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ABSTRACT To further extend the applicability of wearable sensors, methods for accurately extracting
subtle psychological information from the sensor data are required. However, accessing subjective infor-
mation in everyday life, such as cognitive load, remains challenging. To bring consensus on methods for
cognitive load monitoring, a machine learning challenge is organized. The participants developed machine
learning methods for cognitive load classification using wrist-worn physiological sensors’ data, namely
heart rate, R-R intervals, skin conductance, and skin temperature. The data from subjects solving cognitive
tasks of varying difficulty is used for the challenge. This article presents a systematic comparison and
multi-strategic performance evaluation of the thirteen methods submitted to this challenge. A systematic
comparison of preprocessing techniques, classification algorithms, and implementation techniques is pre-
sented. Performance variations for different task difficulty levels, different subjects, and different experiment
periods are evaluated. The results indicate that the most robust methods used multimodal sensor data,
classical classification approaches such as decision trees and support vector machines or their ensembles,
and Bayesian hyperparameter optimization for hyperparameter tuning. The most accurate models used
handcrafted features that are further selected using sequential backward floating search and evaluated
using stratified person-aware cross-validation strategy. Moreover, the results indicated better classification
performance for specific test subjects, the tasks with the highest difficulty, and in some cases, the time
elapsed since the start of the experiment. This dependency is likely due to model overfitting or due to the
subjective nature of the psychophysiological process. The intersubject variability in responses is challenging
to be captured through objective binary labels for cognitive load, thereby warranting more sophisticated
annotation approaches.

INDEX TERMS Cognitive load, machine learning, wearable sensors.

I. INTRODUCTION
The availability of small, wearable, and low-cost sensors
combined with advanced signal processing and information
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extraction capabilities is driving the revolution in mobile
behavior monitoring for applications such as sports analytics,
ambient-assisted living, and lifestyle monitoring [1]. The
applicability of wearable sensors is enhanced by the extrac-
tion of subtle physiological information that can serve as
the basis of psychological monitoring. However, assessing
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psychophysiological information in everyday life remains
challenging [2] since the association of wearable sensor data
to human psychophysiological states is not as explicit as it is
for physical states. For instance, smartphones can count steps
and distinguish human physical activities (e.g., running vs.
walking), but cannot recognize emotions and other affective
states (e.g., cognitive load). Additionally, the inability of
humans to recognize their own psychophysiological states
in a timely and accurate manner poses a challenge for the
development of affect recognition systems.

The psychophysiological state addressed in this paper is
the cognitive load. It refers to the state of utilization of one’s
mental resources and is strongly related to attention. Mental
resources are limited. A mentally-demanding task deprives
the new tasks of resources. Consequently, the person cannot
pay attention to these new tasks or must interrupt the current
task. Wearable devices and mobile applications should be
aware of the user’s cognitive load when the user is occupied
with a demanding task. This can prevent undesirable effects
of attention-grabbing. For instance, nearly 25,000 lives are
lost annually on the EU roads where a vast majority of acci-
dents are caused by human error, often by a distracted driver.1

Intelligent solutions to detect cognitive load and other mental
states, and provide a warning when needed, may decrease the
loss of human lives, thereby contributing to the EU’s goal
of zero fatalities and severe injuries by 2050.2 Additionally,
monitoring affective states can help improve mental well-
being [4] and productivity (e.g., avoiding notifications while
the user is in the optimal flow state) [5].

