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ABSTRACT 
In this paper we present a machine learning approach to activity 
recognition using a wristband device. The approach includes: data 
acquisition, filtering, feature extraction, feature selection, training 
a classification model and finally classification (recognizing the 
activity). We evaluated the approach using a dataset consisting of 
10 everyday activities recorded by 10 volunteers. Even though the 
related work shows that with a wrist-worn device one should 
expect worse accuracy compared to devices worn on other body 
locations (chest, thigh and ankle), our tests showed that the 
accuracy is 72%, which is slightly worse compared to the 
accuracy of the thigh (82%) and ankle-placed devices (83%); and 
slightly better compared to a chest-placed device (67%). 
Additionally, by applying feature selection and increasing the 
window size, the accuracy increased by 5%. 
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1. INTRODUCTION 
With the recent trends and development in sensor technology 
(miniaturization – MEMS; connectivity - Bluetooth low energy 
and WiFi; battery - Li-ion) people get used to the idea of: wearing 
an additional device on themselves beside the telephone, or 
replacing an existing one – the wristwatch. These devices provide 
sensor data which can be used for extracting useful information 
about the user: how many calories are burned during the day, 
what types of activities are performed during the day (sedentary 
vs. dynamic ones), detecting alarming situations (e.g., falls), 
detecting behavioral changes, and similar. A service that emerged 
as an essential basic building block in developing such 
applications is Activity Recognition (AR). The activity of the user 
provides reach contextual information which can be used to 
further infer additional useful information [1][2][3].  Wristband 
devices are becoming popular mainly because people are more or 
less accustomed to wear watches and therefore this placement is 
one of the least intrusive placements to wear a device. Nowadays 
we are witnessing various types of fitness/health oriented wrist-
worn devices, such as: FitBit1, Empaica2, Microsoft band3; and 
also in the last few years smartwatches are gaining attraction: 
Apple watch, Android wear wristwatches, Samsung Galaxy gear, 
etc. 

                                                                 
1 www.firbit.com  
2 www.epatica.com  
3 http://www.microsoft.com/microsoft-band/en-us  

In this paper we present a machine learning approach to activity 
recognition using a wristband device. The approach includes: data 
acquisition, filtering, feature extraction, feature selection, training 
a classification model and finally classification (recognizing the 
activity). It was evaluated on a dataset consisting of 10 everyday 
activities recorded by 10 volunteers. The results showed that with 
a wrist-worn device one can recognize much more activities than 
what is commonly used for (i.e., walking - step counter), running, 
lying - sleeping). Additionally, the accuracy is comparable even 
in some cases higher compared to devices worn on other body 
locations (chest, thigh and ankle), which are more established and 
commonly used for activity recognition tasks. 

2. RELATED WORK 
The most recent literature in AR field shows that wearable 
accelerometers are among the most suitable sensors for 
unobtrusive AR [7]. Accelerometers are becoming increasingly 
common because of their lowering cost, weight and power 
consumption. Currently the most exploited and probably the most 
mature approach to AR is with wearable accelerometers by using 
machine learning approach [18][16][17]. This approach usually 
implements widely used classification methods, such as Decision 
Tree, SVM, kNN and Naive Bayes.  

For the sake of the user’s convenience, AR applications are often 
limited to a single accelerometer. Numerous studies have shown 
that the performance of an Activity Recognition System strongly 
depends on the accelerometer placement (e.g., chest, abdomen, 
waist, thigh, ankle) and that some placements are more suitable 
(in terms of AR performance) for particular activities [4][6][5].  

In the past the wrist was the least exploited placement for AR. 
Mainly because of our inclination towards frequent hand 
movements which negatively influence an AR system. The 
researchers usually were testing chest, waist, thighs (left and 
right) [18][19], ankles (left and right) and neck. The results vary a 
lot and cannot be compared through different studies (different 
datasets, different algorithm parameters, different approaches, 
etc.). In our previous work we also tested most of these locations 
on two datasets. On the first one, the results showed that all of the 
locations perform similarly achieving around 82% accuracy [8]. 
On the second dataset, where the experiments were more 
thorough (bigger dataset, improved algorithms) the results showed 
that thigh and ankle perform similarly (82% and 83% 
respectively) and achieve higher accuracy compared to the chest 
(67%) [9]. 

