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Abstract 

Affect recognition is an important task in ubiquitous 

computing, in particular in health and human-computer 

interaction. In the former, it contributes to the timely 

detection and treatment of emotional and mental 

disorders, and in the latter, it enables indigenous 

interaction and enhanced user experience. We present 

an inter-domain study for affect recognition on seven 

different datasets, recorded with six different sensors, 

three different sensor placements, 211 subjects and 

nearly 1000 hours of labelled data. The datasets are 

processed and translated into a common spectro-

temporal space. The data represented in the common 

spectro-temporal space is used to train a deep neural 

network (DNN) for arousal recognition that benefits 

from the large amounts of data even when the data are 

heterogeneous (i.e., different sensors and different 

datasets). The DNN approach outperforms the classical 

machine-learning approaches in six out of seven 

datasets. 
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Introduction 

It has been two decades since Rosalind Picard 

introduced the field of affective computing [1] and yet 

modeling affective states remains a challenging task. It 

is, however, an important one, both in the domain of 

human-computer interaction (HCI) and health. In the 

former, it enables a more natural interaction and better 

user experience. In the latter, it contributes to the 
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timely detection and treatment of emotional and mental 

disorders such as depression, bipolar disorders and 

posttraumatic stress disorder (PTSD). In 2013, the cost 

of work-related depression in Europe was estimated to 

€617 billion annually. The total was made up of costs 

resulting from absenteeism and presenteeism (€272 

billion), loss of productivity (€242 billion), health care 

costs of €63 billion and social welfare costs in the form 

of disability benefit payments (€39 billion) [2]. 

Affective states are complex and usually have fuzzy 

boundaries. The model that deals with the vague 

definitions and fuzzy boundaries of affect is the 

circumplex model of affect (Figure 1). The model maps 

the affective states into a 2D space of arousal and 

valence [3]. This model has been widely used in HCI 

studies for annotating affective states [4] [5] [6]. The 

use of the same annotating model allows for an inter-

study analysis, which we exploit in our work. In this 

paper we examine arousal recognition from 

physiological data captured via chest-worn 

Electrocardiography (ECG) sensors, blood volume pulse 

(BVP) sensor placed on the finger or wrist-worn pulse 

oximeter (PPG) sensor. The data belongs to seven 

publicly available datasets for affect recognition. 

Overall, nearly 1000 hours of arousal-labelled data that 

belong to 211 subjects (181 different subjects, 140 

males and 71 females) was analyzed. To the best of our 

knowledge, this is the first study on affect recognition 

performed on such a big amount of data. 

The data comes from seven different studies and six 

different sensors. This introduces the problem of inter-

domain learning, to which ML techniques are sensitive. 

To overcome this problem, we exploit two solutions. 

First, we use pre-processing techniques to translate the 

data to a common spectro-temporal space of R-R 

intervals and Lomb-Scargle periodogram [7], 

regardless of the sensor. Second, we examine transfer 

learning between datasets. More specifically, we 

examine the performance of pre-trained DNN models, 

i.e., models trained on other datasets and adapted to a 

new dataset, and new DNN models, i.e., models trained 

only on the new dataset. The transfer learning 

increases the overall amount of training data and may 

decrease the training time of the DNN [8]. 

Highlights of the study: (a) First inter-domain study for 

affect recognition dealing with seven different datasets 

recorded with six different sensors, three different 

sensor placements, 211 subjects (181 different 

subjects) and nearly 1000 hours of labelled data; (b) 

Pre-processing method for translating different datasets 

into a common spectro-temporal space, paving the way 

for further inter-domain studies exploiting the data 

accumulated by the ubiquitous computing community; 

(c) DNN approach for arousal recognition that benefits 

from large amounts of data even when the data are 

heterogeneous (i.e., different sensors and different 

datasets), and outperforms the classical ML approach. 

Related Work 

Affect recognition is an established computer-science 

field, but one with many challenges remaining. There 

has been many studies confirming that affect 

recognition can be performed using speech analysis 

[9], video analysis [10], or physiological sensors in 

combination with ML. The majority of the methods that 

use physiological signals use data from ECG, 

electroencephalogram (EEG), functional magnetic 

resonance imaging (fMRI), galvanic skin response 

(GSR), electrooculography (EOG) and/or BVP sensors. 

 

 

 

 

 

 

Figure 1. Circumplex model of 

affect. The model maps affective 

states in a 2D space of Arousal 

and Valence [3]. 

 

 



  

In general, the methods based on EEG data outperform 

the methods based on other data [4] [5], probably due 

to the fact the EEG provides a more direct channel to 

one’s mind. However, even though EEG achieves the 

best results, it is not applicable in normal everyday life. 

