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ABSTRACT It is only a matter of time until autonomous vehicles become ubiquitous; however, human
driving supervision will remain a necessity for decades. To assess the driver’s ability to take control over
the vehicle in critical scenarios, driver distractions can be monitored using wearable sensors or sensors
that are embedded in the vehicle, such as video cameras. The types of driving distractions that can be
sensed with various sensors is an open research question that this study attempts to answer. This study
compared data from physiological sensors (palm electrodermal activity (pEDA), heart rate and breathing
rate) and visual sensors (eye tracking, pupil diameter, nasal EDA (nEDA), emotional activation and facial
action units (AUs)) for the detection of four types of distractions. The dataset was collected in a previous
driving simulation study. The statistical tests showed that the most informative feature/modality for detecting
driver distraction depends on the type of distraction, with emotional activation and AUs being the most
promising. The experimental comparison of seven classical machine learning (ML) and seven end-to-end
deep learning (DL) methods, which were evaluated on a separate test set of 10 subjects, showed that when
classifyingwindows into distracted or not distracted, the highest F1-score of 79%was realized by the extreme
gradient boosting (XGB) classifier using 60-second windows of AUs as input. When classifying complete
driving sessions, XGB’s F1-score was 94%. The best-performing DL model was a spectro-temporal ResNet,
which realized an F1-score of 75% when classifying segments and an F1-score of 87% when classifying
complete driving sessions. Finally, this study identified and discussed problems, such as label jitter, scenario
overfitting and unsatisfactory generalization performance, that may adversely affect related ML approaches.

INDEX TERMS Machine learning, deep learning, driver distraction, sensors, facial expressions.

I. INTRODUCTION
Every year, 25,000 people lose their lives on EU roads, and a
vast majority of these accidents are caused by human errors.
These errors can be avoided with advanced safety features.
The monitoring of driver distractions is one such feature that
can facilitate the realization of EU’s long-term objective of
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moving close to zero fatalities and severe injuries by 2050.1

The transition from fully human to autonomous driving often
contributes to drivers being less focused, e.g., due to drivers
having the freedom to execute additional tasks or due to a
potential overloading of sensory activity. On the other hand,
automation levels 2 and 3 defined in SAE International’s
standard J3016 [1] require human attention and readiness to

1https://ec.europa.eu/commission/presscorner/detail/en/IP_19_1793
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take over control in difficult situations or when the vehicle
requests. Thus, the detection of distracted driving would be
especially valuable in future vehicles, at least until complete
autonomy is realized. For example,

Affective computing (also called artificial emotional intel-
ligence) is the ability of technical systems to recognize and
process human affective states, which can be used to enrich
and facilitate human-computer interaction (HCI) [1]. The
recognition of the human physical state using sensors is
now mature, e.g., every mobile device is now capable of
recognizing activity based on acceleration sensors. However,
it is rare for a device to be capable of recognizing human
mental states, e.g., stress, mental health, cognitive load, and
distractions. Thus, the recognition of the human mental state
is the new frontier where the most important research is being
conducted. It can be used for services that are directly related
to the psychological state and for enhanced HCI.

An important application of affective computing is the
detection of human driver distractions [3]. Regan et al. [4]
consider driver distraction as a subcategory of driver inatten-
tion, which is defined as ‘‘diversion of attention away from
activities critical for safe driving toward a competing activity,
which may result in insufficient or no attention to activities
critical for safe driving’’ (pp. 1776). Hanowski et al. [5]
present a list of tasks that could lead to diversion of attention.
The list includes dialing and texting on the phone, reading,
writing and route checking on a map [6].

Since diverted attention of the driver influences driving
safety, the ability to sense the driver’s mental state is cru-
cial [3]. These data can be gathered using sensors that are
worn by the driver or by using sensors that are embed-
ded in the car, such as video cameras. The recorded data
could include behavioral cues, such as facial expressions
and gestures, or physiological parameters, such as the heart
rate, respiration rate and electrodermal activity. By combin-
ing this information with driving parameters and contex-
tual information, safety risks could be estimated and timely
alerts could be issued to the driver to avoid accidents and
save lives.

This paper presents machine-learning (ML)-based meth-
ods for detecting driver distraction using multimodal data.
The main contributions of this paper are as follows:
• Statistical analysis for the identification of the best fea-
tures and modalities for detecting each of four types of
distraction, namely, cognitive, emotional, sensorimotor
and mixed distraction.

• Comparison of classical ML and end-to-end deep learn-
ing (DL) models for driver distraction detection, includ-
ing an analysis with respect to the size of the input
window and the type of the input modality: AUs, emo-
tional activation (EMO), heart rate (HR), breathing
rate (BR), nasal electrodermal activity (nEDA) or palm
EDA (pEDA).

• Identification and discussion of problems such as label
jitter, scenario overfitting and generalization perfor-
mance that may hinder related ML approaches.

The remainder of the paper is organized as follows: Section II
presents the related work. Section III describes the data that
are used in this work. Section IV presents the proposed ML
and DL methods. Section V elaborates the experiments and
the experimental results. Section VI discusses the results, and
Section VII concludes the study.

II. RELATED WORK
When analyzing systems for detecting driver distraction,
one should consider the distraction types, the input sig-
nals and the detection methods. Regarding the distraction
types, Gomez et al. [8] argued that people differ in terms of
their reactions to the same distraction during driving. Thus,
the relationship among the distractions, the driver reaction
and, consequently, traffic accidents is complex. The distrac-
tions can occur in visual, manual or cognitive ways [9], [10].
In this study, cognitive, emotional, sensorimotor and mixed
distractions are analyzed.

