
Classical and Deep Learning Methods for Recognizing
Human Activities and Modes of Transportation with

Smartphone Sensors

Martin Gjoreskia,b,∗, Vito Jankoa,b,∗, Gašper Slapničara,b, Miha Mlakara, Nina
Reščiča,b, Jani Bizjaka,b, Vid Drobniča, Matej Marinkoa, Nejc Mlakara, Mitja

Luštreka,b, Matjaž Gamsa,b

aJožef Stefan Institute, Department of Intelligent Systems, Ljubljana, Slovenia
bJožef Stefan Postgraduate School, Ljubljana, Slovenia

Abstract

The Sussex-Huawei Locomotion-Transportation Recognition Challenge presented

a unique opportunity to the activity-recognition community to test their ap-

proaches on a large, real-life benchmark dataset with activities different from

those typically recognized. The goal of the challenge was to recognize, as ac-

curately as possible, eight locomotion activities (Still, Walk, Run, Bike, Car,

Bus, Train, Subway) using smartphone sensor data. This paper describes the

method we developed to win this challenge, and provides an analysis of the

effectiveness of its components. We used complex feature extraction and selec-

tion methods to train classical machine learning models. In addition, we trained

deep learning models using a novel end-to-end architecture for deep multimodal

spectro-temporal fusion. All the models were fused into an ensemble with the

final predictions smoothed by a hidden Markov model to account for tempo-

ral dependencies of the activities. The presented method achieved an F1 score

of 94.9% on the challenge test data. We tested different sampling frequencies,

window sizes, feature types, classification models and the importance of stand-

alone sensors and their fusion for the task. Finally, we present an energy-efficient

smartphone implementation of the method.

Keywords: activity recognition, machine learning, deep learning, ensembles,

∗The first two authors should be regarded as joint first authors.

Preprint submitted to Information Fusion January 15, 2020

hidden Markov models, competition

1. Introduction

The grand vision of wearable computing is that our devices will know as much

as possible about our context in order to provide the best possible service. Which

activity is being performed at any given moment is certainly an important part

of our context, which is why Activity Recognition (AR) is intensely researched.5

Most research in AR is focused on the human body, dealing with activities

such as walking, sitting and lying. However, transportation studies show that

the average commute time is up to 80 minutes a day [1], and thus recognition

of transportation modes can be as important as recognition of body-related

activities.10

The Sussex-Huawei Locomotion-Transportation (SHL) dataset [2] addresses

this problem by providing a mixture of both activity types – containing eight

different activities: Still, Walk, Run, Bike, Car, Bus, Train, Subway. In ad-

dition, the SHL dataset provides a unique opportunity for researchers to test

their AR approaches against a common, real-life, large-scale benchmark dataset15

collected over a period of four months, which allows for cross-study comparison

and systematic advancement of the research field. To promote the dataset, a

competition called the ”SHL challenge” was organized. The activities were to be

recognized using seven smartphone inertial sensors: accelerometer, gyroscope,

magnetometer, linear accelerometer, gravity, orientation and barometer.20

This paper offers a detailed description of our approach, which we used

to win the SHL challenge by most accurately predicting the activities on an

unlabelled dataset. In Section 2 we present the related work and in Section 3

we describe the SHL dataset, including data ordering and splitting. The next

four sections present our method, which is schematically shown in Figure 1.25

Section 4 starts with how the data was down-sampled and cut into windows, and

how we derived additional data streams from the existing ones. Then it shows

how we extracted a large body of features from every data stream (altogether

2

calculating 1,696 features), and it ends up with the three-step feature selection

process that we used to select the best-performing feature subset. Section 530

presents both classical and deep learning (DL) algorithms that we trained for

the AR. The classical models used the selected features, while the DL model

was trained on the raw data. For the DL we used a novel architecture: an

end-to-end multimodal spectro-temporal ResNet (Multi-ResNet). All trained

models were combined into an ensemble that we used to generate predictions.35

Figure 1: Scheme of our method.

3

Section 6 describes how we used a hidden Markov model (HMM) to account

for the temporal dependencies of sequential activities. Section 7 discusses an

energy-efficient smartphone implementation of our method. It proposes three

different ways to increase energy-efficiency while retaining classification accu-

racy. Section 8 presents the experimental results including an extensive analysis40

on how different hyper-parameters of our method affect its accuracy. These in-

clude selecting which sensors to use, data sampling frequency (e.g., 100 Hz, 50

Hz or 10 Hz), window sizes (e.g., 60 seconds, 20 seconds or 10 seconds), fea-

ture types (e.g., time-domain or frequency-domain), feature selection methods

(e.g., wrapper or ranking methods), machine learning algorithms (e.g., deep or45

classical, end-to-end or feature-based models), etc. Finally, in Section 9 we sum-

marize our findings and discuss the limitations of the method and our future

work.

The main contributions of the paper are:

• A comprehensive method for AR, which was validated by winning the SHL50

challenge.

• A novel end-to-end DNN architecture (Multi-ResNet) proven suitable for

AR, a domain where DNNs are not yet established.

• An extensive analysis of the method’s hyper-parameters, which can facil-

itate adaptation to other problems.55

• Optimization of the method’s energy-efficiency for a smartphone applica-

tion.

In summary, we believe the proposed method is a solid baseline for other authors

who attempt to work on the SHL dataset and similar AR problems.

2. Related work60

2.1. Classical AR methods

The AR domain has been thoroughly explored in the past using body-worn

sensors, ambient sensors and combinations of both. Here, we focus only on

4

the body-worn sensors commonly found in smartphones, since those are most

suitable for AR today due to the omnipresence of smartphones. The most65

frequent AR task is classifying activities in relation to movement, e.g., walking,

running, standing still and cycling [3, 4]. Most of the multimodal (multi-sensor)

solutions use classical ML algorithms (e.g., Random Forest - RF, Support-vector

machines - SVM, and k-nearest neighbours - KNN) to build models from features

that are extracted from each modality independently. These models can be built70

using fusion in the feature space, i.e., all features are treated uniformly [5, 6].