When humans experience a psychophysiological load in
the form of a demanding task, the sympathetic nervous
system is activated. Depending on the load intensity, this
activation increases the heart rate, sweating rate, breathing
rate, and blood pressure; the pupils dilate, the saliva flow
decreases, the heartbeats become equidistant, the blood flow
is restricted from the extremities, and is redirected towards
the vital organs. These signals can be measured accurately
in controlled environments, such as hospitals, using special-
ized equipment. However, less obtrusive and less expensive
devices are required to capture these signals in daily life
through practical and large-scale experimentation [7]. More-
over, an ecological momentary assessment that reveals user
experiences are necessary to infer mental states from such
measurements in daily life [6]. Recent advances in sensing
technology have enabled relatively unobtrusive vital sign
monitoring, thereby, bringing us closer towards unobtrusive
mental state monitoring [26]. A significant part of research
in mental state recognition and monitoring with wearables
focuses on mental stress. For instance, Mozos et al. [54] used
wearable and sociometric sensors to detect stress using a stan-
dard stress induction protocol. Similarly, Gjoreski et al. [30]
used commercially available Empatica wristbands to detect

1https://ec.europa.eu/commission/presscorner/detail/en/IP_19_1793
2https://www.ubittention.org/2020/data/Cognitive-load challenge

description.pdf

stress with up to 92% accuracy using heart rate variability,
blood volume pulse, galvanic skin response (GSR), skin
temperature, and acceleration. Stress often overlaps with
the cognitive load but can be potentially distinguished from
it [27]. Inferencing cognitive load from physiological signals
is an important research field that is less researched compared
to the recognition of physical states and activities, as well
as the inference of several psychological states (e.g., stress,
affect). To promote this field, a machine learning (ML) chal-
lenge was organized in which the participants built pipelines
to infer cognitive load. Since the same dataset was used for
the ML pipelines, performances of the algorithms could be
compared and the best methods for cognitive load inferencing
could be ascertained.

This article has the following contributions: i) it presents
a systematic comparison of approaches of the thirteen suc-
cessful machine learning pipelines submitted to the afore-
mentioned challenge, ii) it provides a detailed evaluation of
their overall performance and their performances for differ-
ent subjects, different tasks and their difficulty levels, and
iii) it summarizes the learnings from the challenge and
presents them as suggestions for ML model development to
infer cognitive load.

FIGURE 1. Wristband microsoft band 2 used for dataset collection.

II. CHALLENGE DATASET DESCRIPTION
In order to collect physiological signals in situations where
a subject is cognitively engaged, an experiment was con-
ducted in which the subjects solved cognitive tasks of vary-
ing difficulty. The experiment was performed in a quiet,
normal-temperature office with one subject at a time under
the same circumstances. Twenty-three subjects (four female)
were recruited through the institutional communication chan-
nels (e.g. mailing lists, social network posts) and personal
links. Their mean age was 29.5. The subjects had vari-
ous degrees of educational qualification – high school (7),
B.Sc. (6), M.Sc. (6), and Ph.D. (4). studies. All subjects were
(self-assessed) healthy adults and no other criteria were used
for limiting the participation. The subjects wore a commercial
wristband (refer Figure 1) on their non-dominant arm and sat
on a comfortable chair in front of a computer monitor. The
experiment session was recorded without any restrictions on
the subject’s hand gestures, thereby reproducing sedentary
workstyle. The experiment protocol is depicted in Figure 2.
The subjects were briefed about the experiment. The remain-
ing protocol comprised of two sets of tests – cognitive capac-
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FIGURE 2. Dataset collection protocol.