A. INPUT SIGNALS
The input signals can be direct, namely, measured directly
from the driver, or indirect, namely, measured from the vehi-
cle. Vehicle acceleration, steering and braking activities are
examples of indirect signals of the driver’s state [1]. The
related work suggests that methods that use indirect input
can be informative for detecting driver distractions. Indirect
detection methods rely on the vehicle behavior and are often
implemented in recently produced cars. Aksjonov et al. [24]
presented a method for detecting the driver’s distraction
by monitoring lane maintenance and speed performance
on specified road segments. Saito et al. [25] proposed an
assistance system for prediction the driver’s state based
on the lane departure duration. Apostoloff and Zelinsky [26]
studied the driver’s attention to lane maintenance task.
Castignani et al. [27] developed a system, namely, Sense-
Fleet, that can identify risky driving events by examining the
acceleration, braking and steering activities of the driver. Sim-
ilarly, Pavlidis et al. [7] presented a statistical analysis of the
relation between driver distractions and the speed, accelera-
tion, brake force, steering and lane position. Wang et al. [28]
proposed a forward collision warning algorithm that depends
on the driver’s braking activity. However, if the vehicle is in an
autonomous-driving mode, the indirect inputs will not reflect
the driver’s behavior; instead, they will reflect the behav-
ior of the algorithm for autonomous driving. Additionally,
cars may be easily retrofitted with systems that use direct
inputs. Thus, this study focuses on input signals that are
measured directly from the driver using physiological sensors
and visual analysis.

The direct input signals can be divided into two sub-
groups: (i) visual measurements, such as eye gaze, pupil
diameter, head pose, facial expressions and driving posture,
(ii) and physiological signals, such as electroencephalogram
(EEG), electrooculogram (EOG), electrocardiogram (ECG),
electromyogram (EMG), photoplethysmogram (PPG) and
electrodermal activity (EDA) signals. The physiological
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measurements provide important cues regarding the driver’s
state, such as his or her drowsiness and stress levels.
Lee and Chung [11] evaluated eye tracking and PPG fea-
tures with a dynamic Bayesian-network-based framework for
the detection of driver drowsiness. Lin et al. [12] measured
the drowsiness of the driver by using EEG signals. They
decreased the number of EEG features by using the princi-
pal component analysis (PCA) method. Then, these features
were fed into a linear regression model for the estimation
of the drowsiness level. In addition to the EEG signals,
Khushaba et al. [13] analyzed the drowsiness of the driver by
using EOG and ECG signals. Multiple modalities, such as
ECG, EMG, EDA and the respiration rate, have also been
used to detect the stress level [14]. In various studies, the
physiological sensors were integrated into driving equipment.
For example, Singh et al. [15] used ECG signals that were
measured via electrodes that were placed on the seat and
seatbelt. Similarly, Lee et al. [16] measured ECG signals via
electrodes that were placed on the steering wheel. Addition-
ally, they derived the respiratory rate and HR variability from
the ECG signals and used PPG that was measured from the
driver’s finger.

Visual measurements give the driver more freedom than
physiological measurements that are obtained using wear-
able sensors. Bergasa et al. [17] measured the degree of
eye closure, the eye closure duration, the blinking and nod-
ding frequencies, and the head pose and conducted eye
tracking, and they used these data to estimate the driver’s
state. Omidyeganeh et al. [18] argued that yawning is an
important characteristic for estimating driver drowsiness.
They used face and mouth features to detect yawning.
Vicente et al. [19] proposed an eyes-off/on-the-road detec-
tion system that is based on head pose and eye gaze esti-
mation. Murphy-Chutorian and Trivedi [20] argued that the
driver’s head pose is a strong indicator of his or her current
focus of attention. Similarly, Smith et al. [21] analyzed the
driver’s attention from head- and face-related features. The
hand position was also proposed as an indicator for detecting
driver distraction.

In the related studies, there is no consensus regarding the
input signals for the detection of driver distraction. Thus,
in this study, experiments with both data from physiological
sensors and data from video-based sensors were made. The
physiological data include pEDA, the HR and the BR. The
visual data include nEDA (extracted from data that were
captured using a thermal camera), eye tracking data (x-y posi-
tions and the pupil diameter), head pose, facial expressions
and emotional activation.

B. DISTRACTION DETECTION METHODS
Sikander and Anwar [29] grouped the methods for detecting
driver distraction into three subgroups: mathematical mod-
els, rule-based models and models that are based on ML
algorithms. Most mathematical models are designed for pre-
determined setups, such as workplace and factory worker

workloads. These models consider circadian cycles, sleep
history, duration of sleep and wakefulness for the detection
of fatigue and performance [30]. For example, the System
for Aircrew Fatigue Evaluation (SAFE) is based on such
mathematical models [31]. Regarding the rule-based systems,
Lee et al. [16] derived if-then rules and applied kernel fuzzy-
C-mean to detect driving distractions. Azim et al. [32] pro-
posed two-layered rule-based systems that were based on eye
and mouth state information, where each layer had its own
if-then rules.