There also exists fusion in the decision space, where models are built for each

feature type with respect to the modality, and the final decision is output by a

meta-model [7, 8].

2.2. Deep AR methods75

In the recent years, many attempts at AR were also made with DL end-to-

end architectures [9, 10]. The focus was on convolutional networks (CNN), which

can automatically capture hierarchical feature representations of the data due

to their stacked filtering layers [11]. CNNs, in combination with subsampling

layers (e.g., pooling layers) and fully connected layers, are a very powerful end-80

to-end learning architectures [12, 13, 14]. In 2016, Ordonez et al. introduced the

DeepConvLSTM [15], an architecture that stacks CNN layers over a multimodal

long short-term memory (LSTM) recurrent neural network (RNN) for AR [16].

The LSTM layers allow for the model to learn the temporal dynamics in the

input data by utilizing specific gates. Unlike HMMs, which are modelled on85

the Markovian assumption and have a finite number of hidden states, LSTMs

have the advantage of a continuous space memory, which theoretically allows

them to base their predictions on arbitrarily long past observations [17]. Most

recently, Murahari et al. [18] experimented with attention mechanisms in the

DeepConvLSTM, which improved its performance in the AR domain by a few90

percentage points.

5

2.3. Transportation recognition methods

The approaches that recognize transportation modes utilize very similar

techniques to the standard AR approaches. For example, Martin et al. [19]

developed a method for real-time prediction of the transportation mode using95

smartphone GPS and accelerometer data. They combined dimensionality reduc-

tion methods (PCA) and ML algorithms (KNN and RF) to accurately classify

five modes of transportation (i.e., walking, biking, car, bus and rail). Fang et

al. [20] developed a method for the recognition of transportation and vehicular

modes using smartphone accelerometer, magnetometer and gyroscope. Their100

solution is based on decision trees, KNN and SVM. Reddy et al. [21] utilized

a combination of a decision tree followed by a first-order discrete HMM to ac-

count for the temporal dependence between the labels. Similarly, Hemminki et

al. [22] developed an accelerometer-based transportation recognition method for

smartphones capable of recognizing six different modes (i.e., stationary, walk-105

ing, bus, train, metro and tram). Their solution is based on a combination of

AdaBoosting and a discrete HMM.

2.4. SHL challenge methods

A comprehensive overview of all AR methods competing at the SHL chal-

lenge is presented in the summary paper by Wang et al. [23]. Overall, there110

were nineteen submissions, of which eleven used only classical AR methods, and

eight either used only DL or included DL methods. From the top five methods,

the teams ”S304” and ”Confusion Matrix” achieved a similar F1 score of 87.5%.

”Confusion Matrix” used an RF model and then smoothed the estimation with

majority voting [24]. S304 used a multi-layer perceptron neural network and115

then smoothed the estimation with an HMM [25]. The third placed team

”Tesaguri” achieved an F1 score of 88.8% by applying CNNs to the spectrogram

of the sensor data [24]. Our two teams ”JSI-Deep” [26] and ”JSI-Classic” [27]

were the only two teams that achieved an F1 score over 90%. More specifically,

JSI-Classic achieved an F1 score of 92.4%, by combining tree-based XGBoost120

with advanced feature extraction and feature selection techniques. ”JSI-Deep”

6

achieved the highest F1 score of 93.9% by using a meta method that utilizes both

classical and spectrogram-based end-to-end deep learning methods merged in an

ensemble whose final predictions are smoothed by a discrete HMM. This study

presents a detailed analysis of the ”JSI-Deep” and ”JSI-Classic” methods with125

a few additional novelties including a novel spectro-temporal end-to-end DL

architecture, and a methodology for making our solution more energy-efficient

at the cost of a small decrease in accuracy. The ”updated JSI-Deep” method

presented in this study, achieved an F1 score of 95.2% on the challenge test

data.130

3. SHL Challenge dataset

3.1. General description

The SHL Dataset is one of the largest AR datasets, suitable for a wide range

of studies in fields such as transportation recognition, AR, mobility pattern

mining, localization, tracking and sensor fusion [2]. It was recorded over a135

period of 7 months by 3 participants engaging in 8 different activities in a real-

life setting in the United Kingdom. A subset of this dataset was used for the

SHL Challenge and was subsequently used throughout this work. The dataset

for the SHL challenge is available on the challenge website [28] and is described

in detail in the baseline paper [29].140

All of the data was provided by a single smartphone, worn by the same user in

his trouser pocket. Data came in five different modalities: acceleration, magnetic

field, angular velocity (measured by gyroscope), air pressure and the phone’s

current orientation. The acceleration was broken down into two additional data

streams: the acceleration as the result of gravity, and the acceleration without145

the gravity component (linear acceleration). Notably, sensors that could identify

the user’s location – GPS, Wi-Fi, cell network – were not included.

The competitors were provided with a train and a test (SHLtest) set. The

former came with labelled activities, while the labelling of the latter was the

competition’s goal. However, by the time of writing of this paper, the SHLtest150

7

Figure 2: Activity distribution of the train and test datasets.

set labels were publicly released, allowing us to present the results on both data

sets. All together, there were 82 recorded days (62 for training, 20 for testing).

This provided 16,310 minutes, or roughly 272 hours, of data.

There were 8 activities of interest: Still, Walk, Run, Bike, Car, Bus, Train,

Subway. The activity distribution in the train set (Figure 2) was mostly uniform,155

with the exception of the Run activity, which was (understandably) under-

represented. The SHLtest set, on the other hand, was skewed towards the Car,

Bus and Still activities. To simulate the competition conditions, we treated this

difference in the distributions as an unknown and made no steps to make them

more similar.160

Example samples of the acceleration and magnetic field data are given in

Figure 3. Both exhibit a periodic and distinct pattern with different magnitudes

and frequencies when the user is either walking, running or cycling. Acceleration

data also captures the noise present when driving in vehicles. In addition, the

magnetic field sometimes wildly oscillates while the user is in the train or subway,165

which can be potentially exploited for recognizing them.