However, with the penetration of the wrist-worn fitness trackers 
and smartwatches, it is to be expected that wrist sensor placement 
will be quite researched area. Recently, Trust et al. [12] presented 
a study for hip versus wrist data for AR. The models using hip 
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data slightly outperformed the wrist-data models. Similarly, in the 
study by Rosenberg et al. [13] for sedentary and activity 
detection, the models using hip data outperform the wrist models. 
In the study by Manini et al. [14] ankle data models achieved high 
accuracy of 95.0% that decreased to 84.7% for wrist data models. 
Shorter (4 s) windows only minimally decreased performances of 
the algorithm on the wrist to 84.2%. Ellis et al. [15] presented an 
approach for locomotion and household activities recognition in a 
lab setting. For one subset of activities the hip-data models 
outperformed the wrist data, but over all activities the wrist-data 
models produced better results. Garcia-Ceja et al. [20] presented 
person-specific activity detection for activities such as: shopping, 
showering, dinner, computer-work and exercise. 

3. EXPERIMENTAL SETUP 
3.1 Sensor equipment and experimental data 
The sensor equipment consists of a Shimmer sensor platform. The 
sensors were placed on the chest, thigh, ankle and wrist with 
adjustable straps. The accelerometer data was acquired on a 
laptop in real-time via Bluetooth using frequency of 50 Hz. The 
data was manually labeled with the corresponding activity. Ten 
volunteers performed a complex 90-minute scenario which 
included ten elementary activities: lying, standing, walking, 
sitting, cycling, all fours, kneeling, running, bending and 
transition (transition up and transition down).  These activities 
were selected as the most common elementary, everyday-life 
activities. In this paper, we are performing analysis only on the 
wrist-sensor data. The data from the other sensors (chest, thigh 
and ankle) has been extensively analyzed in our previous studies 
[6][7][9][10][11]. Nevertheless, the results presented in those 
studies provide valuable guidelines to which we are comparing. 
Overall, 1,000,000 raw-data samples per volunteer were recorded. 
These raw-data samples were transformed into approximately 
7,000 data instances per volunteer. Figure 1 shows the instances’ 
class distribution. 

3.2 Experimental Method 
Figure 2 shows the machine learning approach used in this 
research. It includes the following modules: data segmentation, 
data filtering, feature extraction, feature selection and building a 
classification model. The data segmentation phase uses an 
overlapping sliding-window technique, dividing the continuous 
sensor-stream data into data segments − windows. A window of a 
fixed size (width) moved across the stream of data. Once the 
sensor measurements are segmented, further pre-processing is  
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Figure 1. Class (activity) distribution 

 

Figure 2. Activity recognition approach 

performed using two simple filters: low-pass and band-pass. The 
feature extraction phase produces lowpass filtered features that 
measure the posture of the body, and band-pass filtered features 
that represent: the motion shape, the motion variance, the motion 
energy, and the motion periodicity [21] . The features extraction 
phase results in 53 extracted features. Since all of the features are 
extracted from one data source (wrist accelerometer), a high 
feature correlation is expected. For that reason the feature 
selection method is based on feature-correlation analysis which 
serves the purpose of removing correlated and “non-informative” 
features. Low informative features are considered those that have 
low information gain. The information gain evaluates the worth of 
a feature by measuring the information gain with respect to the 
class. Regarding the correlation of the features, we checked for 
Pearson’s correlation, which measures linear correlation between 
features, and Spearman correlation, which measures how well the 
relationship between two variables can be described using a 
monotonic function. The feature selection steps are: 

 Rank features by gain ratio. 

 Starting from the lowest ranked feature, calculate its 
correlation coefficients (Pearson and Spearman) with each 
of the features ranked above. If it has a correlation 
coefficient higher than 0.95 with at least one feature, 
remove it. 