ity tests and cognitive load estimation tests. A demographic
questionnaire was filled in between the two tests. Cognitive
capacity tests consisted of n-back tasks where n ∈ {2, 3}
(2B and 3B in Figure 2). An n-back task consisted of 3 × 3
grid cells, one of which was colored at each time step. The
subjects decided whether the colored cell at a time step was
the same as the one colored n steps ago. The ratio of correct
and incorrect answers depicted the cognitive capacity of the
subject. Cognitive load estimation tests were comprised of
six elementary cognitive tasks (ECTs) (denoted by x in Txy
in Figure 2). These tasks are designed to elicit perceptual
cognitive engagement, often used to demonstrate individ-
ual differences among people [35]. Haapalainen et al. [9]
developed a software with these ECTs to assess visual-
perception-based cognitive load factors. A variation of this
software was utilized for the data collection. The six ECTs
were: i) Gestalt Completion test (T1) to identify incomplete
drawings, ii) Hidden Pattern test (T2) to identify if a given
model image is hidden in the composition of other images, iii)
Finding A’s test (T3) to capture the speed of identification of
letter ‘a’s in a text, iv) Number Comparison test (T4) to gauge
the subject’s speed of comparison of two multidigit numbers,
v) Pursuit test (T5) to visually track irregularly-curved over-
lapping lines from the numbers on left to letters on the right
side of a rectangle, and vi) Scattered X’s test (T6) to find the
letter ‘x’ placed randomly, crowded with other letters. The
first four ECTs were obtained from a manual for reference
tests for cognitive factors [36], a popular standard for edu-
cational psychology research. The last two ECTs were origi-
nally devised by Thurstone and Thurstone [37]. Furthermore,
each ECT had three variations in difficulty (easy, medium
and hard difficulty levels denoted by y in Txy in Figure 2)
and were presented in a randomized order. After each task,
a NASA-TLX [8] questionnaire was filled by the subjects to
assess subjective cognitive load. The participants rested for
three minutes after filling each questionnaire.

The following wristband data was recorded with 1Hz
sampling rate: R-R (or inter-beat) intervals, galvanic skin
response (GSR), heart rate (HR), skin temperature (ST),
barometer data, accelerometer and UV index data. However,
the focus of the challenge is limited to the data from the
following physiological sensors: R-R, GSR, ST, and HR.
The data from the wristband was transmitted via Bluetooth
and a mobile phone to a server for offline data analysis.
Figure 3 depicts the signals for a subject in a single session.

FIGURE 3. Sample sensor data for a subject. NASA-TLX questionnaire
periods have been excluded.

Due to excessive noise, affected segments in the original
dataset were disregarded. The dataset used for the challenge
consisted of 825 instances from 23 participants. The instances
of rest were labelled as ‘no load’ whereas the task instances
were labelled as ‘cognitive load’. Each instance was com-
posed of 30-seconds data of four modalities: R-R, GSR, ST,
and heart rate. The dataset was split into training and test
datasets with 632 instances from 18 subjects in the former.
In the training set, 49.6% of the instances had a label ‘0’ or
‘no load, hence leading to a nearly balanced dataset. Each
subject’s data was assigned a unique subject ID. Furthermore,
the dataset is the first labeled dataset for cognitive load
monitoring with a wristband and is made publicly available
following the ML challenge.

III. MACHINE LEARNING CHALLENGE
The goal of this challenge was to recognize two levels of cog-
nitive load – Cognitive load vs. no load, using four physiolog-
ical signals – R-R, GSR, ST, and HR. The participants of the
challenge had access to a labeled training dataset and an unla-
beled test dataset. The participants developed ML pipelines
that processed the sensor data, created models, and recog-
nized the cognitive load. The problem is deliberately reduced
to the binary recognition of whether a subject is engaged
in a task (irrespective of whether the task is easy, medium,
or hard) or resting, as the previous efforts demonstrate that
fine-grain distinction among different cognitive load levels
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TABLE 1. Comparison of the methods adopted by the challenge participants.

from physiological signals might be impossible [26], [32].
The results were presented at UbiTtention workshop at ACM
UbiComp 2020 conference, and the three best-performing
teams were rewarded. The following subsections describe the
specifications of ML pipelines submitted to this challenge in
further detail.

A. METHODS
This subsection describes the methods adopted by the par-
ticipants of the ML challenge to infer cognitive load. The
challenge received thirteen submissions from nine different
teams. In the following sections, each submission is regarded
as a method and denoted by a roman number. Further details
on the teams are provided in the Appendix. Table 1 pro-
vides an overview of the methods. Nine methods involved
preprocessing techniques such as standardization or normal-
ization. Notably, more than half of them used subjectwise
preprocessing. A majority, i.e., ten out of thirteen methods,
are based on classical ML approaches, including tree-based
algorithms (I, V, VI, X), support vector machines and their
ensembles (II, III, IX), and logistic regression (IV, VIII,
XIII). The remaining three are based on neural networks:
a multilayer perceptron (VII), a recurrent neural network
(XII), and an autoencoder based on a convolutional neural