In contrast, affect recognition from R-R intervals may 

be much more unobtrusive since R-R intervals can be 

extracted from ECG sensors or BVP sensors, including 

sensors in a wrist device (e.g., Empatica [11] and 

Microsoft Band [12]). Regarding the typical ML 

approaches for affect recognition, Iacoviello et al. have 

combined discrete wavelet transformation, principal 

component analysis and support vector machine (SVM) 

to build a hybrid classification framework using EEG 

[13]. Khezri et al. used EEG combined with GSR to 

recognize six basic emotions via K-nearest neighbors 

(KNN) classifiers [14]. Verma et al. [15] developed an 

ensemble approach using EEG, electromyography 

(EMG), ECG, GSR, and EOG. Mehmood and Lee used 

independent component analysis to extract emotional 

indicators from EEG, EMG, GSR, ECG, and (effective 

refractory period) ERP [16]. Mikuckas et al. [17] 

presented a HCI system for emotional state recognition 

that uses spectro-temporal analysis only on R-R 

signals. More specifically, they focused on recognizing 

stressful states by means of the heart rate variability 

(HRV) analysis. 

Recently, the use of deep learning for affect recognition 

has become popular too. Liu et al. [18] presented a 

deep learning approach for emotion recognition using 

EEG data and eye blink data. They experimented on 

two different datasets, DEAP and SEED dataset [19]. 

The SEED dataset contains only EEG signals, thus it 

was not included in our study. Similarly, Bashivan et al. 

[20] presented an approach for learning 

representations from EEG signal with deep recurrent-

convolutional neural networks. Yin et al. presented an 

approach for recognition of emotions using multimodal 

physiological signals and an ensemble deep learning 

model using EEG, EMG, ECG, GSR, EOG, BVP, 

respiration rate and skin temperature [21]. In contrast 

to the EEG based methods for affect recognition, 

Martinez et al. [22] has presented a DNN method for 

affect recognition from GSR and BVP data. 

The related work shows that – similarly to many other 

fields – deep learning can outperforms classical ML in 

affect recognition. However, the work done so far could 

not take full advantage of deep learning because 

training a DNN models requires a large amount of data, 

which is a problem in the field of affect recognition 

where datasets are usually small – not nearly the size 

of the datasets used in other fields (e.g. ImageNet 

contains 1.2 million images). The challenge may be 

even bigger if simpler (and more practical) hardware is 

used that has only one sensor modality. To overcome 

this challenge, we explore inter-dataset transfer 

learning. Transfer learning has been proven in other 

fields to improve the accuracy of the models or at least 

to improve the training speed (e.g., in computer vision 

[23] and activity recognition [8]). 

Data 

At the beginning of our study, a dataset overview was 

performed to find available affective datasets. We were 

able to target seven different datasets: ASCERTAIN [4], 

DEAP [5], DECAF Movies [6], DECAF Music [6], Driving 

workload dataset [24], Cognitive load dataset [25] [26] 

and MAHHNOB [27]. General information for each 

dataset is presented in Table 1. The table presents the 

number of subjects per dataset, the mean age, the 

Table 1. Data information 

(number of subjects, mean age, 

number of trials per subject, 

mean duration of each trial, 

duration of data per subject  - in 

seconds,  and overall duration) 

 



  

number of trials per subject, the mean duration of each 

trial, the duration of data per subject (in seconds) and 

the overall duration of the data. The five datasets, 

ASCERTAIN, DEAP, DECAF Movies, DECAF Music, and 

MAHHNOB were already labelled with the subjective 

arousal level. One difference between these datasets 

was the arousal scale used for annotating. For example, 

the ASCERTAIN dataset used 7-point arousal scale, 

whereas the DEAP dataset used 9-point arousal scale (1 

is very low, and 9 is very high). From the both scales, 

we split the labels in the middle, which is the same split 

used in the original studies [4] [5]. Similar step was 

performed for the datasets DECAF Movies, DECAF 

Music, and MAHHNOB.  

The two datasets, Driving workload and Cognitive load, 

did not contain labels for subjective arousal level. The 

Driving workload dataset contained labels from 

subjective ratings for a workload during driving 

sessions. For this dataset, we presumed that increased 

workload corresponds to increased arousal. Thus, we 

used the workload ratings as an arousal ratings. The 

split for high arousal was put on 60%. Similarly, the 

cognitive load dataset contained labels for subjective 

stress level during stress inducing cognitive load tasks 

(mathematical equations). The subjective scale was 

from 0 to 3 (no stress, low, medium and high stress). 

We put the limit for high arousal on 2 (medium stress).  