3.2. Data ordering and data splits

The recording scenario of the SHL dataset was relatively natural, with the

test subject moving around the city for several days (as opposed to the scenarios

typically performed and recorded in a lab). This resulted in activities that170

8

Figure 3: Acceleration and magnetic field data samples (both taken from the x-axis). A

four-second sample is shown for each activity.

Activity Still Walk Run Bike Car Bus Train Subway

Length [mins] 14 12 12 20 60 34 64 34

Table 1: Average duration of each activity.

on average lasted a long time (Table 1), with sensible transitions from one to

another (Figure 4). Both properties were exploited for the HMM smoothing

(Section 6) and for energy-efficiency optimization (Section 7).

The data was split into one-minute segments, which were shuffled by the

dataset’s authors. The order of the one-minute segments was provided for the175

train set, but not for the SHLtest set. We assume this was done in order to

enforce the use of a window length of less than or equal to one minute when

classifying the data.

Our first step was to order the train set using the provided ordering. Then

we split it into an internal validation set (ivalid), internal test set (itest) and180

internal train set (itrain) – using the first 25%, second 25% and last 50% of

the train set, respectively. The itrain set was used to train our models. The

ivalid set was used to select the appropriate features, sampling frequency and

9

Figure 4: All activities, connected if the probability of a transition from one to another is

more than 30%.

window size, and to train a meta-model. The itest set was used to estimate the

performance of our model. All three sets were checked to ensure they roughly185

retained the same activity distribution as the original train set. We used the

competition’s SHLtest set for the final evaluation of our method. Note that the

ordering of the data before making the split for internal evaluation was a key

step, as otherwise two subsequent data samples (which are usually very similar)

would frequently be one in the itrain set and the other in the itest set – leading190

to model overfitting.

The ordering of the SHLtest set was not required for our base model; how-

ever, at least locally ordered data was needed for the additional HMM smoothing

step in an attempt to further increase the classification performance. Therefore,

we had to create a method that could reassemble the one-minute segments into195

the original order.

Intuitively, data at the end of one segment should closely match the data at

the beginning of the next one. A simple procedure can therefore be applied:

Step 1: Select a random one-minute segment x.

Step 2: Find the one-minute segment y that has the minimum distance from200

10

its first sensor reading to the last sensor reading of x. The distance

used is the Euclidean distance with different sensors weighted using

empirically determined weights.

Step 3: If the minimal distance is lower than a predetermined threshold, as-

sume that y follows x and repeat step 2 with y as the new x. If not,205

assume that the recording was interrupted and start assembling a new

sequence of data repeating step 1.

On the SHLtest set, we produced 42 sequences of data that turned out (when

the ordering was revealed after the competition) to be 99.8% correctly sorted,

with roughly 10 instances out of place. The order of the sequences themselves210

is largely irrelevant, however, as each had the HMM smoothing applied inde-

pendently.

4. Pre-processing and feature extraction

This section describes the pre-processing step – windowing, down-sampling

and deriving the virtual sensor streams – as well as the extraction of features215

used for training the classical ML models and their selection process. The DL

methods use the raw data instead of features here described.

4.1. Data frequency and window size

The data was originally sampled using a 100 Hz sampling rate for all sensors.

All sensor readings and activity labels coincided at the same timestamps. This220

frequency was previously empirically determined as more than adequate for most

AR tasks [30, 31]. However, the high sampling frequency presents two practical

problems: 1) the further steps (notably the feature extraction) are slow due to

the amount of data that needs to be processed; and 2) if this method would

later be implemented on a smartphone, the required sampling frequency and225

the constant processing would shorten the battery life of the device.

To mitigate these issues, we first down-sampled the data. To determine a

sensible frequency, we tested different frequencies using two different algorithms:

11

a simple RF using 100 trees and frequency domain features (which were fastest

to calculate), and the Multi-ResNet DL model presented in Section 5.2. We230

chose the RF as the baseline method because it is robust to noise, relatively fast

to train and frequently used in the AR domain.

The next decision was to select the appropriate window size, which is used

to split the sensor data into windows which are either fed directly to the Multi-

ResNet or used for the feature extraction for the classical ML algorithms. Longer235

windows naturally contain more data and are expected to enable greater clas-

sification accuracy. Shorter windows, on the other hand, can detect an activity

change faster. We once again used the same algorithms (RF and Multi-ResNet)

to test the different window sizes, and repeated these tests with different fre-

quencies. The results of these experiments are shown in Section 8.1.240

The activity label was calculated as the majority of the per-sample labels

(with the frequency of 100 Hz) in each window. The same procedure was used for

testing, calculating the majority-label accuracy. This method was used through-

out this work, as it is convenient to calculate and is used in most other works in

the AR domain. Alternatively, one can compare the model’s predictions with245

the per-sample labels, calculating the per-sample accuracy – which was used by

the SHL challenge organizers. The majority-label accuracy is in general slightly

higher, but the differences are nearly negligible (Section 8.1).

4.2. Virtual sensor streams

The SHL dataset provides 20 different sensor streams, if we are individually250

counting each axis of the 7 provided sensors. From these original sensor streams

it is possible to derive additional sensor streams that are useful for the AR. The

subsequent steps treat these derived sensor streams like any of the original ones.