network (XI). However, only two of these three are end-
to-end learning approaches. The small dataset size was noted
as a major motivation for choosing classical ML approaches
over approaches based on neural networks. To overcome
the shortcoming posed by the dataset size during train-
ing, three methods adopted dataset augmentation techniques,
whereas the transfer-learning-based approach in method XI
used an external, yet similar dataset to pretrain the model.
Method VII utilized Synthetic Minority Over-sampling Tech-
nique (SMOTE) to enlarge the dataset as well as to introduce
variability. Meanwhile in method XII, a particular class was
upsampled to counteract the input-induced bias in the net-
work. Method X used B-spline interpolation of instances to
compensate for the effects of low sampling frequency. All the
methods considered the four modalities provided.

A majority (eleven) of the methods involved handcrafted
feature extraction. Among the extracted features, the promi-
nent ones encompassed time-domain statistical measures
such as mean, variance, kurtosis, median, sum, etc. and
frequency-domain measures such as power spectral density
ratio of heart rate variability. Several extracted features are
modality-specific, e.g., skin conductance peak amplitudes
are derived from GSR, and heart rate variability in terms
of root mean square of successive differences derived from
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R-R intervals. The total number of extracted features varied
between 4 and 129. However, six approaches did not utilize
all the extracted features. Instead, feature selection techniques
such as maximal information coefficient, sequential forward
or backward floating selection, and Gini impurity method
are used to select the most informative features. Method V
performed feature extraction and selection using an in-house
feature discovery platform. ML algorithms rely heavily on
hyperparameters. Hence, hyperparameter optimization plays
a vital role. Three methods optimized the hyperparameters
with a grid search (IX), Bayesian optimization (I), and their
combination (III).

B. IMPLEMENTATION FRAMEWORK
Python is the most prominent programming language used by
the participants and the scikit-learn library is commonly used
for classical ML algorithms. The hyperparameter optimiza-
tion library hyperopt is utilized in two methods. The models
are internally evaluated on a validation set. Twelve out of
thirteen methods havementioned the use of a cross-validation
strategy for evaluation. Most of them used the leave-k-
subjects-out strategy, while others used a leave-k-folds-out
strategy or a combination of both (refer Table 2). The result-
ing models vary in size depending on the algorithm. The
logistic regression model developed in method IV resulted
in the smallest size (845 B), whereas the convolutional neural
network model developed in method XI resulted in the largest
size (37 MB).

IV. CLASSIFICATION PERFORMANCE EVALUATION
We evaluated the methods on the test dataset using various
strategies:

i) Overall Classification Performance: Average binary
classification accuracies of the methods on the entire
test dataset are computed. Further, the highest achiev-
able performance is obtained through voting ensembles
of multiple methods.

ii) Subject-Related Performance: Binary classification
accuracy is computed for the five test subjects.
This evaluation strategy potentially depicts the
user-generalization capability of the model.

iii) Task-Difficulty-Related Performance: This strategy
focuses on binary classification accuracy for the three
task difficulty levels. This strategy depicts the variation
of classification complexity based on task difficulty.

iv) Experiment-Period-Related Performance: This strat-
egy focuses on binary classification accuracy for each
of the two halves of the experiment period, potentially
depicting the influence of the duration of the experi-
ment on the performance of the model.

A. EVALUATION METRICS
The methods are evaluated on the instances in the test
dataset. One of the following two performancemetrics is used
depending on the aforementioned strategies: accuracy (Acc)
for the first evaluation strategy and partial accuracy (pAcc)

TABLE 2. Method implementation tools and evaluation strategies based
on information provided by participants.

for the remaining strategies. Accuracy is the standard ML
score defined as:

Acc =
# correctly predicted instances

# instances

Partial accuracy is used for the remaining evaluation strate-
gies, and is accuracy calculated over a subset of instances x
as:

pAcc(x) =
# correct pred . for the instances from x

# instances from x

Depending on the evaluation strategy, x can represent any
of the following: instances from a test subject, instances from
a task with specific difficulty (e.g., rest, easy, medium or
hard), or instances from a portion of the experimental period
(e.g., first half vs. second half). Though the ML methods are
initially developed for binary classification (rest vs. cognitive
load), the partial accuracy allows for a better granularity in the
analysis of the methods. Additional evaluation scores such
as precision, recall, and F1-score for overall performance are
presented in the appendix.