Figure 2 presents the label distribution for each dataset 

in the original study and the label distribution after the 

translating the labels to low/high arousal. It can be 

seen that for all dataset except for the ASCERTAIN 

dataset, the majority label is “low arousal”. Besides the 

labels, we used the ECG data from the  ASCERTAIN, 

DECAF Movies, DECAF Music, MAHHNOB and Driving 

workload database. We used the BVP data from the 

DEAP database (it does not contain an ECG data) and 

we used the R-R data from the Cognitive load dataset, 

which also does not contain an ECG data. 

Methods 

We tested two approaches for arousal recognition: DNN 

and classical ML. Before the tests, a pre-processing 

method is applied for translating the datasets to a 

common spectro-temporal space. The two approaches 

and the pre-processing method are described in the 

following subsections. 

Pre-processing  

The pre-processing method is essential and allows the 

merging of the seven different datasets. It translates 

the physiological signals (ECG or BVP) to R-R intervals 

and performs temporal and spectral. First, a peak 

detection algorithm is applied as suggested by Negri 

[28]. The parameter “minimum distance between 

peaks” was set to the half of the signal sampling rate, 

which guides the algorithm to detect peaks that are 

more than half a second apart. Figure 3 presents an 

example ECG signal with detected peaks. Similarly, 

peaks are detected from the BVP signal. Then, the 

preprocessing splits into two, i.e., temporal and 

spectral analysis. 

Temporal analysis, i.e., calculating the time distance 

between the detected peaks represent the R-R 

intervals. First, each R-R signal is filtered using median 

filter. The median removes the R-R intervals that fall 

out of the interval [α*median, (2- α) median], where 

the median is the median of the R-R signal. The 

parameter α was experimentally set to 0.7. After the 

median filter, person specific winsorization [29] is 

 

Figure 2. Label distribution per 

dataset. On the x-axis is the 

arousal level as labeled in the 

original dataset. The color 

represent the arousal level 

(low/high) used in our study. 

 



  

performed with the threshold parameter of 3, to 

remove outlier R-R intervals. The filtered R-R segments 

are used as input to the DNN. For the standard ML, the 

filtered R-R segments are used to calculate time-

domain HRV features. 

From the filtered R-R signals, periodogram (Figure 4) is 

calculated using the Lomb-Scargle algorithm developed 

by Lomb and further analyzed by Scargle [7][30].The 

Lomb-Scargle algorithm is used for spectral analysis of 

unequally spaced data (as are the R-R intervals). The 

Lomb-Scargle peridograms are used as input to the 

DNN. For the standard ML, the Lomb-Scargle 

peridograms are used to calculate frequency-domain 

HRV features. The red portion of the periodogram in 

Figure 4 is the low frequencies (lf) segment and the 

orange segment is the high frequencies (hf) segment. 

Deep Neural Network 

We used a fully connected DNN with seven hidden 

layers. Each layer employ rectified linear units (ReLUs). 

To avoid overfitting, L2 regularization and dropout was 

methods were used. The keep probability of the 

dropout was set to 0.75. The training is fully 

supervised, by backpropagating the gradients through 

all layers. The parameters are optimized by minimizing 

the crossentropy loss function using ADAM optimizer 

[31]. All models were trained with a learning rate of 

10−4.  The batch size was set to 256 when one dataset 

was used, and 512 when all datasets were used for 

training. The output of the model is obtained from the 

final layer with a softmax activation function yielding a 

class probability distribution. The neural network was 

implemented using Tensorflow [32]. 

Classical ML Methods 

For training the classical ML classifiers, a typical 

approach was used where the input to the ML 

algorithms are features extracted using HRV analysis 

on the filtered R-R intervals. Overall thirteen features 

were extracted: meanHR, meanRR, sdnn, sdsd, rmssd, 

pnn20, pnn50, sd1, sd2, sd1/sd2, lf, hf, lf/hf [33]. 

Experiments were performed with four different ML 

algorithms: Random Forest, Support Vector Machine, 

Gradient Boosting Classifier, and AdaBoost Classifier. 

The algorithms were used as implemented in the Scikit-

learn, the Python ML library [34]. For each algorithm, 

randomized search on hyper parameters was performed 

on the training data using 2-fold validation. The hyper 

parameter tuning contributes towards farer comparison 

of the standard ML algorithms to the DNN.  

Experimental Results 

Two types of experiments were performed. In the first 

experiments we analyze the performance of the 

proposed DNN when transfer learning is used. The 

second type of experiments were performed to 

compare the performance of the proposed DNN to 

classical ML approaches. The details for each 

experiment are presented in the following subsections. 

