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ABSTRACT 

Arousal recognition is an important task in mobile health and 

human-computer interaction (HCI). In mobile health, it can 

contribute to timely detection and improved management of 

mental health, e.g., depression and bipolar disorders, and in HCI 

it can enhance user experience. However, which machine-learning 

(ML) methods and which input is most suitable for arousal 

recognition, are challenging and open research questions, which 

we analyze in this paper. 

We present an inter-domain study for arousal recognition on six 

different datasets, recorded with twelve different hardware sensors 

from which we analyze galvanic skin response (GSR) data from 

GSR sensors and R-R data extracted from Electrocardiography 

(ECG) or blood volume pulse (BVP) sensors. The data belongs to 

191 different subjects and sums up to 260 hours of labelled data. 

The six datasets are processed and translated into a common 

spectro-temporal space, and features are extracted and fed into 

ML algorithms to build models for arousal recognition. When one 

model is built for each dataset, it turns out that whether the R-R, 

GSR, or merged features yield the best results is domain (dataset) 

dependent. When all datasets are merged into one and used to 

train and evaluate the models, the R-R models slightly 

outperformed the GSR models. 
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1. INTRODUCTION 
The field of affective computing [1] has been introduced almost 

two decades ago and yet modeling affective states has remained a 

challenging task. Its importance is mainly reflected in the domain 

of human-computer interaction (HCI) and mobile health. In the 

HCI, it enables a more natural and emotionally intelligent 

interaction. In the mobile health, it contributes to the timely 

detection and management of emotional and mental disorders 

such as depression, bipolar disorders and posttraumatic stress 

disorder. For example, the cost of work-related depression in 

Europe, was estimated to €617 billion annually in 2013. The total 

was made up of costs resulting from absenteeism and 

presenteeism (€272 billion), loss of productivity (€242 billion), 

health care costs of €63 billion and social welfare costs in the 

form of disability benefit payments (€39 billion) [2]. 

Affective states are complex states that results in psychological 

and physiological changes that influence our behaving and 

thinking [17]. These psycho-physiological changes can be 

captured by a wearable device equipped with GSR, ECG or BVP 

sensor. For example, the emotional state of fear usually initiates 

rapid heartbeat, rapid breathing, sweating, and muscle tension, 

which are physiological signs that can be captured using 

wearables. 

The affective states can be modeled using a discrete or a 

continuous approach. In the discrete approach, the affect 

(emotions) is represented as discrete and distinct state, i.e., anger, 

fear, sadness, happiness, boredom, disgust and neutral [15]. In the 

continuous approach, the emotions are represented in 2D or 3D 

space of activeness, valance and dominance [3]. Unlike the 

discrete approach, this model does not suffer from vague 

definitions and fuzzy boundaries, and has been widely used in 

affective studies [4] [5] [6]. The use of the same annotating model 

allows for an inter-study analysis.  

In this study we examine arousal recognition from GSR and 

heart–related physiological data, captured via: chest-worn ECG 

and GSR sensors, finger-worn BVP sensor, and wrist-worn GSR 

sensor and pulse oximeter (PPG) sensor. The data belongs to six 

publicly available datasets for affect recognition, in which there 

are 191 different subjects (70 females) and nearly 260 hours of 

arousal-labelled data.  

All of this introduces the problem of inter-domain learning, to 

which ML techniques are sensitive. To overcome this problem, we 

use preprocessing techniques to translate the datasets into a 

common spectro-temporal space of R-R and GSR data. After the 

preprocessing, R-R and GSR features are extracted and are fed 

into ML algorithms to build models for arousal recognition. 

Finally, the results between different experimental setups are 

compared, i.e., models that use only R-R features, models that 

used only GSR features and models that use both R-R and GSR 

features. This comparison is performed in a dataset-specific setup 

and merged setup where all datasets are merged in one. At the 

end, the experimental results are discussed and the study is 

concluded with remarks for further work. 

RELATED WORK 
Affect recognition is an established computer-science field, but 

one with many challenges remaining. There has been many 

studies confirming that affect recognition can be performed using 

speech analysis [8], video analysis [9], or physiological sensors in 

combination with ML. The majority of the methods that use 

physiological signals use data from ECG, electroencephalogram 

(EEG), functional magnetic resonance imaging (fMRI), GSR, 

electrooculography (EOG) and/or BVP sensors. 