The most advanced methods for monitoring driving dis-
tractions are based on ML algorithms. These methods can be
classical, deep or a combination of both classical andDL [29].
Goel et al. [10] evaluated random forest, Naïve Bayes,
SVM and decision tree for the detection of driving distrac-
tion. Random forest outperformed all the other strategies.
Lee et al. [23] analyzed hand movements that were detected
by acceleration sensors in a smartwatch. They calculated
features and fed them into a support vector machine (SVM)
classifier.

In addition to the classical feature-based ML methods,
end-to-end DL methods, namely, methods for which fea-
ture extraction is not required and raw inputs are fed into
the models, were also proposed. Masood et al. [6] detected
distractions and causes of the distractions by using CNNs.
Majdi et al. [34] developed Drive-Net, which combines CNN
and Random Forest for the detection of the distraction cat-
egories in images. Yan et al. [22] used CNNs to detect
various driving postures in images, such as normal driv-
ing, cell phone call, eating and smoking. Hssayeni et al. [35]
compared two approaches for distracted driving detec-
tion: the use of traditional handcrafted image-based fea-
tures along with SVM and the use of features from
three end-to-end CNNs, namely, AlexNet, VGG-16 and
ResNet-152. ResNet and VGG-16 outperformed AlexNet by
almost 10%. The feature-based SVM realized much lower
accuracy than the CNNs. Similarly, Koesdwiady et al. [33]
used VGG-19.

All the end-to-end DL approaches use image data as input
and are based on available DL architectures that have been
successfully applied on images (e.g., AlexNet, VGG-16 and
ResNet-152), and most focus on only one architecture. The
DL architectures in this study use 1D signals as inputs; thus,
specialized DL architectures for multimodal time-series data
were investigated. As few studies have been conducted on
end-to-end learning on 1D signals, seven DL architectures
were compared in this study. To the best of our knowledge,
this is the first study on the detection of driver distraction that
analyzes end-to-end learning on signals using 1D convolu-
tions and long short-term memory neural networks (LSTMs).
Additionally, the DL architectures were compared to state-
of-the-art classical ML algorithms using an extensive set of
features. Comparison among different features/modalities for
detecting driver distraction with both the classical and the DL
models was also made.
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TABLE 1. Layout of the driving sessions. Red represents the driving
segments that include an external distraction. N represents normal
driving, S represents driving under a distraction and F represents a brake
failure event. In the experiments, the brake failure event is regarded as
driving under a distraction.

III. DATA DESCRIPTION
The experimental data are obtained from a study by
Pavlidis et al. [7]. In the study, they analyzed the driving
behaviors of 68 volunteers in a driving simulator under a
variety of distractions. Each volunteer had several driving
sessions, which included a normal driving session without
distractions and sessions under cognitive, emotional, senso-
rimotor and mixed distractions. The experimental design and
the specific stressors are is presented in Table 1.

Pavlidis et al. [7] analyzed the relations between the dis-
tractions and various driving parameters, such as the speed,
acceleration, brake force, steering and lane position. From the
physiological response, only nEDA [36], [37] was analyzed.
In this study, the overall physiological and affective responses
in relation to the external distractions were analyzed. The
physiological response includes nEDA, pEDA, HR, BR and
eye tracking data. The affective response includes emotions,
facial expressions and the head pose.

The physiological response, which was measured using
physiological sensors, and the emotional response, whichwas
extracted from facial videos using a software that outputs
probability estimates for eight prototypical emotions, were
already provided in the dataset. As an addition, the facial
expressions in the form of AUs and the head pose were
extracted using the facial-expression-analysis software that
was presented in Hassan et al. [38], which is hereafter
referred to as AUReader. AUReader estimates the intensities
of 22 facial action units (AUs) using a dynamic state esti-
mation framework that fuses viscoelastic models for facial

TABLE 2. 46 channels of information that were used in the study,
grouped per modality.

muscle motion with facial shape and appearance informa-
tion. AUs are basic facial movements that can be visually
distinguished and are defined in the facial action coding
system [39], [40]. AUs are produced by a single facial muscle
or a group of facial muscles [39], [40], [41]. For example,
AU12 represents the action of raising the lip corners (as in
a smile) and is produced by the facial muscle ‘zygomati-
cus major’; AU25 represents the mild parting of lips and is
produced by either ‘depressor labii inferioris’ or ‘orbicularis
oris’; and AU27 represents the stretching or wide opening of
the mouth, which is produced by the pterygoids and digastric
muscles [39], [40], [41]. Images that show the expressions of
AUs are available in [41]. In this study, each facial video in
the dataset [7] was analyzed using AUReader to obtain the
3D head pose and AU intensity estimates for each frame in
the video.

IV. METHOD
A. PREPROCESSING, FEATURE EXTRACTION and
CLASSICAL MACHINE LEARNING
After the extraction of AUs, 46 channels of information
(see Table 2) were available: nEDA, pEDA, HR, BR and eye
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FIGURE 1. Example EDA signal with two skin conductance responses
(SCRs). The horizontal (red) dotted line on the first SCR represents the
SCR amplitude. The vertical (red) dotted line on the first SCR represents
the SCR duration.

tracking data (4 channels), emotional response (8 emotions/
channels) and AUReader data (30 channels). First, all chan-
nels were resampled with a sampling frequency of 1 Hz.
Next, following the normalization procedure that was used
by the dataset creators [1], all channels were normalized via
an unsupervised person-specific approach. The normalization
function was as follows:

Snij = log(Sij)− log(Oij)

where Oij represents the overall average value for the ith

person and the jth channel, S represents the raw data seg-
ments, and Sn represents the normalized data segments. The
normalized signals of each driving session were segmented
into smaller windows.

