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Abstract 

We present a study of buzzing sounds of several common species of bumblebees, with the focus on 

automatic classification of bumblebee species and types. Such classification is useful for bumblebee 

monitoring, which is important in view of evaluating the quality of their living environment and 

protecting the biodiversity of these important pollinators. We analyzed natural buzzing frequencies for 

queens and workers of 12 species. In addition, we analyzed changes in buzzing of B. hypnorum worker 

for different types of behavior. A bumblebee classification application was developed using machine 

learning algorithms. Audio features were extracted from sound recordings using a large feature library. 

The best features were used to train a classification model, with Random Forest proving to be the best 

training algorithm on the testing set of samples. The web and mobile application also allows expert 

users to upload new recordings that can be later used to improve the classification model and expand 

it to include more species.  
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Introduction 

Bumblebees (genus Bombus from the bee family Apidae) are social insects that play an important role 

in the ecosystem as pollinators of various plants. Bumblebees typically have bulkier bodies than 

honeybees, which allows them to be active at lower temperatures and in a wider variety of weather 

conditions. Furthermore, unlike domestic honeybees, bumblebees use a technique called buzz-

pollination or sonication to extract pollen from flowers of certain plants that release pollen only 

through small openings in the anthers’ tips by shaking the anthers (De Luca and Vallejo-Marin 2013). 

This makes bumblebees the key pollinators of plants such as clover or tomatoes. Cranberries, 

blueberries and kiwifruit also benefit from buzz pollination (Buchmann 1985). Shipping bumblebee 

families to greenhouses has even become a lucrative business. While only some species are of 

commercial interest, all bumblebee species are important in natural ecosystems, with certain plants 

depending on a single species for pollination. Worldwide, there are around 250 known bumblebee 

species (Williams and Osborne 2009; Grad et al. 2010). The highest diversity is found in the temperate 

regions of Asia where the genus originates. Bumblebees are also common in Europe, North Africa, 

North America, and the mountains of Central and South America. They have also been introduced to 

other regions, such as Australia, New Zealand, and South Africa, for agricultural purposes (Grad et al. 

2010). Central European countries show a relatively high diversity in Bombus species, including 

subgenus Psithyrus (Rasmont 2013). 40 species have been identified in Germany and Switzerland, 45 

in Austria (Schwarz et al. 1996), 39 in Poland, and 35 in Slovenia (Grad et al. 2010). However, studies 

in the last decade (Williams and Osborne 2009) have demonstrated that bumblebee species are 

declining worldwide, with possible reasons being related to land-use change and agricultural practices. 



The decline of pollinator numbers was also highlighted in the recent report of the Intergovernmental 

Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), pointing out that further 

declines would present serious risks in production of foods, such as seeds and fruits, that rely on these 

species (Gilbert 2016). Consequently, methods for quick and accurate automatic recognition of 

bumblebee species are becoming a matter of increased interest. 

Classification of bumblebee species typically relies on visible morphological characteristics, since 

species differ in body size and structure or hair color and pattern. Within the same species, queens are 

typically larger than workers, while males can differ either in coloration or other physical 

characteristics, such as the number of dorsal plates (tergites) in the abdomen or the length of the 

antennae. Males also lack pollen baskets on their hind legs. Several web or mobile applications are 

available to help with visual identification (Bumblebee Conservation Trust 2015; Trilar 2014). These 

classification techniques require active human involvement in the decision procedure, which makes 

them time-consuming, and demand skilled observers with visual integrity, since several bumblebee 

species are similar to an untrained eye. Automatic classification based on visual features (image 

recognition) would be beneficial, but it is difficult due to complications arising from bumblebee 

orientation, image quality, light condition, or background. On the other hand, bumblebee buzzing 

sound is relatively easy to acquire and can in principle be collected remotely and continuously, which 

is more practical than in traditional scientific surveys that collect individuals.  

Automatic classification of animal sounds has been attempted before for several different animal 

groups, such as birds and frogs. Huang et al. (2009), used k-th Nearest Neighbor (kNN) and Support 

Vector Machines (SVM) classifiers to recognize the frog species based on three extracted audio 

features, resulting in around 90 % classification accuracy for six species. Cheng et al. (2010) attempted 

to distinguish between four different species of passerine birds using probabilistic models, especially 

the Gaussian mixture model (GMM), and MFCCs as the audio features. They reached around 90 % 

accuracy of classification. A similar approach was used by Lee et al. (2008) on a larger set of birds, 

reporting an overall 84 % classification accuracy on a set of 28 bird species The classification reached 

100 % accuracy for several species, while it was significantly lower (even less than 10 %) in few cases. 