The first derived sensor stream is the magnitude (Eq. 1) of the data. It was

calculated for all the data coming from tree-axis sensors (acceleration, linear

acceleration, gravity, magnetic field and angular velocity).

m =
√
x2 + y2 + z2 (1)

12

Second, the orientation data originally presented in the quarternions format

[qw, qx, qy, qz] was converted into the Euler angles – roll, pitch, yaw. While the255

quarternions have some desirable mathematical properties, the Euler angles are

more intuitive and can be individually interpreted (one value for rotation around

each axis). To make this transformation, we used the standard formulas for the

task:

pitch = arctan

(
2(qwqx + qyqz)

1− 2(qxqx + qyqy)

)
(2)

roll = arcsin (2(qwqy − qzqx)) (3)

yaw = arctan

(
2(qwqz + qxqy)

1− 2(qyqy + qzqz)

)
(4)

Third, additional sensor streams were created by rotating the accelerometer260

and magnetometer data from the phone’s coordinate system to the ”world”

(North-East-Down) coordinate system. This could be useful for determining,

for example, if the magnetic field is coming from above or below, as the same

axis is always pointed upwards. The transformation was done by multiplying

the current values (Eq. 6) with the coordinate system change matrix (Eq. 5),265

using quarternions to determine the current orientation [32].

RNB =


1− 2(q2y + q2z) 2(qxqy − qwqz) 2(qxqz + qwqy)

2(qxqy + qwqz) 1− 2(q2x + q2z) 2(qyqz − qwqx)

2(qxqz − qwqy) 2(qyqz + qwqx) 1− 2(q2x + q2y)

 (5)


x

y

z


world

= RNB


x

y

z


sensor

(6)

In total we added fourteen derived data streams – five magnitudes, three

Euler angles and six streams for rotated acceleration and magnetic field data

(three axes each).270

13

4.3. Feature engineering

Features were individually calculated for each data stream, with some fea-

tures using data from all three axes of the same sensor at the same time.

Features can be roughly split into two categories: frequency-domain and

time-domain. In aggregate, a total of 1,696 features were computed and used275

in the subsequent steps.

4.3.1. Frequency-domain features

These features were calculated using the power spectral density (PSD) of the

signal, which is based on the fast Fourier transform (FFT). PSD characterizes

the frequency content of a given signal and can be estimated using several tech-280

niques. The simplest one is to use a periodogram, which is obtained by taking

the squared-magnitude of the FFT components. An alternative to a simple peri-

odogram is Welch’s method, which is also widely used and commonly considered

superior to the periodogram. It computes the average of the periodograms of

multiple overlapping segments of the signal to reduce the variance of the PSD.285

In our work, we opted to use Welch’s method to obtain the PSD.

Using PSD is only suitable when the signal is clearly periodic. We chose to

test windows of length ranging from 5 to 60 seconds. These were long enough

to contain several periods of human motion as well as vehicle vibration. Sample

periodical patterns can be clearly seen in Figure 3 for the activities: Walk, Run,290

Bike, Car and Bus.

We implemented frequency-domain features as given in related work [33].

The following features were computed.

• Three largest magnitudes. Three peaks with the largest magnitude from

the PSD were considered. These tell us the dominant frequencies in the295

signal. Both the magnitude values and the frequencies (in Hz) were taken

as features.

14

• Energy. Calculated as the sum of the squared FFT component magni-

tudes. The energy was then normalized by dividing it with the window

length.

energy =
1

N

N−1∑
n=0

|x(n)|2, (7)

where x(n) is the n-th FFT component and N is the parameter specifying

the number of FFT components to compute.

• Entropy. Calculated as the information entropy of the normalized FFT

component magnitudes. It helps in discriminating between activities with

a similar energy feature.

entropy = −
N−1∑
n=0

x(n) log(x(n)) (8)

• Binned distribution. A normalized histogram, which is essentially the300

distribution of the FFT magnitudes into 10 equal sized bins ranging from

0 Hz to 25 Hz.

• Skewness and kurtosis. Calculated on the PSD. Skewness and kurtosis

describe the shape of the distribution of the PSD. More precisely, skewness

tells us about the symmetry of the distribution while kurtosis tells us about305

its flatness.

4.3.2. Time-domain features

As the time-domain features, we used the expert features previously used

in our other works in similar domains [34, 6], including one previously-won

competition [3].310

A description and analysis of the expert features can be found in our previous

paper [6]. In summary, the magnitude data stream provided the information on

the intensity of the activity, while the individual axes provided the information

on the orientation of the device and subsequently on the position of the user.

Some features come from statistics and describe the intensity and “shape”315

of the signal: the mean, variance, Pearson’s correlation between axes, their

15

covariance, skewness, kurtosis, quartile values and range between them. Others

have a more physics-based interpretation, such as velocity and kinetic energy.

The rest came from expert knowledge of the domain: the number and height

of peaks in the window, the signal’s mean, its sum and squared sum, and the320

number of times the signal crosses its mean value.

In addition, we used a subset of features from the tsfresh library [35] that

seemed interesting, but were not included in our set of expert features. These

features were: the signal minimum, maximum, the number of times the signal

is above/below its mean, the signal’s mean change and its different autocorre-325

lations (correlations of the signal with a delayed version of itself, for different

delays).

Some of the features were calculated on the unfiltered data streams, while

some were calculated on data filtered with either a simple low-pass or band-pass

filter. The filters were calculated using Eq. 9 and Eq. 10, where x represents330

the raw data and y represents the filtered data.

• Low-pass filter. Removes the low frequencies from the data. Useful for

filtering out, for example, the gravity component of the acceleration.

yi = αxi + (1− α)yi−1 (9)

• High-pass filter. Removes the high frequencies from the data. Useful for

filtering out noise.

yi = αxi + α(xi − xi−1) (10)

• Band-pass filter. This filter simply applies both low and high pass filters

one after another.

4.4. Feature selection

Given the relatively high number of features (1,696), we used a feature se-335

lection procedure to remove the features that do not contribute to the accuracy

of the model and only increase the odds for overfitting. Calculation of fewer

16

features also contributes to the computational efficiency of our solution and

simplifies its implementation. Our feature selection consisted of three steps.

In the first step, the mutual information [36] between each feature and the340

label was estimated using the ivalid set, where larger mutual information means

higher dependency between the feature and the label.

