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ABSTRACT 

Convolution Neural Network (CNN) filters learned on one 

domain can be used as feature extractors on another similar 

domain. Transferring filters allow reusing datasets across 

domains and reducing labelling costs. In this paper, four 

activity recognition datasets were analyzed to study the effects 

of transferring filters across the datasets. A spectro-temporal 

ResNet was implemented as a deep, end-to-end learning 

architecture. We analyzed the number of transferred CNN 

residual blocks with respect to the size of the target-adaptation 

data. The analysis showed that transferring layers from 

domains with fine-grained activities might be more useful than 

transferring layers from domains with high-level activities. 

Furthermore, transferring three out of four residual blocks is 

the most robust choice for the specific architecture. The most 

successful transfer achieved an F1-score of 74%, which is an 

increase of 6 percentage points compared to a domain-specific 

baseline model. 
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1 Introduction 

Deep learning represents a class of machine learning 

algorithms that use a cascade of multiple layers of non-linear 

processing units [1]. The first layer receives the input data, and 

each successive layer uses the output from the previous layer 

as the input. The basic idea dates from 1943 when McCulloch 

and Pitts created the first computational model of neural 

networks (NN) based on threshold logic [2]. Fast forward to the 

modern era, where large processing power and memory 

storage are relatively affordable, deep learning architectures 

are used to solve complicated AI tasks (e.g., in computer vision, 

language, biomedicine, etc.) by learning high-level abstractions 

[3][4]. 

In the last decade, many attempts at activity recognition 

(AR) were made with DL end-to-end architectures [8][9]. The 

focus was on Convolutional Neural Networks (CNNs). The 

CNNs are a type of NNs that are specially designed to ensure 

some degree of shift, scale and distortion invariance [5][6][7]. 

In addition, the CNNs can automatically capture hierarchical 

feature representations of the data [7]. Thus, CNNs, in 

combination with subsampling layers (e.g., pooling layers) and 

fully connected layers, are a very powerful end-to-end learning 

architecture [10][11][12]. However, because of the specific 

architecture (parameter sharing and local connections), the 

CNNs have much fewer connections and parameters to train 

compared to other types of NNs, e.g., fully connected NNs.  

Since classical (feature-based) AR requires substantial 

amounts of labeled training data to perform well under diverse 

circumstances [16], end-to-end learning architectures require 

even bigger amounts of labeled data. One such example is the 

DeepConvLSTM introduced by Ordonež et al. [13] in 2016. The 

DeepConvLSTM uses several CNN layers stacked over a long 

short-term memory (LSTM) recurrent neural network (RNN) 

for AR [14]. To reduce the costs of acquiring labeled data, 

transfer learning can be employed. In the AR domain, transfer 

learning techniques provide mechanisms for transferring 
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instances, feature-representations, model-parameters and/or 

transfer or relational-knowledge [17]. Although transfer 

learning has been demonstrated to be feasible [18][19], it still 

remains a challenging task. Evidence from other domains (e.g., 

computer vision), where CNNs have been successfully applied 

for supervised tasks, suggest that the filters learned by the 

CNNs on one domain can be used as feature extractors on 

another similar domain. By analogy, this form of transfer 

learning has been also analyžed in the AR domain in the recent 

years. Ding et al. [20] analyžed deep transfer learning between 

users with unlabeled data using an end-to-end domain-

adversarial neural network based on CNNs. Their architecture 

used shared filters across all sensor modalities, i.e., 

acceleration, magnitude and gyroscope data, applied over the 

temporal representation of the signals. Morales et al. [21] 

analyžed the DeepConvLSTM for transfer learning across 

mobile AR datasets, sensor modalities and sensor locations. 

Among other things, the authors have analyžed whether the 

features learned by the CNN’s filters on the OPPORTUNITY 

dataset [22] can be re-used for building a model for the Skoda 

[23]. Their study confirmed that transferring filters across 

datasets is quite challenging and in most of the cases the 

domain-specific baseline model outperformed the models 

build using transfer learning. Similarly as Ding et al. [20], the 

DeepConvLSTM uses shared filters across all sensor channels, 

i.e., acceleration data, applied over the temporal representation 

of the signals. 

