methodology against two methods from the related work.
These two methods were chosen as they optimize similar sensor settings as our methods
and are described in enough detail so we could fully reimplement them. In addition,
the first one is comparable to the SCA method (in terms of generality, sensor settings used,
etc.) and the second one to the DCA method.

The first method from the related work (Activity recognition for creatures of habit) [29]
decides on which sensor subset to use based on which context (or which subset of contexts)
is most likely to appear next. The likelihood is estimated by assuming the context sequence
is Markov (the same assumption is made in our approach). The subset used is the one
that is good for recognizing both the current and likely next contexts. For this approach
to work, the system designer must choose two parameters: the acceptable accuracy loss
[0–100%] and the number of likely contexts predicted [1–|C|]. Authors do not specify how
to determine the parameters, so we conducted a thorough grid search of values in the
previously specified range. Grid search also enables us to select nondominated solutions
and construct the resulting Pareto front approximation.

The second method (Episodic sampling) [32] is a method that changes the duty-cycle
length based on the frequency of context transitions. If the context remains unchanged,
the length is increased by a, if not, the length is divided by b. The a and b are the parameters
of the system and were determined by a grid search of sensible values (a ∈ [0–15], b ∈ [0–1]).
Again all nondominated solutions were kept.

Neither of the proposed methods provide a model for the solution quality estimation
and thus rely on the simulation for making such estimation.

The results are shown in Figure 8. The fairest comparison is the SCA method against
the “Activity recognition for creatures of habit” and the DCA method against the “Episodic
sampling”. In most cases solutions from our methods dominate those from related work.
The exception is again the Opportunity dataset (Figure 8b), where Episodic sampling over-
performs. In all cases our method combination achieves better results than any of the
tested methods from the related work. The number of nondominated solutions and their
hypervolume—the area that is being dominated by the solutions—for all methods is listed
in Table 5.
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Figure 8. Comparison of our methods to two alternatives from the related work. All tests were
performed on four datasets.

5.4. Method Time and Accuracy

The key component of the proposed methodology is using two mathematical models
(one for the SCA method and the other for the DCA method) that can predict the per-
formance of any assignment. This avoids the need for testing assignments empirically,
by going through instances one-by-one, classifying them and then simulating different
settings based on the current classification.

First, we show the difference in speed between the model and the previously described
simulation like approach (Table 6). The times reported are the average over a 100 random
assignments. In all cases the SCA and DCA models require similar time to compute, that is
in most cases roughly 100-times faster than the simulation. The only exception is the SCA
model on the Opportunity dataset, where the model is only two times faster. The slow
performance can be explained by the large number of contexts in this dataset, as the most
computationally expensive operation is the multiplication of c ∗ c matrices, where c is the
number of contexts.

The overall time for all steps required (running the optimization for the SCA + DCA
method, generating MTs, combining the methods etc.) varies significantly based on the
number of contexts and settings—in our example datasets it ranged from minutes to an
hour on standard hardware. It is of note, however, that all the computation is front-loaded.
Once the solutions are created and selected, the real-time requirements on the context-
recognition device are negligible and can be implemented with a few “if” statements.
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Table 5. Hypervolume calculated on the nondominated sets as returned by all our methods
and the two methods from the related work. Both objectives were normalized to the [0–1] in-
terval based on their max and min values and the reference point was set to (1.1, 1.1), mak-
ing the ideal hypervolume 1.21. The best method based on the hypervolume is bolded for
each dataset. In addition, we list the size of each nondominated set. ES—Episodic sampling,
CoH—Activity recognition for creature of habit.

Method SHL Opportunity Commodity12 # E-Gibalec

Hypervolume

Static 0.957 0.579 0.956 1.034
SCA 1.974 0.590 0.979 1.118
DCA 1.074 0.608 0.992 1.084
SCA + DCA 1.097 0.628 1.026 1.169
MT 0.853 0.560 0.957 1.044
MT + SCA 0.993 0.562 1.010 1.090
MT + SCA + DCA 1.085 0.584 1.033 1.172
CoH 0.993 0.596 0.980 0.983
ES 1.067 0.607 0.967 1.097

# Solutions

Static 4 17 5 7
SCA 92 212 251 84
DCA 712 996 1260 289
SCA + DCA 1019 2096 2050 410
MT 3 71 29 8
MT + SCA 71 445 251 76
MT + SCA + DCA 920 778 562 313
CoH 25 36 13 14
ES 34 44 22 21

Table 6. Time of evaluation [ms] of the mathematical models compared the time of the simulation.
Test was repeated and averaged over 100 random assignments.