After the features were sorted according to this value, correlated features

were removed based on the Pearson correlation coefficient [37]. This showed

that roughly half of the features were redundant, which was expected due to the345

number of features and the similarity of the data streams. To make the process

computationally feasible, only 100 features were taken at a time, starting with

those with the highest mutual information with the label. Correlation was then

calculated for each pair. If the correlation was higher than a certain threshold

(experimentally determined as 0.8), the feature with lower mutual information350

was discarded. After that, the next 100 features were added to the remaining

set and the correlation between each pair was calculated again.

In the final step, features were selected using a greedy ”wrapper” algorithm.

An RF model was first trained using only the feature with the highest mutual

information. The trained model was used to predict labels for the ivalid set,355

and the prediction accuracy was calculated. Then the second-best feature was

added and the model was trained again. If the accuracy on the ivalid set was

higher than without using this feature, the feature was kept. This procedure

was repeated for all remaining features. This strict selection initially led to

overfitting to the ivalid set (accuracy was much higher compared to the itest360

set), so the condition for keeping a feature was made less strict: the feature

was kept if the accuracy did not decrease by more than an experimentally set

improvement threshold. Using this rule, overfitting to the ivalid set was reduced.

The results after each feature selection step are shown in Section 8.2.

17

5. Classification models365

Different classical ML algorithms and an end-to-end DL architecture were

trained and tested. After training the individual models, we combined them

in an ensemble which further increased the classification performance. In this

section we describe the models, and in Section 8.3 and Section 8.4 show the

results.370

5.1. Classical models

For the classical models, we used the ML algorithms as implemented in the

scikit-learn ML toolkit [38]. Each of these algorithms used features as selected

in Section 4. The models were tested both with the default hyper-parameter

values and with those found using a 2-fold randomized parameter search. The375

randomized parameter search was performed using the following procedure: for

each algorithm, parameter settings were randomly sampled from distributions

predefined by an expert. Next, models were built with the specific parameters

and then evaluated using a 2-fold validation procedure on the train data. This

search was repeated 10 times using different folds. In Section 8.3 we report380

the averaged results, but we kept the best-performing parameters for the final

models. We experimented with the following ML algorithms: Decision Tree

[39], RF [40], Näıve Bayes [41], KNN [42], SVM [43], Bagging - using Decision

Trees [44], Adaptive Boosting (AdaBoost), Extreme Gradient Boosting (XGB)

and Multilayer Perceptron (MLP) [45], label switching both with MLPs [46]385

and with DTs [47].

5.2. Deep learning models

We propose a deep multimodal spectro-temporal ResNet (Multi-ResNet)

and describe it in Section 5.2.2. To compare its performance to simpler DL

architectures, we describe and test them as well.390

18

5.2.1. Baseline deep learning models

To provide an end-to-end baseline comparison for our Multi-ResNet, we

implemented five DL networks: a network with four CNN layers followed by

two fully connected layers to output the final activity prediction (CNN-4); two

similar networks with eight and sixteen CNN layers (CNN-8 and CNN-16); one395

network with two LSTM layers followed by two fully connected layers (LSTM-

2); and one ConvLSTM mimicking the architecture proposed by Ordonez et al.

[15], CNN-4-LSTM-2. Each CNN layer is followed by a batch normalization

layer for reducing internal covariate shift [48], and a ReLU activation layer

[49], which speeds up the training process compared to other activation layers400

(e.g., tanh). To avoid overfitting, L2 regularization and dropout was used for

the dense layers. The training of the networks was fully supervised, by back

propagating the gradients through all the layers. The parameters were optimized

by minimizing the cross-entropy loss function using the Adam optimizer. The

models were trained with a learning rate of 10−4 and a decay of 10−4. The405

batch size was set to 1,024 and the maximum number of training epochs was

set to 75. The models were trained with early stopping on the ivalid data.

5.2.2. Multimodal spectro-temporal ResNet

Our deep multimodal spectro-temporal ResNet (Multi-ResNet) is depicted

in Figure 5. The structure is based on the idea by He et al. [50] for training410

very deep end-to-end networks for image recognition by using shortcut (residual)

connections. Using the residual networks, Wang et al. [51] proposed an end-

to-end unimodal time-series classification network. Our network builds upon

Wang’s work with two additional novelties, which are key factors for a successful

AR system, i.e., multimodal and spectro-temporal information fusion.415

For each sensor channel, the network extracts channel-specific spectro-temporal

information: the spectral information is extracted by calculating the spectro-

gram in decibels, i.e., log10 of the amplitude spectrogram, for each input win-

dow; the temporal representation is extracted by the residual blocks that contain

CNN layers with 1-dimensional filters. The shortcut connections in the residual420

19

Figure 5: Proposed Deep Multimodal Spectro-Temporal ResNet (Multi-ResNet).

20

blocks combat the gradient vanishing problem, i.e., the more layers there are,

the smaller learning update each layer receives, thus the harder the training is

[30]. For example, for a 20 channel input (3 accelerometer, 3 gyroscope, 3 grav-

ity, 3 linear acceleration, 3 magnetometer, 4 orientation and 1 pressure channel),

4 residual blocks per channel and 3 CNN layers per residual block, the network425

will have 240 CNN layers (20 x 4 x 3) through which the gradient needs to be

propagated, thus we need a mechanism to avoid the gradient-vanishing problem

[52]. Each CNN layer is followed by a batch normalization layer, and a ReLU

activation layer. Each residual block ends up with an average pooling layer

which is used for dimensionality reduction. The output of the channel-specific430

layers, i.e., channel-specific spectro-temporal information, is then fused by two

dense (fully connected) layers. L2 regularization and dropout was used for the

dense layers. The final output of the Multi-ResNet is provided by a softmax

layer, which represents a class probability for each of the eight different classes.

The network was trained using the same learning procedure (loss function, op-435

timizer, learning rate, decay, batch size and early stopping) as the baseline DL

models.