B. INFERENCE ACCURACY
Table 3 presents the average accuracy achieved by each
method on the test dataset. The accuracies spread gradually
from baseline 0.5 to the highest accuracy of 0.69. However,
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TABLE 3. Overall classification performance: average accuracy of
methods on the test data in decreasing order.

none of the methods significantly outperformed the remain-
ing. The top-ranked method resulted in an accuracy of 0.694,
which is 0.15 higher than the second-best method and 0.2
higher than the third-ranked method.

Table 4 presents the accuracies achieved by voting ensem-
bles of the top-x ranked methods. The highest accuracy
of 0.71 is achieved using a voting ensemble of the top-3
methods.

TABLE 4. Accuracy achieved by voting ensembles of top-x methods. votes
from top 3 methods result in the best performance.

Table 5 presents the partial accuracy per subject in the test
dataset for each of the methods. The results are seen to be
subject-dependent and most of the methods perform well for
specific subjects (e.g., subjects with IDs iz3x1 and bd47a).
For subjects 3caqi and f1gjp, most of the methods do not
perform well. The dependency on the subjects is less obvi-
ous for the higher-ranked methods than for the lower-ranked
methods. For instance, method I achieved the highest accu-
racy of 0.789 and the lowest accuracy of 0.615, resulting in a
difference of 0.174. This difference is much higher for the rest
of the methods, including the second-ranked and the third-
ranked methods. This indicates good user-generalization
capabilities of method I.

Table 6 presents the partial accuracy per designed task
difficulty. The results show that most of the high-ranked
methods perform better for the instances belonging
to higher task difficulty. The exceptions to this are

TABLE 5. Subject-related performance: partial accuracy of each method
per test subject.

TABLE 6. Task-difficulty-related performance: partial accuracies per task
difficulty. Better classification performance is observed for harder tasks.

methods III, V, andXI. The rest periods are themost challeng-
ing to detect for all of the methods. Since the difficulty levels
are presented in a random order, the rest periods are further
analyzed by segregating them based on the preceding task
difficulty to identify whether the prior difficulty influences
the accuracy of rest detection.

Table 7 presents the partial accuracy for rest periods fol-
lowed by easy, medium, and hard tasks. It can be seen that
there is no specific pattern depicting the influence of task
difficulty on rest period accuracies.
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TABLE 7. Partial accuracies for rest periods following different task
difficulties.

TABLE 8. Experiment-period-related performance: partial accuracies for
experiment period halves.

Table 8 presents the partial accuracy with respect to the
experiment period, i.e., the first half of the experiment vs.
the second half of the experiment. The results show that
methods such as III and IV are sensitive to the experiment
period as they have larger variation in the accuracies achieved
for the two halves of the experiment in comparison with the
other methods.

C. POSSIBLE CAUSES OF OVERFITTING
Multi-strategic evaluation of models uncovered possible
influences of training/test splitting on the performance.

Table 6 depicted the dependency of methods’ performance
on the subjects in the test dataset. The inter-subject per-
formance variation is lower for the top-ranked methods,
indicating higher generalizability. Performance variation of
lower-ranked methods is likely a sign of overfitting, which
needs to be considered by the researchers during model selec-
tion. One possible solution is to include the inter-subject per-
formance variation as an additional optimization parameter
during the model training. Results in Table 8 depicted higher
sensitivity of low-ranked methods to the experimental period.
This additionally indicates overfitting where the experiment
design influenced the ML models. Possible solutions to these
problems include optimal tuning of theMLmodels and better
feature selection methods to remove the features sensitive to
the experiment period.