Experiments were conducted with windows from 20 sec-
onds up to 80 seconds with a stride of 5 seconds. The seg-
mented data were used as the input to the DL models. For
the classical ML models, features were extracted from the
segmented data and were used as input to the models.

For each window, the following statistical features were
extracted from each channel: the mean, standard deviation,
skewness, kurtosis, mean of the first derivative, mean of the
second derivative, 25th and 75th percentiles, inter-quartile
range, difference between the minimum and the maximum
values and coefficient of variation.

Additional features were extracted for the pEDA and the
nEDA signals using skin conductance response (SCR) anal-
ysis (see Figure 1). This type of feature/analysis is proven to
be useful for the detection of stressful conditions in driving
scenarios [14] and in practice [42]. The SCR features for each
window were the power of the EDA signal, the number of
SCRs per second, the power of the SCRs, the sum of the
signals’ components that have positive derivative, the ratio
between the positive derivative and the negative derivative,
the mean value of the derivative of the tonic component (the
slowly changing EDA component), the mean value of the
difference between the raw signal and the tonic component,
the total spectral power of the signal in five frequency bands
between 0 Hz and 0.6 Hz with a 0.1-Hz span, the amplitude
increase of the largest SCR (from the SCR start time to
the SCR peak), the amplitude decrease of the largest SCR

peak, the largest SCR increase time, the largest SCR decrease
time, the ratio of the increase time and the decrease time of
the largest SCR peak, the largest SCR duration, the largest
SCR peak increase and decrease slope, the average amplitude
increase and decrease of all SCR peaks, and the average
amplitude change of all SCRs.

For the classical models, the ML algorithms were used as
implemented in the scikit-learn ML toolkit [43]. For each
algorithm, parameter tuning was conducted using the follow-
ing procedure: First, the parameter settings were randomly
sampled from distributions that were predefined by an expert.
Next, models were constructed with the specified parameters
and evaluated using internal k-fold cross-validation on the
training data. The search procedure was repeated 10 times.
The averaged results are reported in Section V. Experiments
were conducted with the following ML algorithms: decision
tree [44], RF [45], naïve Bayes [46], KNN [47], SVM [48],
bagging [49], adaptive boosting (AdaBoost) [50] and extreme
gradient boosting (XGB), which is an updated boosting algo-
rithm. Decision trees were used as the base model for all the
ensemble algorithms.

B. DEEP LEARNING
DL represents a class of ML algorithms that use a cascade of
multiple layers of nonlinear processing units, which are typi-
cally neurons [51]. The first layer receives the input data, and
each successive layer accepts the output from the previous
layer as input.

The basic strategy dates back to 1943, when McCulloch
and Pitts created the first computational model of neural
networks (NNs), which was based on threshold logic [52].
Currently, large processing power and memory storage are
relatively affordable, and DL models are used to solve com-
plicated artificial intelligence (AI) tasks (e.g., in computer
vision, language, biomedicine, and autonomous driving).

1) FULLY CONNECTED NEURAL NETWORKS
A fully connected (FC) NN is a cascade of multiple layers
of nonlinear processing units, where each unit receives input
from the previous layer. In a typical FC NN, layer i computes
an output vector zi as follows:

zi = f (bi +Wizi−1) (1)

where bi (biases) andWi (weights) are the parameters for the
ith layer, zi−1 is the output vector of the previous layer and z0
is the input data. The activation function f can be a rectified
linear unit (ReLU) [53]:

f (c) = max (0, c) (2)

or another nonlinear function, such as sigmoid or tanh. For
classification problems, the final output layer (zFj ) typically
uses a softmax activation function.

zFj = softmax(bi +Wizi−1) (3)
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where j represent the jth row of the weights Wi. The softmax
function has the following useful property:∑

j
zFj = 1 (4)

and it is always positive; thus, it can be used as an estimator
for the probability that an input pattern x belongs to the jth

class for a specified problem:

P(Y = j|x) (5)

The parameters of the network (b andW ) are learned using
an optimization algorithm, such as gradient descent [54]. For
a binary classification problem, the binary cross-entropy is
typically used as a loss function, which is minimized over the
pairs of input data/labels (x, y) and predictions p.

L = −(ylog (p)+ (1− y) log (1− p)) (6)

2) CONVOLUTIONAL NEURAL NETWORKS
CNNs are a type of NNs that are designed with three main
architectural strategies to ensure various degrees of shift-,
scale- and distortion-invariance. This is realized by utilizing
(i) local receptive fields, namely, each unit in a layer receives
input from a set of neighboring units in the previous layers;
(ii) shared weights, namely, units in a layer are organized in
groups and all units in the same group share the same set
of weights [57], [58]; and (iii) spatial or temporal sampling,
namely, if the input is shifted, the feature map output will also
be shifted [55]. In addition, due to the specified architecture
(parameter sharing and local connections), the CNNs have
far fewer connections and parameters to train, while their
theoretical best performance is likely to be only slightlyworse
than that of FC NNs [56].