The original ”JSI-Deep” method that won the SHL challenge used only the

spectrogram part of the Multi-ResNet, i.e., the spectrograms were calculated

for each sensor channel and were fed into fully connected layers, which pro-440

vided the final predictions [26]. In this paper, that architecture is referred to

as DNN-Spectrogram, in order to provide comparison between the two DNN

architectures (Multi-ResNet vs. DNN-Spectrogram).

5.3. Ensemble

Finally, we experimented with an ensemble of models built using a stacking445

approach. The base models in the stacking ensemble are the classical models

and the Multi-ResNet, described in the previous two subsections. The meta

learner is a model that takes as input the outputs of base models. We evaluated

meta-models built with the different ML algorithms: RF, Gradient Boosting,

XGB, AdaBoosting, SVM, KNN, Gaussian Näıve Bayes and Decision Tree, and450

21

Figure 6: Top row shows a sequence of Train and Bus classifications. They are corrected

using HMM smoothing into a sequence of only Train activities shown below.

Figure 7: A small part of the HMM model, where the hidden states represent true activities

and the visible states are the recognized activities.

tuned the hyper-parameters. Each base model was trained on the itrain set

and each meta-model was trained on the base models’ output for the ivalid set.

The hyper-parameter tuning was again performed using a 2-fold randomized

parameter search on the train data.

6. Hidden Markov Model smoothing455

In all experiments so far, all the windows were classified independently from

one another. This approach discards all the information on temporal dependen-

cies between them. If a user is currently on a train, for example, but the next

window is classified as Bus, followed by another Train classification, it is far

more likely for Bus to be a misclassification than a vehicle switch (Figure 6).460

This motivated us to use an extra step after classification, where the tempo-

ral information was taken into account. This was done using an HMM model.

In this model (a small part of it shown in Figure 7) the hidden states represent

the actual activity, while the visible output represents the classified activities.

22

Figure 8: Iterative HMM predictions. The top row represents the classified activities, and the

bottom one represents the activities predicted by the HMM smoothing. Each group represents

one step. In each step, the sequence is iteratively lengthened and only the last instance is

corrected.

The parameters of this model are the transition probabilities between the465

states and the probabilities of observed emissions in each state. The former can

be estimated from the transition matrix of the itrain set (matrix of probabilities

that one activity is followed by another), while the latter from the confusion

matrix of the ivalid set.

The HMM smoothing was performed using the Viterbi algorithm in the470

hmmlearn library [53]. This algorithm uses all the available data for ”correcting”

each instance. From the viewpoint of a single instance, it means that all of its

predecessors and successors must be known in order to ”correct” it. This is,

however, impractical for a real-time monitoring application implemented on a

smartphone.475

Having the past predictions corresponds to saving predictions as they are

made, while having the future predictions means that the HMM smoothing

must happen with a delay. To test the usefulness of the HMM smoothing in a

practical setting, we tested how different delays (and having no delay – Figure

8) affect the accuracy of the HMM predictions. To ”correct” an instance in480

these tests, the algorithm was run only on the predictions that happened before

the instance and on a number of instances (equal to the delay) that happened

after it. The results are shown in Section 8.5.

23

7. Energy-efficient solutions

The previous sections were focused on how to achieve as high an accuracy485

as possible using a meta-model in combination with the HMM smoothing. To

do so, we used all the available data from every sensor. In practice, however,

turning on all the sensors of a smartphone will quickly drain the battery of the

device, making the application undesirable from the user’s point of view. It

would thus be beneficial to find solutions that are almost as good in terms of490

accuracy, but are much more energy-efficient.

There are four most frequently used methods to reduce the energy con-

sumption: using only a sensor subset, periodically turning the sensors on and

off (duty-cycling), reducing the sampling frequency and reducing the process-

ing power required for the classification. In this section we briefly describe –495

and apply on the SHL dataset – a general methodology that can quickly create

energy-efficient solutions using the first two methods without any expert knowl-

edge of the domain. This methodology is described in detail in our previous

works [54, 55]. The last two optimization modalities (sampling frequency and

processing power required) are briefly discussed, using simple heuristics, at the500

end of the section.

Trying to estimate the energy consumption of a smartphone device can be

surprisingly difficult, as: 1) it is heavily device-dependent; and 2) energy con-

sumption of different components do not add up linearly. For example: ac-

celerometer and gyroscope active together typically consume less energy than505

the sum of their individual consumptions. In order to avoid both complications,

we simply measured what proportion of the original data we needed for a partic-

ular solution. This is a loose estimate of the energy efficiency, as the more data

a system needs, the more energy it must consume to both collect and process it.

This simplification is also appropriate because all sensors present in this dataset510

individually consume roughly the same amount of energy. Note, however, that

the same methodology could be used with real energy estimates [56, 57] if one

would be interested in a particular device.

24

The HMM smoothing cannot be directly integrated into the methodology, so

we omitted this post-processing step when searching for the solutions and then515

used it only on solutions found. Additionally, we used the ensemble without

the DL model, as it can be impractical to use it on a smartphone. While

recent research [58][59] show that DL models can be adapted to make them

more resource efficient and thus more suitable for smartphones, we left such

adaptations of our models to future work.520

7.1. Choosing sensor subset

Instead of constantly using all five sensors, using only a subset of them would

increase the energy-efficiency of the system. The individual performances of all

sensors are listed in Table 6. Deriving a table of all possible sensor combinations

(25 = 32) is likewise simple. Doing so reveals that individually the accelerometer525

is the sensor with by far the highest accuracy, and that the accelerometer with

the magnetometer make the best pair. It shows that the contribution of other

sensors rapidly falls afterwards, but that they are all required for achieving the

highest possible accuracy.