The authors acknowledged the limits of their method due to a limited amount of data and a lack of 

standard test data. Other groups compared performances of different machine learning algorithms for 

classification of birds and frogs (Acevedo et al. 2009) and birds (Lopes et al. 2011). The SVM algorithm 

produced good classification results in both cases, with classification accuracies above 90 % in both 

cases. 

In the field of insect sound classification, substantial work has been done with two different goals – to 

monitor biodiversity and to detect pests (such as larvae in timber) for phytosanitary applications 

(Chesmore 2008). Different types of artificial neural networks, including multilayer perceptron (MLP), 

self-organizing map (SOM), and learning vector quantization (LVQ) have been used for classification of 

cicada and grasshopper species based on their sound and for identification of beetle species based on 

sounds, generated by their larvae biting on wood fibers. In these studies, the classification accuracy 

based on 3 or 4 different species in each case, was typically above 80 %. Chesmore and Nellenbach 

(2001) also demonstrated that it is possible to correctly identify 25 British Orthoptera species with up 

to 99 % accuracy; however, the authors noted that they were performing the study using high-quality 

recordings with no interfering signals. Ganchev et al. (2007) used an approach that is similar to the one 

employed in human speech recognition. They used a series of linear frequency cepstral coefficients 



(LFCC) as feature vectors and various approaches, including probabilistic neural networks and GMM, 

to build classification models. On a set of 313 species of crickets, katydids, and cicadas, they reported 

86 % classification accuracy on a species level, with the accuracy further increasing if the classification 

was performed on a genus or subfamily level.   

Currently, various web and mobile applications for recognizing animal species from sounds exist; 

however, none of them has been available for bumblebees until now. One should also note that animal 

sound recognition is typically based on detecting structured sounds like bird songs or frog calls whereas 

flying insects create sounds in the form or rather monotonic buzzing. Therefore, the methods applied 

for bird and flying insect recognition might differ due to the different input. Still, bumblebees can 

produce different buzzing sounds under different circumstances. We distinguish buzzing during flight, 

sonication, and hissing. These sounds are produced by oscillations of the flight muscles inside the 

metathorax. We define the natural frequency as the frequency at which an undamped system will 

vibrate in the absence of an opposing force (King et al. 1996) – which is the case during the flight. In 

addition, bumblebees produce sounds with significantly higher frequencies during sonication (King et 

al. 1996) to release pollen from certain types of flowers. Bumblebees achieve vibrations by placing 

their thorax close to the anthers and contracting their flight muscles at a high frequency of about 400 

Hz (King 1993; Goulson 2010). When disturbed, bumblebees hiss (Kirchner and Röschard 1998). Hissing 

was found to be a defense mechanism intended to chase away potential intruders, such as mice, from 

the nests. It was demonstrated that hissing can be triggered by vibrating the nest or increasing the CO2 

concentration, both of which can be related to the presence of an intruder (Kirchner and Röschard 

1998). Higher frequencies of both sonication and hissing sounds have been linked to the reduced 

inertia of the flight system by decoupling the wings – by moving the flight muscles without moving the 

wings (King et al. 1996, Kirchner and Röschard 1998; De Luca and Vallejo-Marin 2013; De Luca et al. 

2014). De Luca et al. (2014) further studied pollination and defense buzzes in five bumblebee taxa in 

relation to body size. In addition to these characteristic sounds, we noticed that bumblebees produce 

audibly different sounds when cold, ventilating the nest, or when trapped in a large closed space, such 

as a room.     

In this paper, we focus on analyzing buzzing sounds of several common bumblebee species of Central 

Europe. The first part deals with natural frequencies (from the buzzing sound produced during flight) 

of different bumblebee species and castes (queens and workers). In addition, we present a sonogram 

of a B. hypnorum worker, recorded in various situations (flight, buzz pollination, hissing and buzzing in 

a room). 