Model Simulation

SHL–SCA 7 440
SHL–DCA 1.3 420

Opportunity–SCA 158 263
Opportunity – DCA 18 628

Commodity–SCA 5 121
Commodity–DCA 0.7 225

E-Gibalec–SCA 0.4 90
E-Gibalec–DCA 0.3 140

Next, we had to validate that our predictions of assignment performance are indeed
accurate. In this experiment we evaluated 100 random assignments and used the simulation
performance as the ground truth. Note, this model accuracy should not be confused with
the classifier accuracy of the context recognition system. For example, if our model predicts
that the context recognition system performs at 81% accuracy, but the simulation shows
that actual accuracy is 83% then our model made a 2 percentage point (p. p.) error. This is
similar when predicting energy consumption. The results are shown in Table 7.

The error made varies from dataset to dataset but it is roughly 1 percentage point
on average, making it accurate enough for our use. For comparison, we also created a
simple model described in Section 3.1.1 that is in a spirit similar to what some methods
from related work [15,28] implicitly use. Its error is significantly higher than the one from
our methods.
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Table 7. Difference (mean absolute error) between the predicted accuracy/energy and the one
calculated in a simulation for the SHL dataset. The experiment was repeated for both Simple, SCA,
and DCA method, for 100 random assignments. The difference in accuracy (o F-Score in the case of
Opportunity) was measured in percentage points, while the difference in energy was measured in
the percentage of maximal energy used in the respective dataset.

Accuracy Energy

SHL–SCA 0.8 0.1
SHL–Simple 13.4 1.5
SHL–DCA 2.8 0.5

Opportunity –SCA 1.0 0.08
Opportunity –Simple 9.1 0.6
Opportunity –DCA 3.2 0.5
Commodity–SCA 2.4 1.3

Commodity–Simple 5.2 3.2
Commodity–DCA 0.7 0.2

E-Gibalec–SCA 0.6 0.08
E-Gibalec–Simple 2.9 0.3
E-Gibalec–DCA 0.04 0.12

6. Conclusions

In this work we presented three different methods that can increase the energy-
efficiency of a context recognition system. In addition, we showed how to combine them to
improve energy-efficiency even further.

The core of the methodology consists of mathematical models that can predict the
performance of a system that is adapting its settings based on the last recognized context.
These models were shown to be accurate—with an error of 1–2 percentage points on
average—and roughly a hundred times faster than simulation in most cases. This allowed
us to use multiobjective optimization to find good solutions.

The biggest contribution in comparison with our previous work is the addition of
the MT component and the combining of our methods. The MTs were shown to increase
the energy efficiency in almost all cases—their contributions seemingly being linked to
the number of contexts in the domain (the lower the number of contexts, the bigger
the contribution). Combining the SCA and DCA method, on the other hand, yielded
improvements to the solutions in all cases.

The approach was tested on four different, complex datasets and achieved consistently
good results. All of the presented methods return the whole Pareto-front approximation
of different trade-offs between the classification quality and energy consumption. As an
example of some solutions found: for the SHL dataset we were able to use only 5% of the
available data (by using lower frequency, duty cycling, and using a sensor subset) and in
exchange sacrifice less than four percentage points of the accuracy. For the Opportunity
dataset we were able to find a solution that uses five sensors on average (instead of the
original 30) and in exchange loses one percentage point of F-score. For the Commodity12
dataset, we decreased the smartphone’s energy consumption from 123 mA to 40 mA.
In exchange we lost less than 1 percentage point of accuracy. Finally, for the E-Gibalec
dataset, the energy was reduced from 46 mA to 24 mA also for less than one percentage
point of accuracy lost.