Further improvements can be made by optimizing the sensors for each ac-530

tivity. For example, the magnetometer and barometer might only be useful in

vehicles but not while walking or running. We can therefore create an assign-

ment from each activity to a different sensor set, and whenever an activity is

classified, the corresponding sensors are turned on. Since the activities last for

minutes, the cost of switching a sensor on/off is minimal.535

The problem of finding the ideal sensor-subset-to-activity assignment is not

trivial. Not only are there (25)8 ≈ 1012 different assignments, given 5 sensors

and 8 activities, but it can be time consuming to test an individual one, as one

has to go through the whole dataset, classifying each instance and switching

sensor streams and models in the process. Note that trying to circumvent540

this by testing how a sensor subset works for recognizing an activity, and then

aggregating this performance for every activity, makes a poor approximation.

In practice, a misclassification can turn on sensors that are inappropriate for

25

the current activity, leading to further errors.

To deal with both problems (the number of assignments and their evaluation)545

we used the method from our previous work [54]. In short, it uses the steady-

state of a Markov-chain model to predict how would an assignment behave in

terms of both energy and accuracy. To calculate the parameters of the Markov-

chain model, it uses the matrix of transition probabilities between the activities

and the different models (that use different sensor subset) confusion matrices. It550

then uses a genetic multi-objective algorithm (NSGAA-II [60]) – the objectives

being energy consumption and accuracy – evaluating every assignment with the

Markov-chain model. This combination can quickly search through the problem

space and efficiently find a set of non-dominated solutions.

Doing so generates an approximation for the Pareto front of solutions, each555

solution representing a different trade-off between accuracy and energy con-

sumption. From this set of trade-offs, a system designer can pick one that is

suitable for his application requirements. Section 8.7 presents the Pareto front

for the SHL dataset and some sample solutions from it.

7.2. Duty-cycling560

As shown in Table 1, most of the activities are relatively long-lasting. There-

fore turning the sensors off when an activity is recognized and then turning them

back on a few minutes later could be a way to further optimize the energy con-

sumption of the system. The system simply assumes that the activity has not

changed while the sensors were turned off. This process, called duty-cycling, can565

similarly to before, be enhanced by optimizing the cycle length for each activity

individually. Intuitively, long lasting activities should have longer cycles, and

vice versa. Additionally, if an activity is often followed by a short-lasting activ-

ity, the duty-cycle length should also be shorter, so as not to miss the following

short activity entirely. Finally, one has to consider the effect of misclassifica-570

tions, as misclassifying an activity might subsequently cause a wrong duty-cycle

length.

This once again introduces two problems: 1) combinatorial complexity, as

26

there are many possible duty-cycle-length-to-activity assignments – l8, if the

maximum cycle length is l; 2) modelling the performance of the system given a575

duty-cycle-length-to-activity assignment. We solve both problems by using our

previous work [55], where we once again use Markov-chain calculus (although

in an altogether different way) to determine the effect of an assignment on the

system performance and then use the NSGAA-II algorithm to find a set of

non-dominated solutions.580

In Section 8.7, we show sample solutions where we used the same duty-cycle

length for all activities, and we compare them to solutions where activity-specific

duty-cycle lengths are used.

7.3. Combination

In our previous works, we used both described methods independently. In585

this work, we combine them, by first selecting which sensor subset to use for each

activity and then running the duty-cycle optimization using this assignment.

This requires two choices (one in each step) regarding which solution from the

Pareto front to use, but otherwise seamlessly combines the two.

One can combine the selected solution with the optimization of the sampling590

frequency – which is the third, smaller contributor to the energy consumption

of the device. Testing different frequencies (Section 8.1) revealed that using the

frequency of 50 Hz loses basically no classification accuracy compared to the

frequency of 100 Hz. We thus settled to using it, and made no additional effort

at optimizing the frequency, but a reader can find more sophisticated methods595

in related work [30, 61].

Finally, to reduce the power consumption required for classifying a single

instance, we compared the processing requirements of different classifiers and

their ensembles. Different trade-offs between the classification accuracy and

processing power required are shown in Section 8.7. It should be noted, however,600

that since classifications happen only once each minute, the data processing is

not the bottleneck when considering the energy consumption.

27

8. Results

For the experimental evaluation, we mostly used classification accuracy as

the measure of classification quality, but for the final results we also list the605

precision, recall, and F1 score:

Accuracy =
True Positive+ True Negative

All Test Instances
(11)

F1 score = 2× Precision×Recall
Precision+Recall

(12)

Precision =
True Positive

True Positive+ False Positive
(13)

Recall =
True Positive

True Positive+ False Negative
(14)

When calculating the F1 score for multiple activities, the F1 score is calcu-

lated for each activity separately and then averaged over all of them.

8.1. Frequency and window size

We started by testing different sampling frequencies and window sizes. Re-610

sults using two different models (trained on the itrain set and tested on the itest

set) are shown in Figure 9 and in Figure 10.

The results for the RF show almost no difference in performance when drop-

ping from a sampling frequency of 100 Hz to a sampling frequency of 20 Hz.

At lower frequencies, the performance started to visibly decrease, but surpris-615

ingly, even at a sampling frequency of 1 Hz, the accuracy only fell by roughly

5 percentage points compared to the highest value. Given the results in similar

domains, it is not surprising that 20 Hz is enough to recognize the human mo-

tion, however it is interesting to note that it also seems enough to capture the

different vehicle vibrations. Additionally, we can see that larger window sizes620

increase the accuracy regardless of the frequency.

28

0 20 40 60 80 100
Sampling frequency [Hz]

70

75

80

85

90
C

la
ss

if
ic

a
ti

o
n
 a

cc
u
ra

cy
 [

%
]

Window size: 60 s

Window size: 40 s

Window size: 20 s

Window size: 10 s

Window size: 5 s

Figure 9: Accuracy on the itest set for different frequencies and for different window sizes,

using the RF model.

0 20 40 60 80 100
Sampling frequency [Hz]

75

80

85

90

C
la

ss
if
ic

a
ti

o
n
 a

cc
u
ra

cy
 [

%
]

Window size: 60 s

Window size: 40 s

Window size: 20 s

Window size: 10 s

Window size: 5 s

Figure 10: Accuracy on the itest set for different frequencies and for different window sizes,

using the Multi-ResNet.