FIGURE 4. Overview of validation (predicted) accuracies of submitted
models and the corresponding accuracy on the test set (actual).

Finally, a higher predicted accuracy achieved on a vali-
dation set (or using the cross-validation on the train data)
compared to the test set accuracy indicates overfitting (refer
Figure 4). Such overfitting may appear when hyperparameter
tuning is performed using the same cross-validation scheme
that has been used for evaluating the final models. A possible
solution to this problem for small datasets could be a nested
cross-validation approach. For larger datasets, the traditional
train-validation-test splits are often sufficient.

D. METHOD SIMILARITY
Performing a statistical-significance analysis over the pre-
sented results is challenging since the methods are tested only
once on the final test data. To present some intuition about the
differences in methods, we performed hierarchical clustering
using Euclidean distance and complete linkage applied over
the methods’ predictions (refer Figure 5).

In Figure 5, the end-to-end learning methods
(XI and XII) are partitioned out of homogenous clus-
ters, depicting that they are not identical to the feature-
engineering-based methods. Additionally, the four of the
top-5 (I, II, III, and V) belong to a same cluster.
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FIGURE 5. Hierarchical clustering using Euclidean distance and complete
linkage applied over the methods’ predictions.

V. DISCUSSION AND LESSONS LEARNED
Our meta-analysis presented in the previous section reveals
the superiority of a combination of data processing tech-
niques for the wrist-worn device-originated physiological
signals for cognitive load inference. Namely, we observe that
ensemble-based ML algorithms in conjunction with sequen-
tial backward floating search feature selection, Bayesian
hyperparameter optimization, and evaluation founded in
stratified person-aware cross-validation outperform alterna-
tive approaches.

To move beyond the competition of different methods, and
to guide future efforts in automated cognitive load inference,
certain peculiarities of sensor data elicited during human cog-
nitive engagement are listed below. They imply a particular
manner in which cognitive load inference pipelines should
be constructed. The inferences are as follows: i) Physiologi-
cal response to increased cognitive load is relatively subtle,
represented by changes that may be symptomatic to other
phenomena (e.g. a subject’s health status, emotions, physical
stress, etc.), and prone to noise, especially when collected
via inexpensive wearable sensors. Consequently, while deep-
learning-based automatic feature extraction excels in several
other domains, cognitive load inference still requires care-
fully handcrafted features and guided feature selection to
avoid the algorithm’s attention on irrelevant signals. Natu-
rally, the three neural network-based submissions are among
the low-ranked methods. ii) The methods analyzed in this
paper perform relatively well when a subject is highly cog-
nitively engaged yet fail when the subject is resting or
engaged in an easy task. It appears that the physiological
signal variation captured by commercial wearable devices
is rather minuscule to allow fine-grain detection of cogni-
tive load levels. These findings are in line with the related
work [30], [32]. iii) Subject-related analysis reveals that one
solution that fits all may not be feasible. Different approaches
are successful when inferring the cognitive engagement of
different subjects. Confounding variables likely related to a
subject’s demographics or personality may result in different
physiological reactions. Hence, the development of a suitable
ML model for a particular subject is an interesting avenue for
future research. iv) The analyses demonstrate the need for a

separate well-founded evaluation set when physiological sig-
nals are considered. Despite the popularity and practicality of
cross-validation, independent evaluation with well-stratified
data initially separated from the training set is crucial to avoid
unintentional overfitting.

Besides the observations presented so far, it should be
noted that additional challenges exist for an in-the-wild cog-
nitive load monitoring system. The dataset analyzed in this
study was collected in a sedentary environment. On the other
hand, Schmalfus et al. [14] explored the potential of wearable
devices for mental workload detection in different physiolog-
ical activity conditions. The study included 32 participants,
2 mental stressors and 4 physical stressors. The statistical
analysis indicated that wearable devices are not fully capable
of identifying mental workload when physical activity is
present.