The second part of the paper focuses on automatic classification of bumblebee species and castes 

based on the buzzing sound. Here, we only consider the sound produced during flight, as it is the 

easiest to obtain in the field, and represents the characteristic sound of undisturbed bumblebees. 

Different machine-learning algorithms were tested to build classification models, using several audio 

features calculated from original sound recordings. We discuss the accuracy of our classification 

approach and consider possible further improvements.   

Materials and methods 

Data acquisition 



Buzzing sounds were recorded using a Yamaha Pocketrak PR7 recorder. Samples were recorded at 24 

bit / 96 kHz and written in the .wav format. Sound recordings were obtained for 12 bumblebee species, 

both for queens and workers, except for B. argillaceus and B. terrestris, where recordings were 

obtained only for queens, and B. jonellus, only for workers. For all species, recordings were obtained 

for bumblebees during foraging – visiting flowers. The length of individual recordings ranged from 

several seconds to over a minute. Additionally, in order to analyze the buzzing sound in different 

scenarios, a B. hypnorum worker was recorded in various circumstances, e.g. while feeding on an 

Aquilegia vulgaris flower (sonication), trapped in a glass jar, and in a room. All recordings were 

obtained in spring and summer months of 2014 and 2015 on various locations in Slovenia.  

Sound processing 

In the first step, original recordings were manually cut to segments up to 5 seconds long, and parts 

with no bumblebee sound were discarded. In addition, the segments where the background noise was 

significantly interfering with the buzzing were excluded as well. No additional preprocessing was used.  

Sound recordings were analyzed using the Audacity and Matlab software. Natural frequencies for 

bumblebees were obtained using the Fourier transform of the recordings.  

Acoustic feature extraction 

Audio feature extraction is applied to transform raw audio data into features that explicitly represent 

properties of the data that may be relevant for classification. The features were extracted using the 

openAudio feature extraction tool (Schuller 2008). The software takes a .wav file as input and then 

computes 1582 numerical features. These features include, among others, the Mel-Frequency 

Cepstrum Coefficients (MFCC), which typically perform well in audio classification scenarios as seen in 

related work (Lee et al. 2008; Cheng et al. 2010).  

It is quite common approach in several machine learning communities to generate an abundant 

number of features, estimate their quality and construct a much smaller subset of most relevant 

attributes for further use (Robnik-Šikonja and Kononenko 2003). The smaller set typically enables 

better performance in terms of quality, manageability, and processing speed. For the bumblebees, the 

best 100 features were chosen based on the information gain (IG) as the feature quality measure, with 

100 being a number that proved a reasonable choice in previous experiments in similar domains. The 

list of 100 chosen attributes is provided in Supplementary Information. 

In information theory, the IG of a particular feature 𝑖 describes the change in information entropy H 

after this feature is used to split the training data 𝑇 into subsets,   

IG(𝑇, 𝑖) = H(𝑇) − H(𝑇|𝑖) 

Entropy H is a measure of unpredictability of information (about bumblebee species), so it is low in 

subsets that are pure in respect to the particular species and vice versa. If a feature 𝑖 discriminates 

between the species well, H(𝑇|𝑖) is significantly lower than H(𝑇), and IG(𝑇, 𝑖) is therefore high. 

By using the IG, the features with the highest potential to discriminate between the species in the 

training set were chosen. The values of the best extracted features were then computed for each 

recording and saved into a database for machine learning. 



Machine learning and classification 

Machine learning algorithms have been used extensively to recognize patterns in large sets of data in 

various applications (Vidulin et al. 2014; Gjoreski et al. 2015). For bumblebee classification, the WEKA 

open source machine learning software (Hall et al. 2009) was used. Four different algorithms were 

used for training: J48 tree, Naïve Bayes, Support Vector Machine, and Random Forest, to enable 

comparison of performance of different methods.  

J48 builds decision tress in which internal nodes correspond to (audio) features, branches to different 

values of the features, and leaves to classes (bumblebee species). Classification of an example 

(bumblebee sound) starts at the root and proceeds along the branches corresponding to the feature 

values of the example, until a leaf is reached and its class assigned to the example. J48 decision trees 

are built in steps, always using the feature with the highest information gain to create the split at a 

node, until the training data at a node are pure enough with respect to the class. Naïve Bayes computes 

the probability that an example belongs to a class based on the frequency of its features in the training 

data belonging to that class. It then classifies the example into the class with the highest probability. It 

is called naïve because it assumes that the value of each feature is independent of the value of any 

other feature. Although this assumption does not always hold in real cases, Naïve Bayes still often 

produces good classification results. Support Vector Machine approach is more elaborate. It places 

data in a multi-dimensional space, where each dimension corresponds to one feature. It then searches 

for a hyperplane splitting the space in two, so that each side contains examples belonging to one class. 