The methods outperformed two state-of-the-art methods from the related work—
both when compared to our methods used individually but especially when our methods
were combined.

The presented methods are very general and should be applicable to most context
recognition systems. They require no expert knowledge (with the exception of selecting
possible settings) and almost no hand picked parameters. In the E-Gibalec dataset example,
the system designer only had to determine that the possible settings are the different
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frequencies in 1–50 Hz range (with a provided energy estimate for them) and duty-cycle
lengths with the upper sleep limit of 30 classification windows of 5 s—all other steps
were automated. The method implementation is openly available in the form of a Python
library [8] and we hope it could be of use to designers of context-recognition systems.

The most notable limitation of our methodology is its inability to tackle regression
problems (e.g., the location coordinates of the user). The is due to the SCA and DCA
methods using a discrete context, i.e., the classification class, to adapt the sensor settings.
In order to use these methods on a regression problem, either the class or feature values
would have to discretized and then used as the “context”—a potential research problem
left for the future work. On the other hand, the MT method could easily be adapted by
using regressors in the decision-tree leaves instead.

As part of our future work we intend to use this framework in our upcoming context-
recognition projects and implement it on real devices—and thus further validating its
practical usefulness.
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Appendix A. Using Markov Chains in the SCA Method

We start by evaluating the performance of the system using each of the settings
(each setting is tested independently, with no switching between them). This is done
by simulating a setting, e.g., using data from only a few sensors or downsampling data
to another frequency, etc. and then determining the confusion matrix of such a system.
In addition, we need the transition probabilities T(ci, cj) from each context to each other,
which can easily be inferred from the dataset.

Having both the confusion matrices when a single setting is used as well as transition
probabilities, we can estimate the performance of the system when settings are dynamically
changing based on the recognized context. This is done by first appropriately defining
Markov states (Section 3.1.2) and then calculating the transition probabilities between these
Markov states. This is done by using Equation (A1)—which is simply stating that to get to
the state 〈c, c′〉 the context must really change to c and the system must classify it into c′.

P(〈c1, c2〉 → 〈c3, c4〉) = T(c1, c3)CMa(c2)
(c4|c3) (A1)

http://www.shl-dataset.org/activity-recognition-challenge
https://archive.ics.uci.edu/ml/datasets/opportunity+activity+recognition/
https://archive.ics.uci.edu/ml/datasets/opportunity+activity+recognition/
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P(〈c1, c2〉 → 〈c3, c4〉)—the probability of a transition from state 〈c1, c2〉 to state 〈c3, c4〉.
T(c1, c3)—the probability in the dataset that the next context will be c1 given that the
current one is c3.
a(c)—the setting assigned to context c.
CMs(c4|c3)—the probability that the classifier that works with setting s will classify an
instance to c4, if the true context is c3.

To calculate the “steady-state” of the Markov chain we have to solve the equation
xP = x, where P is the matrix of transition probabilities between Markov states and x is
the desired vector, where each component represents the proportion of time spent in each
of the states (given that the system runs for long enough time).

Appendix B. Calculating the Performance of a DCA Assignment

In this appendix we summarize the steps required to mathematically asses the perfor-
mance of a context recognition system that uses duty cycling.

Appendix B.1. Duty-Cycle Types

We start by splitting duty cycles into different types. The duty cycle type depends both
on the context that appears in the last active period (marked as “head” in the Figure A1
as well as on the context that period was classified into. Indices of these contexts are
subsequently named t and p, respectively. If the last active period before sleeping is walk
that is classified as run we have a 〈walk, run〉 cycle. The first component of the cycle allows
us to calculate the likely context transitions, while the second one determines the length of
the sleeping phase.

Head Sleeping Active

len(p) w - 11Length:

Phase:

t, p

Figure A1. Structure of a 〈t, p〉 duty cycle. It starts with the context t classified as p, followed by
the sleeping phase (sensors not working) where all contexts are classified as p, and an active phase
(sensors working). The last period in the active phase is the head of the next cycle.