In general, the methods based on EEG data outperform the 

methods based on other data [4] [5], probably due to the fact the 

EEG provides a more direct channel to one’s mind. However, 

even though EEG achieves the best results, it is not applicable in 

normal everyday life. In contrast, affect recognition from R-R 

intervals or GSR data, is much more unobtrusive since this data 



can be extracted from ECG sensors, BVP sensors, PPG or GSR 

sensors, most of which can be found in a wrist device (e.g., 

Empatica [10] and Microsoft Band [11]). Regarding the typical 

ML approaches for affect recognition, Iacoviello et al. have 

combined discrete wavelet transformation, principal component 

analysis and support vector machine (SVM) to build a hybrid 

classification framework using EEG [12]. Khezri et al. used EEG 

combined with GSR to recognize six basic emotions via K-nearest 

neighbors (KNN) classifiers [13]. Verma et al. [14] developed an 

ensemble approach using EEG, electromyography (EMG), ECG, 

GSR, and EOG. Mehmood and Lee used independent component 

analysis to extract emotional indicators from EEG, EMG, GSR, 

ECG, and (effective refractory period) ERP [15]. Mikuckas et al. 

[16] presented a HCI system for emotional state recognition that 

uses spectro-temporal analysis only on R-R signals. More 

specifically, they focused on recognizing stressful states by means 

of the heart rate variability (HRV) analysis.  

However, a clear comparison between ML methods for affect 

recognition from unobtrusively captured sensor data (e.g., R-R vs. 

GSR data) has not been presented yet, since most of these studies 

focused on only one dataset and a combination of the sensor data, 

aiming towards the highest performance and disregarding the 

obtrusiveness of the system. In this work, we analyze which ML 

algorithms in combination with which data type (either R-R 

intervals or GSR) would yield best performance across six 

different datasets (domains) for arousal recognition. 

2. DATA 
The data belongs to six publicly available datasets for affect 

recognition: Ascertain, Deap, Driving workload dataset, Cognitive 

load dataset, Mahnob, and Amigos. Overall, nearly 260 hours of 

arousal-labelled data that belong to 191 subjects. The Table 1 

presents the number of subjects per dataset, the mean age, number 

of trials per subject, mean duration of each trial, duration of data 

per subject - in seconds, and overall duration. 

Table 1. Experimental data summary. 

Subjects Females Mean age Trials µ trial Per subject Overall data

Ascertain 58 21 31 36 80 2880 167040

DEAP 32 16 26,9 40 60 2400 76800

Driving 10 3 35,6 1 1800 1800 18000

Cognitive 21 0 28 2 2400 4800 100800

Mahnob 30 17 26 40 80 3200 96000

Amgos 40 13 28 16 86 1376 55040

Overall 191 70 29,25 135 884,0 15080 458640

Duration in seconds

Dataset

 

The four datasets, Ascertain, Deap, Mahnob and Amigos, were 

already labelled with the subjective arousal level. One difference 

between these datasets was the arousal scale used for annotating. 

For example, the Ascertain dataset used 7-point arousal scale, 

whereas the Deap dataset used 9-point arousal scale (1 is very 

low, and 9 is very high). From the both scales, we split the labels 

in the middle, which is the same split used in the original studies. 

Similar step was performed for the Mahnob dataset. The two 

datasets, Driving workload and Cognitive load, did not contain 

labels for subjective arousal level. The Driving workload dataset 

was labelled with subjective ratings for a workload during driving 

session. For this dataset, we presume that increased workload 

corresponds to increased arousal. Thus, we used the workload 

ratings as an arousal ratings. The split for high arousal was put on 

60%. Similarly, the cognitive load dataset was labelled for 

subjective stress level during stress inducing cognitive load tasks 

(mathematical equations). The subjective scale was from 0 to 4 

(no stress, low, medium and high stress). We put the limit for high 

arousal on 2 (medium stress). 

3. METHODS 

3.1 Pre-processing and feature extraction 

3.1.1 R-R data 
The preprocessing is essential, since it allows merging of the six 

different datasets. For the heart-related data, it translates the 

physiological signals (ECG or BVP) to R-R intervals and 

performs temporal and spectral analysis. First, a peak detection 

algorithm is applied to detect the R-R peaks. Next, temporal 

analysis, i.e., calculating the time distance between the detected 

peaks, detects the R-R intervals. Once the R-R intervals are 

detected they can be analyzed as a time-series. First, each R-R 

signal is filtered using median filter. After the median filter, 

person specific winsorization is performed with the threshold 

parameter of 3 to remove outlier R-R intervals. From the filtered 

R-R signals, periodogram is calculated using the Lomb-Scargle 

algorithm developed by Lomb and further analyzed by Scargle. 