 Repeat step 2 until 50% of the features are checked. 

Figure 3 shows the results of the Person’s correlation analysis 
before (left) and after (right) the feature selection phase. On the 
figure there are two correlation matrices, 53x53 (left) and (35x35) 
right. Each row (column) represents different feature. Red color 
represents negative, blue color represents positive and the 
intensity of the color represents the absolute value of the 
correlation. This figure on one hand depicts the dimensionality 
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reduction of 34% (from 53 features to 35 features), and on the 
other hand the correlation reduction (the intensities of the colors). 
On the left matrix some regions with high correlations are marked 
(with black rectangles) to present candidate features that the 
feature selection algorithm may delete. On the right matrix there 
is high correlation between some of the features even after the 
feature selection phase. These are features that have high gain 
ratio index. In each experiment we checked the accuracy with and 
without the feature selection phase. The experiments with feature 
selection phase achieved at least equal results and in some cases 
even slightly better results. Once the features are extracted (and 
selected), a feature vector is formed, and is fed into a 
classification model, which recognizes the activity of the user. 
The classification model is previously trained on feature vectors 
computed over training data. We tested several machine learning 
algorithms, Decision Tree, RF, Naive Bayes, and SVM with 
Leave-one-user out cross-validation. 

 

Figure 3. Person’s correlation matrix before (left) and after 
(right) feature selection 

4. EXPERIMENTAL RESULTS AND 
DISCUSSION 

4.1 Wrist vs other sensor placement 
First we wanted to know how well the machine learning models 
will perform when built using wrist-accelerometer compared to 
other body placements (ankle, chest and thigh). Here we present 
results without the feature selection phase in order to be 
comparable to our previous studies.  Figure 4 shows accuracy 
comparison based on which sensor placement is used for building 
the machine learning model. For each study the same data is used 
with almost identical methodologies (same segmentation scheme, 
same number of features and same classifiers). From the figure 
we can see that for our dataset ankle or thigh sensor-placement 
provide better results than wrist and chest. 

From now on we will report only on results achieved by the 
Random Forest (RF) classifier (which in not included in Figure 5 
due to lack of information for the Ankle, Chest and Thigh 
accuracies) since with accuracy of 74% it performed best in our 
experiments. 

Table 1 shows the confusion matrix, precision, recall and F1 score 
for each class obtained by the RF classifier. The F1 score for each 
of the activities shows that bending, kneeling and transition, are 
the three activities that are hard to recognize by the classifier. 
Standing and all fours are somewhat in the middle, whereas 
sitting, walking, lying, cycling and running are the activities that 
are recognized with a satisfying level. 
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Figure 4. Accuracy for wrist vs other sensor placement 

Table 1. RF confusion matrix and performance metrics 
(recall, precision and F1 score) per class 

1 2 3 4 5 6 7 8 9 10

Walking ‐1 8428 1067 42 43 305 7 4 113 114 4

Standing‐2 298 8185 151 318 400 164 68 123 1381 1079

Sitting ‐3 6 300 6256 1489 0 9 0 68 10 95

Lying‐4 2 303 1531 14889 61 21 0 38 71 90

Bending ‐5 99 590 1 23 798 13 0 10 26 56

Cycling‐6 99 1110 0 8 117 5950 0 3 72 46

Running‐7 44 410 4 19 0 0 3157 2 7 1

Transition‐8 175 402 50 57 16 2 0 643 161 80

All_fours‐9 123 1140 6 128 72 77 6 65 4283 96

Kneeling‐10 52 1980 267 391 127 108 0 43 492 818

83 67 76 88 6 80 87 41 71 19

90 53 75 86 42 94 98 58 65 35

87 59 76 87 11 87 92 48 68 25

Recall

Precision

F1 score

RF ‐ Acc = 74%
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4.2 Effects of window size on classification 
performance 
In our activity recognition approach there is a “data 
segmentation” phase where an overlapping sliding-window is 
used for transforming the continuous data stream into a data 
segments over which the features are calculated. The reported 
results in the previous experiments (Section 3.1) are achieved 
using a window of 2s with an overlap of 1s. That means for 
predicting the activity at time T, we are taking accelerometer data 
starting from T-2s to T. The next prediction is at time T+1s and 
we are taking data starting from T-1s to T+1s, and so on. 
Basically we are predicting activity once per second by analyzing 
the data from the previous two seconds. 