Random Forest is – as the name suggests – a set of multiple decision trees. Each tree is built on a 

randomly chosen subset of data using a randomly chosen subset of features, which prevents the 

correlation of the trees. To classify an example, it is classified by all the trees in the forest, which then 

vote for the final class (Hastie et al. 2009). Of these four methods, only J48 creates a comprehensible 

model, i.e. a single decision tree. 

To evaluate the classification accuracy of each of the models, the data were split into a training set (80 

% of the samples) and testing set (the remaining 20 %). Since several audio samples were created by 

splitting longer recordings into shorter segments, special attention was paid to always allocating all 

samples from an individual recording either to the training or testing set. The models were constructed 

from the training set. A 5-fold cross-validation of the training set was performed to assess the quality 

of the set itself. In the cross-validation process, the training set is split into five smaller subsets. In each 

evaluation run, four subsets were used to train the algorithm and the remaining one was used for 

testing. In this procedure, parts of a single longer recording can be used both in training and testing 

sets. We consider this acceptable, since small variations in conditions during each long recording (the 

distance between the bumblebee and the microphone, differences in the environmental noise, etc.) 

nevertheless make each sample distinct from the others. Using the confusion matrix, we identified the 

bumblebee types that are most commonly misclassified as another type and used this knowledge on 

the testing set that consisted of independent recordings.  

In the field of machine learning, a confusion matrix, also known as a contingency table or an error 

matrix, is a table that allows visualization of the performance of an algorithm. Each column of the 

matrix represents the instances in a predicted class, while each row represents the instances in an 

actual class. The name stems from the fact that it makes it easy to see if the system is confusing two 

classes (i.e. commonly mislabeling one as another). 

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Contingency_table


Analysis and results 

Frequency analysis 

As noted previously, bumblebees can produce different types of buzzing, depending on the 

circumstances. Figure 1 shows a spectrograph of different types of buzzing for a B. hypnorum worker, 

chosen for a detailed analysis as one of the more common bumblebee species. Buzzing types are 

clearly distinct from one another. While flying, the spectrogram is time-independent and consists of 

natural frequency of around 200 Hz, together with higher harmonics. Slight temporal variations of the 

amplitude are related to the sound intensity since the distance of the bumblebee from the microphone 

varies. During the sonication section, two parts are clearly visible – the part when the bumblebee lands 

on the flower, with frequencies that are the same as in the regular flight, and the sonication itself, 

where the fundamental frequency increases significantly (around 300 Hz). A shift from the natural 

frequency is also prominent when the bumblebee is hissing. The strongest frequency component in 

this case comes at around 700 Hz. When bumblebee was flying in a room, the spectrogram is similar 

to the regular flight sound, only the fundamental frequency is lower (170 Hz). A slight temporal 

variation in the main frequency can be observed as well.  

 

Figure 1: Spectrograph of different types of buzzing for B. hypnorum worker 

As demonstrated, bumblebee buzzing varies depending on the situation. A detailed analysis of the 

connection between different buzzing types and morphological structures responsible for each type is 

out of the scope of the paper. However, we notice that buzzing during flying is roughly time-

independent and can be used to approximately discriminate between different species and castes. In 

the rest of this paper, we deal only with bumblebees flying under normal circumstances, without 

distortions due to surroundings such as glass or room. Capturing data only during normal flight is 

important for real-life testing, as demonstrated in Figure 1. For a detailed analysis of defensive and 

pollination buzzing sounds in several bumblebee species, see also De Luca et al. (2014).  

Table 1 lists the average natural frequencies of 12 species of bumblebees, in most cases including both 

queens and workers (in three cases, only one of the two types were found, therefore there are 21 

bumblebee types in the table). In most cases, at least 5-10 different individuals were recorded - except 

for the species that were more difficult to find, where the number was lower.   