The tasks of our data collection experiments are geared
specifically towards eliciting different levels of cognitive
load. These tasks have been a part of the standard psycho-
logical toolbox since the 1940s VII, and their implementation
(introduced by Haapalainen et al. [9]) used in this work has
been considered by other studies as well (e.g., [26] and [16]),
affirming that the stimulus of the experiment protocol was
indeed cognitive load.

Physiological signals captured by the Microsoft Band
wristband include heart activity-related signals, acceleration,
skin temperature, and skin conductance. More than one
confounding factor may affect the change in these signals.
For instance, heart activity can increase due to a subject’s
health state, emotion, stress, and other factors. However, the
relationship between the heart activity-related signals and
cognitive load is well-documented in the existing literature
(e.g. [16], [23]). To a certain extent, the relationships
between cognitive load and skin conductance (e.g., [17]
and [18]), as well as the skin temperature [16]) have also been
researched.

VI. RELATED WORK
A variety of psychophysiological measures can be used for
assessing cognitive states: electroencephalography (EEG),
electrocardiogram (ECG), heart rate and heart rate vari-
ability, optical imaging, blood pressure, skin conductance,
electromyography, thermal imaging, pupilometry [10]. The
majority of the efforts related to cognitive load moni-
toring with wearable sensors, however, focused on EEG
devices. This is a natural choice as the brain is the
most informative source of information for monitoring
human psychological states using sensors. Usually, features
are extracted from the EEG sensor data (e.g., the inten-
sity of different frequency bands), and those features are
analyzed using correlation analysis [11] or ML models
(Naive Bayes, Linear Discriminant Analysis, SVM, Con-
volutional Neural Network – CNN, Logistic Regression)
[19], [20], [25]. Moving further towards multimodal sensing,
Jimenez-Molina et al. [23] explored photoplethysmography
(PPG), EEG, temperature and pupil dilation sensors to
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the assess mental workload of 61 participants during web
browsing. Contrary to the studies based on physiologi-
cal sensors, Chen and Epps [21] used gyroscope-based
atomic head movement analysis for task load recog-
nition. All of these studies involving EEG and head
mounted-devices can be quite useful for cognitive load
monitoring in movement-restricted environment, such as in
virtual-reality-based scenarios, but their application remains
limited in real life.

Additionally, chest-mounted devices, which are less obtru-
sive than head-mounted devices, have been proven useful
for cognitive load monitoring [9], [13], [15], [22] though
accompanied by real-life limitations.

Compared to head- and chest-mounted devices, wrist-worn
devices are likely the least obtrusive because sub-
jects are already accustomed to wearing wristwatches.
Johannessen et al. [13] analyzed cognitive load in 5 physician
team leaders during trauma resuscitation. They collected
glasses-based eye-tracking data and wrist-based GSR, and
heart rate data, during five trauma resuscitations. A correla-
tion and regression analysis showed that multiple physiologi-
cal measures should be employed to most accurately measure
cognitive load in a real-world setting. Kohout et al. [24]
proposed an approach for detecting cognitive load (relaxed
vs. loaded) by collecting data from 8 participants wear-
ing wrist sensors and additionally carrying a smartphone
as a sensor in their pocket while performing a pill-sorting
task. They stressed their participants by introducing a
dual-task situation. They used an SVM classifier to achieve
90% accuracy. Novak et al. used wristbands to infer cog-
nitive load in a simulated driving environment [28]. Sim-
ilarly, Gjoreski et al. combined physiological sensors with
video-based sensors to detect increased cognitive load while
driving [31]. Schaule et al. [29] used the same wristbands
and an N-back task to elicit different levels of cognitive load
among office workers.