3) LONG SHORT-TERM MEMORY
Long short-termmemory (LSTM)NNs are a type of recurrent
neural networks (RNNs), which are networks with memory
mechanisms that enable information to persist through time
in the model. LSTMs were introduced by Hochreiter and
Schmidhuber [67] in 1997. The main processing unit is an
LSTM cell, which contains three main gates that regulate
the internal cell state and the cell’s output. The first gate
decides what information should be forgotten (the forget gate)
at time t . The decision ismade by a sigmoid function, which is
applied over the current input xt and the previous cell output
ht−1 (Equation 7). The output of the sigmoid function is a
number that is between zero and one, where zero corresponds
to no propagation.

ft = σ (bf +Wfxxt +Wfhht−1) (7)

Next, the input gate (Equation 8) decides what input infor-
mation will be passed to the output gate via another sigmoid
function. The candidate values Ĉt for the new cell state are
calculated by a tanh layer (Equation 9). The output of the
tanh layer is always between –1 and 1. The new cell state
(Ct) is calculated by multiplying the old state Ct−1 by ft to
forget some of the previous information and by adding the

element-wise product it ∗ Ĉt , which consists of the candidate
values Ĉt , scaled by it (Equation 10).

it = σ (bi +Wixxt +Wihht−1) (8)

Ĉt = tanh(bc +Wcxxt +Wchht−1) (9)

Ct = ft ∗ Ct−1 + it ∗ Ĉt (10)

Finally, the output gate decides which parts of the cell state
(Ct ) it is going to output (propagate) via another sigmoid layer
(Equation 11), and the final output of the cell (Equation 12)
is calculated by applying tanh on the current cell state and
scaling it with ot from Equation (11).

ot = σ (bo +Woxxt +Wohht−1) (11)

ht = ot ∗ tanh(Ct ) (12)

The equations above represent the main strategy of
LSTMs. Additionally, there are many variations of RNNs and
LSTMs [68], [69], [70].

4) DEEP LEARING ARCHITECTURES
DL realized a breakthrough performance at solving pattern
recognition problems [59], especially in image [56], [60],
[63] and natural language processing (NLP) [61], [62]. For
example, DL was used to realize image super resolution [64].
In another study, DL was used for ‘‘seeing in darkness’’,
which is a technique for reconstructing and brightening dark
images [65]. For NLP, Google introduced BERT – a state-of-
the-art method for ‘‘language understanding’’ [66]. However,
DL architectures for signal processing have not yet realized
such a breakthrough and designing them remains challeng-
ing, especially for problems with limited data. The layered
structure of the NNs enables the construction a variety of
DL architectures by combining layers. For example, Con-
vLSTM stacks CNN layers on top of LSTM layers, namely,
the input is received by the CNN layers and propagated to
the LSTM layers. In addition to the vertical stacking, one can
also experiment with horizontal stacking. For example, for a
2-channel dataset, one can use a ConvLSTM for each channel
and later fuse the outputs of the two ConvLSTMs using an FC
layer. Which DL architecture is most suitable depends on the
dataset; thus, extensive experimentation is required.

Figure 2 presents the two fusion approaches that are eval-
uated in the experiments. The early-fusion approach merges
all 46 channels at the input regardless of the modality. Then,
the merged input data are fed into DL layers. The DL lay-
ers can be FC layers, CNN layers or LSTM layers. The
mid-fusion approach uses DL layers that are specific for each
modality, and later, the modality-specific layers are fused
using a general DL. The early-fusion approach learns shared
weights for all input modalities, whereas the mid-fusion
approach initially learns separate weights for each modality
(represented by purple squares in Figure 2) and later learns
shared weights (represented by orange squares in Figure 2).
An additional DL architecture that is evaluated in the exper-
iments is the spectro-temporal ResNet (STRNet), which is
an architecture that was successfully applied on sensor data
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FIGURE 2. Two types of DL fusion approaches that are used in the study:
early fusion and mid-fusion. The spectro-temporal ResNet (STRNet) is a
special case of the mid-fusion approach.

TABLE 3. Deep learning architectures that are used in the study.

in previous study on human activity recognition from smart-
phone sensors [71], for chronic heart failure detection from
heart sounds [72], and for blood pressure estimation from
photoplethysmogram (PPG) data [73].

STRNet is a special type of mid-fusion network in which
each modality is associated with two branches: one that eval-
uates the raw sensor signal in the time domain using residual
blocks [74] and another that evaluates a spectral representa-
tion of the signal. Toward the end of the network, the two
branches, namely, the spectral and the temporal branches of
each modality, are merged using FC layers.

The structures of the DL architectures that are used
in this study are presented in Table 3. There are three
early-fusion architectures (eCNN, eLSTM and eConvLSTM)
and four mid-fusion architectures (mCNN, mLSTM and
mConvLSTM and STRNet). For example, the architecture
‘‘2 x CNN(128) - FC(64)’’ contains two CNN layers, each
with 128 filters, and one FC layer with 64 neurons. N rep-
resents the number of input channels. All DL architectures

contain batch normalization layers [75] to reduce the
internal covariance shift, ReLU activation layers [53] to
accelerate the training process; maximum pooling layers
for dimensionality reduction, and a final softmax layer,
which outputs the estimated class probability for dis-
tracted vs. not distracted driving. The DL architectures
are available online https://repo.ijs.si/martingjoreski/driving-
distractions/tree/master/DL%20architectures. All DLmodels
were trained by minimizing the binary cross-entropy loss
function using the Adam optimizer with a learning rate of
10−5 and a decay of 10−3. The batch size was set to 256 with
a maximum number of training epochs of 30.