 Species & type ν0 (Hz) Δ ν0 (Hz) Median ν (Hz) N 

1 B. argillaceus queen 137 3  2 

2 B. hortorum queen 132 8.5 132 7 

3 B. hortorum worker 153 16 159 8 

4 B. humilis queen 181 15 180 19 

5 B. humilis worker 193 13 194 19 

6 B. hypnorum queen 149 16 149 7 

7 B. hypnorum worker 186 5.6 186 11 

8 B. jonellus worker 206 4  2 

9 B. lapidarius queen 144 15 144 6 

10 B. lapidarius worker 160 11 157 4 

11 B. lucorum queen 128 20 131 9 

12 B. lucorum worker 161 9 158 10 

13 B. pascuorum queen 141 16 140 27 

14 B. pascuorum worker 180 20 182 28 

15 B. pratorum queen 162 10 163 10 

16 B. pratorum worker 211 17 211 13 

17 B. ruderarius queen 156 3  1 

18 B. ruderarius worker 180 5  2 

19 B. sylvarum queen 210 3  1 

20 B. sylvarum worker 252 16 252 8 

21 B. terrestris queen 150 3  1 

 

Table 1: Natural frequencies for different bumblebee species and castes. Δν0 denotes the experimental 

error, calculated as maximum deviation from the average value if N < 6 and as standard deviation if N 

≥ 6, where N denotes the number of individuals of each type recorded. Median frequency was 

calculated only for cases where we had 4 or more individuals.   



 

 

Figure 2: Body length vs. natural frequency for the investigated bumblebees, numbers correspond to 

the numbers in Table 1. Body length data is taken from Trilar (2014), error bars on the x-axis indicate 

the span of the bumblebee size. Error bars on the y-axis correspond to standard deviation or absolute 

error, as discussed in Table 1. 

It is interesting to observe that the natural frequencies of queens are always lower than those of 

workers. This is consistent with the fact that queens typically have a considerably larger body size, 

which is also shown in Figure 2, in a body length vs. natural frequency plot. Figure 3 shows a 

comparison of spectra for queens of two different species, B. sylvarum and B. lucorum. Again, the 

natural frequency of B. lucorum, which is a larger species, is much lower than that of B. sylvarum.  



   

Figure 3: Fourier spectra of queens of B. sylvarum and B. lucorum (low-frequency noise below 50 Hz 

has been filtered out). 

Machine learning on the training set 

Figure 2 shows that the natural frequency alone is not sufficient to discriminate well between different 

species and castes: in our study, eight types of bumblebees have natural frequencies in a frequency 

window less than 15 Hz wide. Considering also the experimental error in frequency determination and 

different sizes of individuals, this makes classification based solely on a single parameter unreliable. 

On the other hand, bumblebee buzzing is more complex since morphological characteristics of 

different bumblebee types result in different widths of spectral lines, small peaks at additional 

frequencies in the spectra, etc. Such subtle differences are better considered using a multitude of 

audio features together with a machine learning algorithm.  

In the evaluation process, we only considered the classes where a reasonable number of samples was 

available for the training set in order to avoid overfitting – constructing a classifier that works well on 

the training data but generalizes poorly to other data. Therefore, the evaluation was carried out on 17 

classes. The training set consisted of 1120 samples.  

In the first classification evaluation (5-fold cross validation) on the training set only, the best results 

were obtained using the Random Forest algorithm, with 82.7 % of the samples classified correctly. The 

accuracies for other models were significantly lower, 67.8 % for J48, 52.2 % for Naïve Bayes, and 74 % 

for Support Vector Machines. At this point, it is informative to have a look at the so-called confusion 

matrix (Table 2) for the Random Forest algorithm which shows the actual and the predicted 



classification. The values in the diagonal represent correctly classified samples (correct species 

determined by the row name), while off-diagonal elements represent misclassifications as the wrong 

species (columns). In some classes, the classification accuracy is excellent. For example, B. pratorum 

workers, are classified correctly in 94 % of the cases and B. humilis workers, in 96 %. On the other hand, 

none of the samples for B. ruderarius worker, and B. sylvarum queen, were classified correctly due to 

the small number of samples in each of these classes. For a more reliable test, a larger number of 

samples is required.  