The Lomb-Scargle algorithm is used for spectral analysis of 

unequally spaced data (as are the R-R intervals). Finally, the 

following HRV features were calculated from the time and 

spectral representation of the R-R signals: meanHR, meanRR, 

sdnn, sdsd, rmssd, pnn20, pnn50, sd1, sd2, sd1/sd2, lf, hf, lf/hf  

[32]. 

3.1.2 GSR data 
For merging the GSR data, several problems were addressed. 

Each dataset is recorded with different GSR hardware, thus the 

data can be presented in different units and different scales. To 

address this problem, each GSR signal was converted to µS 

(micro Siemens). Next, to address the inter-participant variability 

of the signal, person-specific min-max normalization was 

performed, i.e., each signal was translated between 0 and 1 using 

person specific winsorized minimum and maximum values. The 

winsorization parameter was set to 3. Finally, the GSR signal was 

filtered using lowpass filter with a cut-off frequency of 1HZ. 

The filtered GSR signal was used to calculate the following GSR 

features: mean, standard deviation, quartiles (25th and 75th), 

quartile deviation, derivative of the signal, sum of the signal, 

number of responses in the signal, rate of responses in the signal, 

sum of the responses, sum of positive derivative, proportion of 

positive derivative, derivative of the tonic component of the 

signal, difference between the tonic component and the overall 

signal[24]. 

3.2 Machine learning 
After the feature extraction, every data entry consists of 16 R-R 

features and 14 GSR features which can be input for typical ML 

algorithms. Models were built using seven different ML 

algorithms: Random Forest, Support Vector Machine, Gradient 

Boosting Classifier, and AdaBoost Classifier, KNN Classifier, 

Gaussian Naive Bayes and Decision Tree Classifier. The 

algorithms were used as implemented in the Scikitlearn, the 

Python ML library. For each algorithm, randomized search on 

hyper parameters was performed on the training data using 2-fold 

validation. 



4. EXPERIMENTAL RESULTS 
Two types of experiments were performed, dataset specific 

experiments, and experiments with merged datasets. The 

evaluation was performed using trial-specific 10-fold cross-

validation, i.e., the data segments that belong to one trial (e.g., 

one affective stimuli), can either belong only to the training set or 

only to the test set, thus there was no overlapping between the 

training and test data. 

4.1 Dataset specific 
The results for the dataset specific experiments are presented in 

Table 2. The first column represents the ML algorithm, the second 

column represents the features used as input to the algorithm (R-

R, GSR or Merged - M) and the rest of the columns represent the 

dataset which is used for training and evaluation using the trial-

dependent 10-fold cross-validation. We report the mean accuracy 

± the standard evaluation for the 10 folds. For each dataset, the 

best performing model(s) is(are) marked with green. For example, 

on the Ascertain and the Driving workload dataset, the best 

performing algorithm is the SVM, on the Deap dataset the best 

performing algorithm is the RF, on the Cognitive Load and the 

Mahnob datasets the best performing is the NB, and on the 

Amigos dataset the best performing is the AdaBoost algorithm.  

When we compare which input (R-R features, GSR features or 

Merged-M) provide better accuracy, on two datasets (the 

Asceratin and the Driving workload) the results are the same, on 

the Deap dataset, the R-R features provide better results, on the 

Cognitive Load dataset the highest accuracy is achieved both for 

the GSR and the Merged features, on the Mahnob dataset the GSR 

features provide best accuracy and on the Amigos dataset the 

Merged features.  

4.2 Merged datasets 
For these experiments, all datasets were merged into one, and the 

trial-dependent 10-fold cross-validation was used to evaluate the 

ML models. The results are presented in Figure 2. The results 

show that the models that use the R-R intervals as input, 

consistently outperform the models that use GSR features as 

input. 

 

5. CONCLUSION AND DISCUSSION 
We presented a study in…. 

The results on the dataset specific setup showed that, out of the 

ML algorithms tested, none yields the best performance on all 

datasets. In addition to that, a clear conclusion cannot be made 

whether the R-R, GSR or the Merged features yield the best 

results – this is domain (dataset) dependent. 

Table 2. Dataset specific experimental results. Mean accuracy ± stdDev for trial-specific 10-fold cross validation. The best 

performing models per dataset are marked with green. 