V. EXPERIMENTS
First, a statistical analysis of the input signals was con-
ducted to analyze the relations between the modalities and
the driving distractions. Next, ML analysis was conducted to
compare classical ML and DL for the detection of driving
distractions. Next, ML analysis was conducted to compare
classical ML and DL for the detection of driving distractions.

For the ML analysis, the data of the first 10 subjects were
used as the test set (close to 20% of the overall data), and
the data of the remaining subjects were used as the training
set. Thus, the classifiers are subject-independent. Each ML
algorithm was evaluated in the construction of two types of
classifiers:

• A window classifier: Outputs a prediction whether dis-
traction was detected for each input window (binary
classification). This classifier would be useful for mon-
itoring driver distractions in real time;

• A session classifier: Outputs only one prediction per
driving session, namely, each driving session is clas-
sified as ‘with distractions’ or ‘without distractions’.
The decision is based on the predictions of the win-
dow classifier that are obtained using a threshold logic.
The thresholds were optimized for each classifier using
cross-validation on the training set. This classifier would
be useful for the offline determination of whether there
was a distraction present during the past driving session.

The ground-truth labels were determined using the fol-
lowing rules: (i) the instances for the window classifiers
are labeled as positive, namely, distracted driving should be
detected, if a distraction was present in at least 5 seconds
of the input window and (ii) the instances for the session
classifiers are labeled as positive if a distraction was present
for at least 5 seconds of the overall driving session. For the
window classifiers, one instance is one window (segment)
that was extracted using an overlapping sliding window with
a 5-second stride; thus, a prediction is output every 5 seconds.

For the session classifiers, one instance is one ses-
sion. For example, Table 4 summarizes the experimental
data (instances) that are produced after using an overlapping
sliding window of 60 seconds with a stride of 5 seconds.

Experiments were conducted with window sizes from 20
to 80 seconds. F1-score was used to evaluate the classifiers
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TABLE 4. Experimental data. The sizes of the training and test subsets for
the window classifiers and for the session classifiers.

(Equations 13 to 15):

Precision= 100∗
Correctly detected distrsction instances

Overall predicted distractions
(13)

Recall = 100∗
Correctly detected distrsction instances

Overall distraction instances
(14)

F1− score= 2∗
Precision ∗ Recall
Precision+ Recall

(15)

A. INPUT ANALYSIS
In the initial dataset study [1], the authors showed that there is
a statistically significant difference in the mean values of the
nEDA when measured in the normal segments of the driving
sessions, compared to the distracted segments of the same
driving sessions. Inspired by that analysis, statistical tests
were conducted in this study to determine whether such a
statistically significant difference is present for the remain-
ing features in the experiments. For the statistical analysis,
the Wilcoxon signed-rank test was used, which is an alterna-
tive to the paired Student’s t-test that lacks the t-test’s normal-
ity assumption on the distribution of the paired differences.
The Wilcoxon test is a non-parametric statistical hypothesis
test that is used to determine whether two paired samples are
sampled from the same distribution [76]. In this experimental
setting, one sample contains values of a specified feature
that was extracted from the normal segments of the driving
sessions, and the other sample contains values for the same
feature that were extracted from the distraction segments of
the same driving session. Informative features should differ in
terms of their distributions when conditioned on the type of
the segment (with vs. without distraction). The tests showed
for 177 of the 562 features, the test p-value was smaller
than 0.001; these are named ‘‘informative features’’. Table 5
presents the top three modalities for each type of driving
session (ED, SD, CD, FDL and FDN) and for all driving
sessions (Overall). The modalities are ranked using the ratio
of informative features per modality. According to the table,
nEDA is ranked among the top 3 for each driving session.
The emotions are ranked among the top 3 for five out of the
six types of driving sessions. The facial action units (AUs)
are ranked among the top 3 for three types of driving sessions
(ED, CD and FDN). For recognizing the mixed distractions in
the failure sessions (FDL and FDN), nEDA is the most infor-
mative modality. Overall, when all driving sessions are joined

TABLE 5. Top three modalities for each type of driving session and
overall) ranked according to the ratio of informative features.

FIGURE 3. Distributions of the most informative features, namely,
the features with the smallest p-value, for each type of driving session
(ED, SD, CD, FDL, FDN) and overall.

and the statistical tests are conducted for normal segments vs.
distraction segments, the two most informative modalities are
the recognized emotions and nEDA. This is followed by the
facial AUs in the third position.

Figure 3 presents the distributions of the most informative
features, namely, the features with the smallest p-value for
each type of driving session (ED, SD, CD, FDL, FDN) and
for all driving sessions (Overall).

The distributions are represented as boxenplots (letter-
value-plots), which provide a better representation of the
distribution of the data than boxplots when outlier values
are present [77]. According to the figure, for recognizing an
emotional distraction (ED), the most informative feature is
the standard deviation of the activation of the emotion ‘‘joy’’.
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TABLE 6. Evaluation results for the classical ML classifiers and DL
models. F1-scoress of the window classifiers (F1) and F1-score of the
session classifiers (F1-s).

Thus, during the distraction segments, the subjects showed an
increased standard deviation of this emotion. Second, for rec-
ognizing a sensorimotor distraction (SD), the most informa-
tive feature is the 25th percentile of the subjects’ BR. During
the distraction segments, the subjects had an increased BR.
Third, for recognizing a cognitive distraction (CD), the most
informative feature is the 75th percentile of intensities of
AU25 ‘‘Lips Part’’. During the distraction segments, the sub-
jects showed increased lip movement. This could be because
the cognitive-distraction sessions involved speech, which – if
true – may be regarded as an artifact of the dataset rather than
a general finding. Fourth, for recognizing the mixed distrac-
tions in failure session FDL, the most informative feature is
the standard deviation of the activation of the emotion ‘‘joy’’,
which is the same as for the ED.