The confusion matrix also provides information which bumblebee types are commonly misclassified as 

particular other types (seen as the off-diagonal elements in the confusion matrix). For example, B. 

lucorum queens and B. hypnorum workers are sometimes misclassified as B. hortorum queens. In a 

similar manner, B. hypnorum workers and B. humilis queens are sometimes misclassified as B. 

pascuorum workers. 

Internet application and evaluation on the testing set  

The knowledge about classes that are often confused was used when creating a web and mobile 

application (animal-sounds.ijs.si) intended for general use. In an attempt to improve the classification 

accuracy when classifying a new recording, the application presents the most likely class as the main 

output, accompanied by one or two most likely alternatives (see Figure 4). Since the application is 

intended for field use, it also displays photographs of the corresponding bumblebee species and castes 

– which may assist the user with the final classification.  

The application allows the user to record the bumblebee sound in the field with a mobile phone and 

immediately send it to the server (located at Jožef Stefan Institute) where the classification algorithm 

is running. Mobile or wireless data connection has to be available for data transfer. Alternatively, 

sound recordings can be stored to the smartphone and analyzed later. The output of the classification 

algorithm is sent back to the smartphone and the results are displayed on the screen. The process from 

submitting the recording to retrieving the results typically takes around half a minute. The web-based 

application has the same functionality as the mobile one, except for the live recording option.   
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classified as  
 
 
     true class 
  ↓ 

47 0 0 5 1 1 0 2 0 0 1 0 0 0 0 0 1 B. hortorum-
q 

2 38 0 3 1 0 3 0 0 0 2 0 0 0 0 0 1 B. hortorum-
w 

0 0 272 0 6 0 0 0 0 0 6 0 0 0 0 0 0 

B. humilis-q 

2 0 0 23 7 7 0 0 0 0 1 0 0 0 0 0 4 B. 
hypnorum-q 

6 1 0 1 74 2 0 0 1 0 7 0 5 0 0 0 3 B. 
hypnorum-w 

2 0 10 2 0 64 2 0 0 4 0 0 0 0 0 0 1 B. 
lapidarius-q 

0 0 0 1 1 0 45 0 0 0 4 0 0 0 0 0 2 B. 
lapidarius-w 

9 0 0 0 0 0 0 28 0 2 0 0 0 0 0 0 0 

B. lucorum-q 

0 0 0 0 0 0 1 0 4 0 3 0 0 1 0 0 0 B. lucorum-
w 

1 0 6 0 1 2 0 4 0 52 1 0 0 0 0 0 0 
B. 
pascuorum-
q 

0 1 0 1 5 1 7 1 0 0 81 0 0 0 0 0 1 
B. 
pascuorum-
w 

0 1 0 2 0 1 2 0 0 0 3 9 0 0 0 0 1 B. pratorum-
q 

1 2 0 1 0 0 0 0 0 0 1 0 109 0 0 0 2 B. pratorum-
w 

0 1 0 0 0 0 2 0 0 0 0 0 0 2 0 0 0 B. 
ruderarius-q 

0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 B. 
ruderarius-w 

0 0 0 0 2 1 0 0 0 0 1 0 1 0 0 0 1 B. sylvarum-
q 

1 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 79 B. sylvarum-
w 

 

Table 2: Confusion matrix for 5-fold cross validation of the training set, using the Random Forest 

classifier, built on 17 classes of bumblebees, including queens (q) and workers (w). The numbers in the 

matrix correspond to numbers of correctly (diagonal elements) and incorrectly (out-of-diagonal 

elements) samples in the set.  

To independently evaluate the performance of the application, it was tested on the testing set 

consisting of samples originating from different recordings than those used in the training set. If an 

individual sample was classified as one of up to two classes that are most often confused with the class 

in question, we still considered the classification to be accurate, since these options are presented as 

alternatives. Again, the Random Forest algorithm produced the best results, with 86 % of the 260 

samples classified correctly. In this test, several types were classified with a very high accuracy, such 

as 100 % of B. hypnorum workers, and 98 % of B. sylvarum workers. On the other hand, none of the 



samples of B. ruderarius workers, and B. sylvarum queens, were again classified correctly, as a direct 

consequence of the small number of samples in the training set, which resulted in the model not being 

reasonably trained for those classes. The overall classification accuracy is comparable to those in other 

studies mentioned in the description of related work, where the accuracy ranged between 80 and 90 

%. One study (Chesmore and Nellenbach 2001) reported almost 99 % accuracy, but in that case the 

recordings were made in a highly controlled environment with no interference, which is not 

comparable to field recordings performed in our experiments. 