Compared to the related work, our study provides several 

novelties: (i) to the best of our knowledge, this is the first study 

that analyžes four different datasets for transfer learning in the 

AR domain; (ii) our DNN architecture provides the possibility 

to learn CNN filters individually for each channel and thus to 

transfer channel-specific CNN filters; (iii) our DNN architecture 

provides the possibility to learn CNN filters for both temporal 

and spectral representations of raw signals, and thus it 

provides the possibility to transfer CNN filters not only in the 

temporal but also in the spectral domain 

2 Datasets 

The four datasets used to evaluate the effectiveness of the 

transfer learning method are: Skoda [23] OPORTUNITY [22], 

JSI-FOS [24][25] and PAMAP2 [26]. All datasets, except for 

Skoda, are comprised of activities of daily living, whereas Skoda 

is comprised of activities performed by a worker at a quality 

control checkpoint in a car factory. All of them contain 

information captured by a 3D accelerometer on the dominant 

hand of the wearer, which makes it ideal to use in this analysis 

since it focuses our transfer learning methods to the domain of 

the task, rather than the modality or location of the sensors 

used. More detailed information on the datasets can be found 

in Table 1. 

3 Deep Learning Architecture 

The DNN architecture (Figure 1) used in this study is a deep 

multimodal spectro-temporal ResNet (Multi-ResNet). The 

Multi-ResNet has already been proved successful for AR in our 

previous study [27] by achieving comparable accuracy to state-

of-the art feature-based models on one of the largest AR 

datasets, the SHL dataset [29]. The structure is based on an idea 

for training very deep end-to-end networks for image 

recognition: it uses shortcut (residual) connections to fight the 

gradient-vanishing problem [28]. Additionally, the network has 

two key factors for a successful AR system – it utiližes 

multimodal and spectro-temporal information. For each sensor 

channel, the network extracts channel-specific spectro-

temporal information: the spectral information is extracted by 

calculating a spectrogram of the input signal, which is then 

used as input to a 1D convolutional layer; the temporal 

representation is extracted by residual blocks that contain 1D 

CNN filters. To reduce internal covariance shift, each CNN layer 

is followed by a batch normaližation (BN) layer [30]. To speed 

up the training process, ReLU activation layers are used [31]. 

For dimensionality reduction, each residual block ends up with 

a maximum pooling layer. The output of the channel-specific 

layers, i.e., channel-specific spectro-temporal information, is 

then merged by two dense (fully connected) layers. To avoid 

overfitting, L2 regularižation and dropout were used for the 

dense layers. The final output of the Multi-ResNet is provided 

by a softmax layer, which outputs probabilities for each class.  

4 Experiments 

4.1 Experimental Setup 

Four datasets were used in this study and the effects of 

transfer learning were tested on each combination of these 

datasets. Firstly, all datasets were downsampled to a frequency 

of 25Hž and segmented to windows of 4s with an overlap 

between windows of 2s. Furthermore, all datasets were split 

into a train, validation and test subsets, which comprised 40%, 

10% and 50% of the overall duration of each dataset, 

respectively.  

 

Table 1. Overview of the experimental datasets. 
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To get more realistic evaluation of our work, the split was 

done in such a way that every subject would appear in only one 

of the subsets. In the case were there was only one subject in 

the dataset, such as in the Skoda, the split was done per activity 

occurrence so that neighboring instances could occur in only 

one of the subsets.  

In each experiment, one of the datasets served the purpose 

of a source domain and another dataset served as a target 

domain. At the start of each experiment, a model (source 

model) was trained on the training subset of the source dataset 

and validated on the validation subset of that same dataset. The 

training was fully supervised, by back-propagating the 

gradients through all the layers. In the next step, the model 

weights were transferred from the source model to a new 

model (target model), which would then go on to be adapted 

(trained) on a portion of the training subset of the target 

dataset (adaptation subset). In this case, all weights of the 

source model were transferred to the target model and, 

depending on the experiment, some of them were frožen 

during the training of the network. Thus, the gradients were 

back-propagated only up to a certain layer of the target model.  

The experiments were carried out in such a way that the 

weights of whole residual blocks were transferred from the 

source model to the target model and not just individual 

convolutional layers. Also, several different sižes of the 

adaptation subset were tested in these experiments. However, 

the maximum number of instances never exceeded the full siže 

of the training subset of the Skoda dataset, which is the smallest 

dataset of all four. Thus, in summary, two parameters were 

quantified in the experiments:  

(i) the number of residual blocks whose weights would be 

transferred from the source model to the target model;  

(ii) the siže of the adaptation subset on which the target 

model would adapt to the new domain.  

In addition, each experiment included the results of a model 

which was trained solely on the adaptation subset and had no 

weights transferred to it from the source model. This domain-

specific model served as a baseline to which we compared our 

results. Finally, the results were scored using the F1-score with 

micro average. 

All models were trained by minimižing the cross-entropy 

loss function using the Adam optimižer, using a learning rate of 

10−3 and a decay of 10−3. The batch siže was set to 256 and the 

maximum number of training epochs was set to 70. The 

network parameters, including the number of residual blocks, 

the number of CNN layers per block, the siže of the CNN filters, 

the learning rate and the batch siže, were determined expe 

rimentally. 