Fifth, for recognizing the brake failure in session FDN,
the most informative feature is the first derivative of the
tonic component of nEDA. An increased positive derivative
corresponds to more sweating of the subjects during the brake
failure. Finally, for recognizing general distractions, the most
informative feature is the difference between the minimum
and the maximum values of the activation of the emotion
‘‘joy’’. This may indicate that the subjects had stronger emo-
tional responses during the distraction segments.

B. MACHINE-LEARNING ANALYSIS
In the initial experiments, seven classical ML algorithms
and seven end-to-end DL algorithms were compared for
the detection of driving distraction (binary classification).
The eye tracking data were not used in these experiments
because the data were missing for more than 50% of the
sessions. An overlapping sliding window of 20 seconds with
a 5-second stride was used in these experiments. The results
are presented in Table 6. Column F1 presents the F1-scores

that are realized by the window classifiers, and column F1-s
presents the F1-scores that are realized by the session classi-
fiers. According to the results, the highest scores are realized
by the classical ML classifiers, namely, GB and XGB. The
highest F1-score for the window classifiers is 73%, and the
highest F1-score for the session classifiers (column F1-s)
is 88%. Among the DL classifiers, eLSTM and STRNet have
similar performance, with an F1-score of 67% realized by the
window classifiers.

The eLSTM session classifier realized an F1-score of 75%.
and the STRNet session classifier realized an F1-score
of 80%. Compared to the classical classifiers, eLSTM and
STRNet outperformed the KNN, NB, DT and Bagging clas-
sifiers and were outperformed RF, GB and XGB. The exper-
iments did not show a clear preference for the use of early or
mid-fusion by the DL classifiers (denoted by the prefixes ‘e’
and ‘m’ in Table 3).

Next, a more detailed evaluation was conducted for the
two best-performing classical classifiers and the two best-
performing DL classifiers. Tests were conducted with various
window sizes and input signals (modalities). The results are
presented in Table 7. The first column presents the size of
the input temporal segment in seconds (varied from 20 sec-
onds to 80 seconds), the second column presents the ML
algorithm, and the remaining columns present the F1-scores
of the window classifiers (F1) and the F1-scores of the
session classifiers (F1-s) for each of the input categories:
face AUs, emotional activation (EMO), heart rate (HR),
breathing (BR), nEDA and pEDA. For the column ‘‘All’’,
all features/modalities were used as input to the classifiers.
For the column ‘‘Selected’’, only the statistically signifi-
cant features/modalities were used as input. According to
Table 7, no classifiers perform well when only one of the
physiological signals (EDA, nEDA and BR) is used as input,
except the session HR classifier. The classical classifiers
outperform the DL classifiers overall. Regarding the window
classifiers, the highest F1 score of 79% is realized by the two
classical classifiers, namely, XGB and GB, using the AUs
as an input with a window size of 60 seconds. Regarding
the session classifiers, the highest F1-score (F1-s) of 94% is
realized by XGB using the AUs as an input with a window
size of 60 seconds. Hence, the visual modalities are the most
informative modalities in the experimental dataset. Among
the DL classifiers, the highest performance is realized by
STRNet using the selected signals and a window size of 60
seconds. The F1-score of the window classifier is 75%, and
the F1-score of the session classifier (F1-s) is 87%.

Regarding the size of the input windows, all classifiers
perform better with longer windows (40 seconds to 80 sec-
onds), which is probably because longer windows contain
more information.

This is especially true for the DL classifiers. Figure 4
presents the precision-recall curves of the best-performing
classifiers, namely, the window classifier and the session
classifier that were built with XGB using AUs as input with
a window size of 60 seconds. Such curves would be useful
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TABLE 7. Evaluation results for two best-performing classical classifiers and the two best-performing DL classifiers. The first column presents the size of
the temporal segment in seconds. the second column presents the ML algorithm and the remaining columns present the F1-scores (%) of the window
classifiers (F1) and the F1-scores (%) of the session classifiers (F1-s) for each of the specified inputs.

FIGURE 4. Precision-recall curves of the best-performing window
classifier (blue) and session classifier (orange) that are built with XGB.
AP denotes the average precision, which is defined as

∑
n (Rn−Rn−1)/Pn,

where Rn and Pn are the recall and precision, respectively, for the nth

decision threshold.

for the modification of the decision threshold. For example,
in various cases, higher recall might be preferred over lower
precision, as undetected distractions (false negatives) might
be more dangerous than falsely detected distractions (false
positives).

VI. DISCUSSION
The best-performing classical ML classifiers outperformed
the best-performing DL classifiers. There may be two main
reasons for this: (i) The size of the dataset is not sufficient
for the end-to-end learning to outperform the best-performing
classical ML classifiers. According to Table 3, the models

were trained on close to 20,000 instances.While this is a large
number of instances compared to related affective computing
studies, which typically use a few thousand instances, it is
750 times smaller than ImageNet, which is the dataset that is
used to train state-of-the-art DL NNs for image processing.
(ii) DL excels in pattern recognition (e.g., image classifi-
cation, object detection, and face recognition). In this use
case, ‘‘pattern recognition’’, namely, emotion recognition and
facial AU extraction, was conducted with other modules, and
the extracted information was fed into both the classical and
the DL classifiers. The access to this information probably
gave the classical ML an edge as it can learn better from
smaller datasets. The STRNet consistently outperformed all
other classifiers when using the breathing rate (BR) as input.
This is likely because spectral-domain information is espe-
cially important in relation to BR, and STRNet is the only
classifier that uses time- and spectral-domain information.
Classical ML models use only statistical features (except the
pEDA and nEDA features), and the other DL architectures
use only signals in the time domain.