Ascertain Deap D. Workload Cog. Load Mahnob Amigos

R-R 0.655 ± 0.07 0.556 ± 0.03 0.785 ± 0.24 0.739 ± 0.13 0.580 ± 0.11 0.536 ± 0.06

GSR 0.638 ± 0.06 0.503 ± 0.04 0.780 ± 0.24 0.763 ± 0.12 0.611 ± 0.07 0.473 ± 0.11

M 0.653 ± 0.05 0.540 ± 0.04 0.785 ± 0.25 0.755 ± 0.13 0.611 ± 0.10 0.559 ± 0.10

R-R 0.664 ± 0.07 0.536 ± 0.05 0.795 ± 0.26 0.717 ± 0.21 0.623 ± 0.15 0.521 ± 0.24

GSR 0.664 ± 0.07 0.525 ± 0.05 0.795 ± 0.26 0.712 ± 0.20 0.588 ± 0.10 0.470 ± 0.12

M 0.664 ± 0.07 0.513 ± 0.03 0.795 ± 0.26 0.691 ± 0.18 0.623 ± 0.15 0.506 ± 0.13

R-R 0.649 ± 0.07 0.554 ± 0.03 0.785 ± 0.20 0.736 ± 0.15 0.578 ± 0.11 0.543 ± 0.06

GSR 0.642 ± 0.05 0.500 ± 0.04 0.800 ± 0.21 0.743 ± 0.12 0.609 ± 0.08 0.527 ± 0.09

M 0.644 ± 0.05 0.533 ± 0.03 0.755 ± 0.23 0.761 ± 0.15 0.609 ± 0.11 0.542 ± 0.09

R-R 0.658 ± 0.06 0.532 ± 0.02 0.750 ± 0.23 0.718 ± 0.13 0.580 ± 0.09 0.531 ± 0.07

GSR 0.633 ± 0.05 0.485 ± 0.03 0.750 ± 0.22 0.740 ± 0.13 0.589 ± 0.08 0.514 ± 0.09

M 0.623 ± 0.05 0.526 ± 0.03 0.755 ± 0.22 0.766 ± 0.16 0.610 ± 0.08 0.560 ± 0.08

R-R 0.625 ± 0.05 0.509 ± 0.02 0.710 ± 0.19 0.715 ± 0.13 0.582 ± 0.07 0.509 ± 0.05

GSR 0.590 ± 0.06 0.496 ± 0.04 0.795 ± 0.26 0.772 ± 0.09 0.605 ± 0.06 0.533 ± 0.08

M 0.600 ± 0.05 0.490 ± 0.02 0.750 ± 0.23 0.770 ± 0.13 0.601 ± 0.09 0.533 ± 0.06

R-R 0.654 ± 0.07 0.537 ± 0.04 0.735 ± 0.15 0.748 ± 0.15 0.574 ± 0.06 0.485 ± 0.09

GSR 0.602 ± 0.04 0.537 ± 0.05 0.540 ± 0.22 0.803 ± 0.09 0.624 ± 0.07 0.454 ± 0.10

M 0.591 ± 0.04 0.535 ± 0.06 0.665 ± 0.17 0.804 ± 0.12 0.592 ± 0.06 0.486 ± 0.09

R-R 0.664 ± 0.07 0.519 ± 0.05 0.685 ± 0.17 0.736 ± 0.15 0.597 ± 0.09 0.505 ± 0.06

GSR 0.640 ± 0.05 0.542 ± 0.05 0.765 ± 0.22 0.734 ± 0.08 0.583 ± 0.09 0.483 ± 0.11

M 0.650 ± 0.05 0.524 ± 0.04 0.615 ± 0.22 0.704 ± 0.09 0.581 ± 0.13 0.551 ± 0.09

Algorithm Features
Dataset

RF

SVM

GB

AdaB

KNN

NB

DT



 

On the merged dataset experiments, the R-R models slightly 

outperformed the GSR models. This might be due to: (i) having 

more R-R features that GSR; (ii) having R-R features in frequency 

domain but no GSR features in frequency domain; (iii) the 

method for merging the data from the heart-related sensors 

providing more consistent features across datasets due to less 

noise in the ECG, BVP data. 

In future, we plan to investigate intelligent combinations of ML 

models in order to gain accuracy. In addition to that, we plan to 

investigate more advanced techniques such as deep neural 

networks and transfer learning, which might be able to learn 

general models that will be able to generalize across different 

domains. Finally, once we find the best performing scenario, we 

will generalize the method for arousal recognition to method for 

valence recognition and method for discrete emotion recognition. 
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