 

Figure 4: Home screen of the mobile application, featuring recording, play, recognize, and submit 

buttons (left). An example of the output of the application, presenting the most likely type and 

species, together with photographs (right). 

 

Discussion 

We analyzed buzzing sounds of several common species of Central European bumblebees, including 

queens and workers. Buzzing sounds depend both on morphological characteristics of different 

bumblebee types and on the situation a bumblebee finds itself in. In the case of B. hypnorum worker, 

we analyzed flying sound, sonication, hissing, and the sound that a bumblebee produces when trapped 

in a room. The flying sound is well-resolved and roughly time-independent. It consists of the natural 

frequency (the frequency at which the wings oscillate) and its higher harmonics. Both in case of 



sonication and hissing, higher frequencies become more prominent. When trapped in a room, the 

frequencies are slightly lower than when bumblebee is flying outside.  

Natural frequencies for 12 bumblebee species, including queens and workers, were determined. 

Consistently with the fact that queens are larger than workers, the natural frequencies of queens are 

lower than those of workers. The same effect can be seen also when comparing species that are of 

different sizes. Although a positive correlation between the bumblebee body size and the natural 

frequency exists, focusing solely on the natural frequency for characterization is not sufficient to 

reliably distinguish between different bumblebee species. On the other hand, a machine-learning 

approach considered also additional, less obvious features in the buzzing sound.  

Following the selection of audio features with the highest information gain, machine learning 

algorithms were used on a set containing over 1000 samples in 17 classes. 5-fold cross-validation of 

the training set produced over 82 % classification accuracy using the Random Forest algorithm, which 

is considered a good result. Furthermore, the confusion matrix provided information on which types 

of bumblebees are commonly misclassified as particular other types. This knowledge was incorporated 

in the web application to display alternatives to type considered most likely by the classifier. When 

testing this application on an independent testing set, the overall classification accuracy was 86 %.  

An advantage of the presented approach is that it is easy to expand with new bumblebee species as 

additional classes. Potential future work encompasses the inclusion of males and the addition of other 

types of bumblebee buzzing (sonication, hissing, etc.) – since the present study focuses only on the 

sound produced during flight as means for classification.  

Our approach to the bumblebee classification is in fact rather general. As opposed to previous similar 

studies where a small number of audio features were manually selected, we instead chose a larger 

number of features from an existing feature library, using the information gain as the merit. This means 

that the approach can be easily adapted to classify sounds produced by other animal groups, which 

we have already started working on.  

There are some limitations to our approach. The output of the classification algorithm will always 

“recognize” some type of bumblebee, even if the recording does not represent a bumblebee buzzing. 

In principle, this can be fixed by a prior classifier that distinguishes bumblebee sounds from other 

recordings. Another issue may arise in the case of recordings made with significantly different 

equipment or different settings since it may affect the values of the features. To some degree, different 

settings can be corrected in post-processing.  

For accurate classification, a large number of samples in the training set is required. In our study, some 

cases had only a few recordings available. Our application allows experts to upload additional 

recordings and add new bumblebee types. When a sufficient number of new recordings is uploaded, 

the models can be built again – on the improved dataset. This will lead to improvement and wider 

usability of the classification model in future. As a side note, the samples used in the testing set have 

already been added to the new iteration of the algorithm.   

In summary, our approach with machine learning based on sound and combined with the pictures of 

the classified bumblebee species and types enables fast and accurate classification in the field with the 

mobile application, demanding no prior knowledge of bumblebee species. The system is freely 



available (animal-sounds.ijs.si) and can be updated remotely with the administrator verifying the 

samples before adding them to the databases. For uploading samples to the database, a registration 

(free of charge) is required whereas the classification part itself is open. Other animal groups can be 

added to the database as well since our ambition is to make the application available to wider public.  

One should note that the method presented here achieves reasonably good results in a different way 

than traditional methods such as morphological identification. Further studies should reveal the 

relation between the approach presented here, and the currently dominant approaches for animal 

sound recognition. Now that our approach is available for practical use, it will also be possible to find 

out if the traditional and our approach complement each other and enable best practical automatic 

classification of bumblebees. 
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