The feature selection can significantly influence the clas-
sification performance of the classical feature-based ML
methods. In this study, ranking-based feature selection (also
known as filter methods) was used, as it is computationally
efficient and does not require a classifier for feature selection.
In contrast, the filter methods estimate the quality of each
feature separately; hence, they fail to consider useful feature
combinations. This may be the reason why the classical ML
models that were built with pre-selected features did not
realize the best performance. Wrapper-based feature selec-
tion methods or combinations of filter- and wrapper-based
methods [71] may be useful in this case.

VOLUME 8, 2020 70599



M. Gjoreski et al.: ML and End-to-End DL for Monitoring Driver Distractions

TABLE 8. Percentages of correctly classified instances by the
best-performing window classifier and session classifier. the last row
presents the accuracies of the classifiers.

Table 8 presents the percentages of correctly classified
instances by the best-performing classifiers. The window
classifier correctly classifies the windows from the normal
driving sessions (ND and RD) with an average percentage
of 92%, which is significantly higher than the average per-
centage of correctly classified windows from the distracted
sessions (ED, SD, CD, FDL and FDN), which is 72%. This
is probably due to the noise in the labels that is present
in the windows from the distracted sessions. All windows
from the normal driving sessions have the label ‘‘normal’’.
However, to derive the labels of the windows from the dis-
tracted driving sessions, the following rule was used: if a
distraction was present for at least 5 seconds of the window,
the window should be classified as distracted, and it should
be classified as normal otherwise. In various cases, the sub-
ject may need require than 5 seconds for the distraction to
induce an affective response. Thus, due to the absence of
an affective response, the normal windows are same as the
distracted windows when analyzed using the physiological
and the visual sensors. To mitigate this problem, one might
use methods that explicitly incorporate label jitter into the
model training process [78]. The label jitter may be why the
performance on the physiological signals is worse than that on
the visual signals for the detection of the driving distractions.
The physiological signals may have a longer latency, namely,
it may take longer for the distraction (stressor) to induce a
change in the physiological signals than in the visual signals.

The session classifiers outperform the window classifiers
mostly because the window classifiers must detect the exact
time when the distraction occurred. In contrast, the timing
is not important for the session classifiers; they need to
detect only some of the distractions, which also mitigates the
label-jitter problem.

For recognizing the cognitive distraction, the most infor-
mative feature was related to the driver’s increased lip move-
ment. This is expected since the cognitive-distraction sessions
involved answering questions. One should be careful with
using only this feature for the detection of distraction seg-
ments, as this finding may be regarded as scenario overfitting
rather than a general finding. Another interesting finding is

TABLE 9. Abbreviations.

that for recognizing general distractions, themost informative
feature is related to the activation of the emotion ‘‘joy’’.
A more detailed analysis showed that this emotion had both
higher average values and a higher standard deviation for the
distracted (stressful) segments than for the normal segments.
This may indicate that the normal driving sessions were more
boring for the participants, whereas the driving sessions that
contained distractions were more fun; as this was a driving
simulation study, no distraction was regarded as dangerous
by the subjects. These findings raise more general concerns
regarding the generalization performances of systems that
have been trained on a single dataset that was collected in
a single environment. Such systems may classify any type
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of motion, speech, or emotional activation as a ‘‘distraction’’
because they were trained only for distraction detection.

In this study, all inputs were represented as 1D sig-
nals; thus, specialized DL architectures for time series were
used. In the future, comparison of the methods should
be made with DL classifiers that detect driver distractions
directly from images. Additionally, generative adversarial
networks (GANs) and transfer learning may be used to
improve the performance of the DL classifiers. Furthermore,
since the best-performing classifier in this study was built
using AUs, in the future, different fusion strategies can be
tested for the extraction of higher-level semantic facial activ-
ities (e.g., speaking, listening, and concentrating) with more
semantic content.

VII. CONCLUSION
This paper presented an analysis for the determination of
which ML methods perform best in detecting various driv-
ing distractions using which sensors and which data-capture
methods, with a focus on physiological sensors and sensors
that are based on video cameras. The statistical analysis
showed that the most informative feature/modality for detect-
ing driver distraction depends on the type of distraction.
Overall, the video-based modalities were most informative,
and classical ML classifiers realized high performance using
one of the video-based modalities. In contrast, the DL clas-
sifiers require more modalities, namely, either all modali-
ties or pre-selected modalities, for the construction of useful
classifiers. For the analyzed data, the classical ML (XGB
using the AUs as an input with a window size of 60 seconds)
realized high performance and outperformed DL methods;
hence, the detection of driver distractions may be technically
feasible with the current knowledge. A demo of the final ML
classifier is available online.2 Finally, problems such as label
jitter, scenario overfitting and unsatisfactory generalization
performance were identified and discussed to provide guid-
ance for future studies in this area.

APPENDIX
See Table 9.
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