DNN experiments 

Experiments were performed to compare the 

performance of a pre-trained DNN with a new DNN. The 

evaluation was done using the following steps: One 

dataset was picked as a domain dataset. The pre-

trained DNN was pre-trained on the remaining six 

datasets for 1000 epochs (empirically chosen). After 

the pre-training, the training was finished on the 

domain dataset. On the domain dataset, leave-one-

 

Figure 3. ECG signal and detected 

R-R intervals. ASCERTAIN dataset 

[4], Subject 1, Video 29. 

 

Figure 4. R-R signal represented 

as a time-series. ASCERTAIN 

dataset [4], Subject 1, Video 29  

 



  

trial-out evaluation was performed. The average LOSS 

from these experiments is presented in Figure 5. The 

figure shows that the pre-trained DNN requires shorter 

time for training compared to the new DNN and it 

achieves lower LOSS. In these experiments, we also 

tried leave-one-dataset-out evaluation approach, but 

the results were not significantly better than a majority 

classifier. 

 DNN vs classical ML 

In these experiments, we compare the performance of 

the proposed DNN with a classical ML algorithms. We 

used leave-one-trial out evaluation technique. For the 

classical ML algorithms we report results for person-

specific models which performed better than dataset-

specific models.  The DNN was pre-trained on the data 

from all datasets except the domain dataset and it was 

evaluated using leave-one-trial-out on the domain-

dataset. The reaming data from the subject to which 

belonged the testing trail was used as a validation data 

to tune the DNN. The results are presented in Figure 6. 

The results show that on average, the DNN outperforms 

the traditional ML algorithms. In particular, it achieves 

the best accuracy in 6 out of 7 datasets. Additionally, 

the standard deviation for the DNN is significantly lower 

compared to the other methods, which suggests that 

the DNN achieves much more stable results for the 

different folds.   

Finally, we present visualization of the DNN models 

built using the leave-one-trial-out evaluation. Figure 7 

presents a t-distributed stochastic neighbor embedding 

(t-SNE) [35] visualization of the 7-th DNN layer. This is 

a dimensionality reduction technique that is used for 

visualizing high-dimensional data. It models each high-

dimensional data point by a two-dimensional point in a 

way that similar objects are modeled by nearby points 

and dissimilar objects by distant points. We first ran t-

SNE with dataset-specific input, resulting in the first 

seven plots. In addition, we run t-SNE with all the data 

merged together and the output is presented in the last 

plot. In general, the more isolated the data is (the 

islands in the plots) and the more pure each isolated 

island is (the same class color) the better.

 

Figure 6. Performance comparison of DNN with classical ML algorithms.
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Figure 5. Training Loss for a pre-

trained DNN and not pre-trained 

DNN (new DNN). 

 



  

 

Figure 7. t-SNE visualization of the DNN weights of the final (before output) layer for each dataset (first seven plots) and merged 

dataset (last plot).

Discussion and Conclusion 

The two central goals of our study were to improve 

generality and quality in affect recognition. At least for 

the tested seven domains, it turned out that these two 

properties support each other, i.e. by using DNN 

method and by merging different datasets the accuracy 

of affect recognition increased, even though the 

datasets are heterogeneous. The pre-processing 

method used for translating different datasets into a 

common spectro-temporal space was a prerequisite, 

but not enough in itself – neither with deep nor with 

classical ML. It turned out that even though nominally 

compatible arousal labels could be assigned to all the 

data, the experiments in which the datasets were 

recorded were sufficiently different that one arousal 

was different from another, rendering learning 

unsuccessful. However, when the novel DNN was pre-

trained on all datasets but one, the training could 

successfully be finalized on the target dataset: the 

resulting DNN was in general more accurate and 

trained more quickly than a DNN trained on the target 

dataset only. Such an approach cannot be easily 

replicated with the existing classical ML algorithms, so 

it was only compared to classical person-specific 

models trained on the target dataset.  

In general, the achieved accuracy is not on a 

satisfactory level, however the presented approach for 

merging seven different datasets opens a huge 

exploration space for future studies on affect 



 

recognition. We strongly believe that the approach may 

be expanded by adding the data from the GSR sensors, 

since five of the seven datasets contain data from GSR 

sensors). Thus, we plan to extend our inter-dataset 

study for the other sensor modalities. 

Finally, the t-SNE visualization of the final DNN implies 

that the DNN mainly has learned person-specific 

models. One reason for this may be the evaluation 

technique. More specifically, leave-one-trial-out 

evaluation technique was used, and the remaining data 

from the subject to which belonged the testing trail was 

used as a validation data to tune the DNN. Additional 

tests should be performed (e.g., leave-one-subject-out 

or 10-fold evaluation) to confirm this conclusion. 
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