4.2 Experimental Results 

The results of our experiments can be seen in Figure 2. The title 

of each heatmap represents: which dataset was used as the 

target domain (T); in the brackets is the F1-score achieved by a 

majority classifier for the specific target domain (24 for Skoda, 

19 for OPORTUNITY, 26 for PAMAP and 24 for JSI-FOS); which 

dataset was used as the source domain (S). The vertical axis of 

every heatmap represents the number of instances in the 

adaptation subset. The horižontal axis represents the number 

of residual blocks whose weights were transferred from the 

source model to the target model. The numbers in each cell 

represents the micro F1-score achieved for the specific 

combination of number of instances in the adaptation set and 

the number of residual blocks whose weights were transferred. 

The leftmost column shows the F1-score of the domain-specific 

baseline model which was trained on that same adaptation 

subset of the target domain.  

When Skoda is the target dataset (first-row heatmaps in 

Figure 2) and JSI-FOS or PAMAP are the source datasets 

individually, we can observe a degradation of performance 

compared to the baseline. On the other hand, an increase of 

performance can be observed when OPPORTUNITY serves as  

Figure 1. The deep multimodal spectro-temporal ResNet 

(Multi-ResNet) used in the study. 
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 the source dataset, with the case of transferring the weights of 

three residual blocks appearing to be the most robust one. 

When OPPORTUNITY is the target dataset (second-row 

heatmaps in Figure 2) and Skoda is the source dataset, the same 

increase of performance can be seen. Furthermore, when the 

source dataset is JSI-FOS or PAMAP, it either brings a decrease 

of performance or in the best case is on par with the baseline 

score.  

When PAMAP is the target dataset (third-row heatmaps in 

Figure 2) and we use the maximum or near to the maximum 

number of instances in the adaptation subset, the scores for the 

baseline and transfer learning, with any number of weights 

transferred, are within a few percentage points of each other. 

But, a decrease of the F1 score can be noticed in cases of smaller 

adaptation subsets, no matter which dataset acts as the source.  

Finally, when JSI-FOS is the target dataset (last-row 

heatmaps in Figure 2), another increase of performance can be 

seen when Skoda or PAMAP are used as the source datasets. 

More specifically, the transfer from PAMAP to JSI-FOS provides 

more consistent results. When OPPORTUNITY is the source 

dataset and the adaptation dataset is large enough, some 

increases of performance can also be observed. 

5 Conclusion and Discussion 

In our study, we looked at four different domains as sources 

and targets of our transfer learning experiments. The results 

show that the choice of the source domain is very important. 

This was particularly true in the case of OPPORTUNITY and 

Skoda, where transfer was successful only between them, and 

not when JSI-FOS or PAMAP were used as the source. This may 

be due to the fact that OPPORTUNITY and Skoda as datasets are 

comprised of fine-grained gestures and contain a lot of 

diversity, as opposed to JSI-FOS and PAMAP, which are 

comprised of more general, high-level activities. When JSI-FOS 

and PAMAP were the target, the choice of the source was less 

important, although the most successful transfer was still from 

PAMAP to JSI-FOS. We can conclude that transfer of 

convolutional layers between significantly different domains 

does not yield good results. This is especially true when 

weights are learned on a high-level and low variability source 

domain and transferred to a target domain with more fine-

grained activities. We speculate that this is due to the fact that 

it is far easier to remove details during the adaptation process, 

as has to be done when transferring from fine-grained gestures 

to high-level activities, rather than learn new details on a small 

adaptation dataset.  

Finally, there seems to be an underlying pattern in the 

scenarios where we noted an increase of performance which 

suggests that, for this specific network architecture, 

transferring three residual blocks proves to be the most robust 

Figure 2. F1-score for each Target (T) - Source (S) domain   

combination. The y-axis represents the number of 

instances in the adaptation subset. The x-axis represents 

the number of residual blocks transferred from the S 

model to the T model. The leftmost column shows the F1-

score of the domain-specific baseline model. 
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choice, as it commonly provides the best scores regardless of 

the number of instances in the adaptation subset. 

Our experiments focused on building end-to-end models 

with very little data, i.e., starting from 20 instances (near 1 

minute of data) to 2087 instances (near 75 minutes of data). As 

a consequence, the overall accuracy varies between 53% (on 

the Skoda) to 74% on the JSI-FOS dataset. Also, the 

experimental results are quite related to the specific DNN 

architecture, the Multi-ResNet. In future, we plan to test 

additional end-to-end DL architectures and to compare their 

performance. Also, we plan to use multiple datasets as a source, 

and this way to learn more general model. Finally, we plan to 

provide a comparison of transfer learning performed in the 

spectral domain as opposed to a transfer learning in the 

temporal domain. 
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