Barua et al. [38] used the n-back task to assess cogni-
tive load in drivers while measuring their physiological sig-
nals (ECG, GSR, respiration, EEG, electrooculography). The
authors used various ML models, including k-nearest neigh-
bor (k-NN), SVM, and random forest for classifying cog-
nitive load, and random forest outperformed other methods.
Yomna et al. [40] collected measurements on eye movements
in drivers and compounded them with data on braking, accel-
eration and steering. Reasonable accuracies were obtained
by using SVM and random forest methods for recogniz-
ing abnormal driving situations through the cognitive load
of drivers. Fridman et al. [41] tried to estimate cognitive
load in real-life driving situations by employing vision-based
methods, captured in a video. The best-implemented method
with high accuracy was a 3D convolutional neural network.
Appel et al. [42] experimented with participants in various
game simulation environments, collecting data on interac-
tion metrics, pupil dilation, eye-fixation behavior, and heart
rate data. Participant-specific random forest achieved the
best accuracy in classifying cognitive load. Chen et al. [43]

measured cognitive load by four methods: the subjective
rating of task difficulty, task completion time, performance
accuracy and eye activity-based physiological measurement.
ANOVA tests and Gaussian mixture model classification
resulted in the best classification accuracy in classifying five
levels of cognitive load. The authors noted that eye activity is
the best measure for cognitive load due to real-time accessi-
bility. Nourbakhsh et al. [44] focused on GSR and eye blinks
as their measurements for the cognitive load. The partici-
pants in the study took an arithmetic test with four different
difficulty levels while the measurements were taken. Naive
Bayes achieved the best accuracy for binary classification,
while SVM achieved the best accuracy for 4-level classi-
fication. Yin et al. [45] estimated three different levels of
cognitive load from speech in a speaker-independent setting.
The best accuracywas produced by aGaussianmixturemodel
with 256 mixtures using a background model with maxi-
mum a-posteriori estimation technique for different levels of
cognitive load, using Mel-Frequency Cepstral Coefficients,
prosodic features, acceleration features, and feature warping.
Segbroeck [46] extracted static and dynamic features from
speech to estimate three levels of cognitive load. By per-
forming a feature-level fusion on various features (prosodic,
spectral, voice quality, lexical information, speaking rate)
with i-vector modelling, they produced better results than
existing SVM models.

Furthermore, the least obtrusive approaches are those
approaches that infer cognitive load using remote sens-
ing [26], [40] although they are challenging. Cognitive load
inference may also be beneficial in the future for people with
various brain-related disorders, e.g. Parkinson’s disease or
multiple sclerosis [51], [52].

All of these studies demonstrate the usability of wear-
able sensors for monitoring cognitive load and related psy-
chophysiological constructs (e.g., stress, distractions, etc.).
Typically, in all of these studies, one novel approach is
compared against a few baselines on a dataset that is not
publicly available. In our study, thirteen novel methods were
analyzed and evaluated against the same benchmark data,
which is publicly available, thus allowing for reproducible
and systematic advancement of the field.

VII. CONCLUSION
In this paper, we analyzed thirteen methods for cognitive load
inference from wrist-worn physiological sensors that were
submitted to an online ML challenge. The methods were
compared and evaluated against the same benchmark data,
and a systematic comparison was presented with respect to
preprocessing techniques, dataset augmentation techniques,
extracted features, feature selection algorithms, classification
algorithms, hyperparameter optimization techniques, evalu-
ation approaches, and technical implementation. This work
also evaluated the impact of different task difficulty levels,
different subjects, and different experiment periods on clas-
sification performance. Based on this performance evalua-
tion, the most promising data processing blocks, including
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TABLE 9. Summary of the findings and guideline for accurate cognitive
load monitoring models.

TABLE 10. Teams participating in cognitive load monitoring challenge
and their rankings.

TABLE 11. Additional evaluation scores (accuracy, precision, recall and
F1-score).

classification algorithms, were identified and summarized
in Table 9.Weiser’s vision of a computer fully understandable
of its subjects might appear to be wishful thinking in the

early twenty-first century [48]. However, we believe that the
identification of the most promising approaches for cognitive
load inference that are demonstrated in this paper through an
unbiased analysis of solutions submitted to a global machine
learning challenge provides a sound basis for the future work
towards the realization of this vision.

APPENDIX
See Tables 10 and 11.
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