For each of those cycle types, we can use the following equations to estimate how
much of each context appears in both the sleeping (A4) and active (A5) phase. We start
by the state distribution in the head of the 〈t, p〉 cycle–by definition the state there is
known and thus the state distribution is et. For each next time period we can estimate the
state distribution by multiplying the previous distribution with the transition matrix T.
Having the context probability at each time step, their total expected number is simply the
sum of their probabilities at each step.

ei = [0, . . . , 0, 1︸︷︷︸
i

0, . . . , 0]T (A2)

Pt,i = etTi (A3)

ESt,p =
len(p)

∑
i=0

Pt,i (A4)

EAt,p =
len(p)+a−1

∑
i=len(p)+1

Pt,i (A5)
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ei—the i-th base vector. It represents the context distribution in the first period of
a cycle.
T—the transition matrix, Ti,j represents the probability of the next context cj, given
the current context ci. Easily obtained from the dataset.
Pt,i—the probability distribution of contexts after i steps, given the current context ct.
Vector of size |C|.
ESt,p—the average number of contexts that appear while sleeping, given that this sleep-
ing phase started with the true context ct that was classified as cp. Vector of size |C|.
EAt,p—the average number of contexts that appear while active, given that this cycle
started with the true context ct that was classified as cp. Vector of size |C|.

Appendix B.2. Distribution of Duty-Cycle Types

In the previous section we showed how a specific 〈t, p〉 cycle behaves, given we know
its type. The next point of interest is determining the expected proportion of each cycle
type. To do so we first calculate the probability that a cycle of type 〈t1, p1〉 follows a cycle of
type 〈t2, p2〉 for each t and p. Intuitively, this happens if t1 transitions to t2 after len(p1) +w
steps (length of the cycle) and if the t2 is classified as c2. The probability of that happening
is expressed in Equation (A6).

P(〈t1, p1〉 → 〈t2, p2〉) = (Pt1,len(p1)+a)t2 CMt2,p2 (A6)

(Pi,j)k—the k-th component of the vector Pi,j.
P(〈t1, p1〉 → 〈t2, p2〉)—the probability of the next cycle type being 〈t2, p2〉, given the
current cycle type 〈t1, p1〉. This happens if the last context of the previous cycle is t2,
classified as p2.

Having the transition probabilities, we can use the basic Markov-chain calculus to
calculate the steady state in the similar way as in Section 3.1.2. The steady state corresponds
to the desired cycle-frequency proportions D.

Appendix B.3. System Evaluation

Combining the results from the previous two sections, we can estimate the perfor-
mance of the system in the form of its confusion matrix (A7) and its energy gain (A8).
Energy gain is defined as the average number of sleeping periods for each active one. If the
sensors are on half the time, Gain = 1.

The intuition behind calculating the energy gain is simple. We know how long the
cycle is given its type. We also know the distribution of each type. The double loop
in Equation (A8) simply iterates over all cycle types and sums the two terms together.
The calculation of the new confusion matrix is slightly more complex and can be split
into two parts: performance while sleeping and the performance during the active phase.
While sleeping in a cycle of type 〈t, p〉, all the contexts are classified as p while the pro-
portion of the contexts actually appearing in that period is given by the ES. On the other
hand, while active we know the proportion of appearing contexts (EA) as well as the
misclassification of each context. This is formalized in Equation (A7).

CM∗t,p =
|C|

∑
i=1

Di,p(ESi,p)t +
|C|

∑
i=1

|C|

∑
j=1

Di,j(EAi,j)tCMt,p (A7)

Gain =
1
w

|C|

∑
i=1

|C|

∑
j=1

len(j)Di,j (A8)

D–the distribution of the cycle types. Di,j is the proportion of 〈i, j〉 cycles.
CM∗t,p–element (t, p) of the confusion matrix of the system that employs duty cycling
with given parameters. The first part of the equation is the performance in the sleeping
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phase, the second in the active phase. Note: The sum of all the elements in this new
matrix is different than in the original CM matrix; this can be easily solved with
normalization if need be.
Gain—the proportion of sleeping periods compared to the active ones.
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