In these experiments we wanted to study the effects of the 
window size on the performance of the RF classifier. Moreover 
we wanted to see if choosing a shorter window can improve the 
accuracy of the short-duration activities, such as bending and 
transition, and the other way around (if choosing a longer window 
can improve the accuracy of the long-duration activities, e.g., 
standing). Table 2 shows the summarization of these experiments. 
The second row presents the window which is used for the 
experiments, starting from 1s window with 0.5s overlap, all the 
way to 10s window with 8s overlap. For each experiment the F1 
score per activity and the overall accuracy of the RF classifier is 
reported. This table presents several observations:  

 A short window of 1s with 0.5s overlap does not improve 
the performance of the classifier for the short-duration 
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activities. Better performance is achieved when longer 
windows are used.   

 Only for the activity Running a shorter window (2s with 1s 
overlap) produces better performance (precision, recall and 
F1 score) than the other window lengths. For all the other 
activities the longer the window the better the performance 
of the classifiers. 

 The overall accuracy increases by increasing the window. 
However, this increase is statistically important only for the 
increases from 1(0.5) to 2(1) and from 2(1) to 4(2). Also, 
the number of instances is highest for the windows size 1 
(around 7000 per person), for window size 2 it is around 
5000 per person, and for the rest of the window sizes the 
number of instances is equal i.e., around 3200 per person. 

 

Table 2. RF classification performance for varying window  

Metrics Activity 1(0.5) 2(1) 4(2) 6(4) 8(6) 10(8)

Walking 83.8 86.6 90.4 91.1 90.9 91.4

Standing 55.3 60.0 64.4 65.6 66.0 66.8

Sitting 71.2 75.1 75.9 77.9 77.4 77.4

Lying 84.8 86.5 87.7 88.7 88.9 89.2

Bending 12.7 12.2 13.1 14.4 14.7 14.4

Cycling 81.4 85.0 88.4 89.1 89.8 90.0

Running 96.2 97.2 97.1 97.0 96.7 96.9

Transition 32.9 47.3 61.0 61.2 62.4 61.7

All fours 63.6 69.0 71.4 72.9 73.4 74.7

Kneeling 21.4 23.8 25.1 26.1 24.3 23.7

70.8 74.4 77.5 78.6 78.8 79.1

Random Forest Data  (overlap) window ‐ seconds

F1 score

Accuracy  

5. CONCLUSION 
The high correlation between the features allowed for reducing 
the feature dimensionality by 34% (from 53 features to 35) while 
keeping the classifier performance. For that we removed features 
that have low information gain and high correlation. 

Wrist accelerometer data produces slightly worse classifying 
performance than thigh and chest accelerometer data. The most 
problematic activities (from the 10 we analyzed) are bending, 
kneeling and transition. The results for the other activities are 
somewhat expected, except for the activity standing which is 
mixed by the classifier with almost all of the other activities. We 
hypothesize that during the data collecting scenario the volunteers 
were frequently moving their hands (while talking to each other), 
so the classifiers sees these hand movements as a movement of 
the whole body. Regarding the size of the window in the 
segmentation phase, it should be noted that for a longer window 
size the features are calculated over bigger data segments which 
may slightly increase the computational complexity. Window of 
4s with 2s overlap may be the best tradeoff between 
computational complexity and classifier performance. 

In these experiments each instance (activity) is treated 
independently of the previous activity, whereas in reality we 
rarely change our activity every 2s (2s is the predicting frequency 
for the highest achieved results - that is window size of 4, 6, 8 or 
10 seconds). For future work we may use higher level features 
that provide information about the dependency of the instances 
[11]. 
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