29

Window length [s] 60 40 20 10 5

Difference [%] at 100 Hz 0.57 0.14 0.04 0.01 0.02

Difference [%] at 1 Hz 0.55 0.17 0.04 0.01 0.01

Table 2: Difference in accuracy on the itest data using the per-sample labels and the majority

labels, using different frequencies and window sizes.

The results for the Multi-ResNet show that the accuracy reached its peak at

a sampling rate of 20 Hz and decreased at lower rates, just as in the RF case.

Somewhat curiously, the 40 second window was found the best performing by a

significant margin, while it was a close second in the RF case.625

For the classical ML models, we selected a sampling rate of 50 Hz and a

window size of 60 seconds, to match our submission to the SHL competition.

However, these tests show that any other frequency from 20 Hz to 100 Hz would

be similarly suitable. For the Multi-ResNet, we continued with the best per-

forming parameter combination, i.e., a sampling rate of 20 Hz and a window size630

of 40 seconds, since the accuracy significantly decreases for other combinations.

Next, we investigated the difference between having per-sample labels and

majority labels. To do so, we calculated the accuracy for both cases for each

window size. These tests were done using two frequencies at the opposite end of

the spectrum. The results are presented in Table 2, and show that the difference635

is (sometimes significantly) less than 1%. Results were also unaffected by the

selected frequency. Due to the small difference and the reasons explained in

Section 4.1, the results reported from here on will continue using the majority

labels.

Lastly, we tested the sensitivity to the choice of the itrain, itest, ivalid set.640

To do so, we tested what happens if we switch them around, e.g., training on the

itest and testing on the itrain. All the experiments from Figure 9 were repeated

for all six possible switches of these three sets. The standard deviation of the

results was 1.6% – from which we can conclude that the dataset is quite robust

to the choice of the internal train, test, and validation sets. This can probably645

be attributed to its relatively large size.

30

Sensor Acc Gyro Pressure Mag Ori All

RF 86.5 79.5 52.1 72.1 71.3 82.6

Multi-ResNet 81.4 67.2 49.0 67.7 65.9 85.2

Table 3: Accuracy [%] on the itest data achieved using data from only one sensor.

8.2. Feature importance and selection

The next area for attention is the importance of the features based on

both the sensor stream they were derived from and their type (time-domain,

frequency-domain, rotated to world’s coordinate system etc.)650

We start by training the models on data from only one sensor stream, using

both the RF and the Multi-ResNet as before. Results (Table 3) show – some-

what unsurprisingly – that the accelerometer is the best suited for the task,

with the gyroscope and magnetometer data in second and third places. For

the Multi-ResNet, no sensor stream by itself outperforms their combination –655

showing the importance of the sensor fusion in this domain. In the RF case, the

accelerometer seems to outperform the sensor union, but this ceases to be the

case after the feature selection step.

In the next step, we more thoroughly investigate the impact of different fea-

ture types, by choosing different subsets of acceleration and magnetic field fea-660

tures. The subsets were made by either splitting the features based on whether

they are un-rotated (Section 4.2), or based on whether they are computed in

the time or frequency domain. The results are shown in Table 4. The most

significant observation, is that no feature subset outperformed the whole set,

confirming the usefulness of each feature type. It is worth pointing out that665

the features in the normalized coordinate system – which are not normally used

in AR – consistently improved the accuracy by 2% (while not being good on

their own, as there were simply fewer of them). Another interesting obser-

vation is that the frequency-domain accelerometer features outperformed the

time-domain accelerometer features, even though the latter are more common670

in AR.

31

Features Mag Acc

Rotated 76.6 61.6

Un-rotated 76.6 84.3

Un-rotated + Rotated 79.5 86.5

Time 73.7 81.6

Frequency 73.3 83.9

Frequency + Time 79.5 86.5

Table 4: Accuracy [%] on the itest data for different feature subsets using RF.

Features Accuracy [%]

ivalid itest

All features 1,696 86.9 82.6

Correlation removed 762 87.6 84.8

Wrapper 203 89.5 86.9

Wrapper strict 65 89.8 87.5

Table 5: The number of features kept and the accuracy of RF after each step of feature

selection on both itest and ivalid set.

Finally, we present the effect of the feature selection method described in

Section 4.4. The correlation threshold was set to 0.8. We tested two different

improvement thresholds for the Wrapper step, resulting in ”Wrapper” (improve-

ment threshold set to 0.2%) and ”Wrapper strict” (improvement threshold set675

to 0.05%). The results are listed in Table 5.

For the subsequent experiments we continued with the feature subset ”Wrap-

per strict”. Table 6 presents more information about this feature subset. From

the results, it can be seen that most of the selected features are calculated from

the acceleration data; followed by angular velocity and orientation data; next680

is the magnetometer data; and finally, only one feature is calculated from the

pressure data.

32

Sensor Acc Gyro Pressure Mag Ori

#Selected 30 15 1 7 11

Table 6: The number of features selected from each sensor’s data stream for the ”Wrapper

strict” feature subset.

8.3. Base models

After choosing the ”Wrapper strict” feature set, we proceeded to test differ-

ent ML algorithms. The results are presented in Table 7. For the classical ML685

models, the column ”Default” presents the models’ accuracy with the default

scikit-learn parameters, and the column ”Tuned” presents the models’ accuracy

after the 2-fold randomized parameter search. This search was repeated 10

times using different folds, averaging the results. For the end-to-end DL mod-

els, the column ”Default” presents the models’ performance with all sensors as690

input, and the column ”Tuned” presents the models’ performance with the top

three modalities as input (accelerometer, gyroscope and magnetometer). Multi-

ResNet-2 is our DL method with 2 residual blocks per channel, Multi-ResNet-4

is the same method with 4 residual blocks per channel and so on. From the

results, it can be seen that most of the classical ensemble models (i.e., RF,695

Bagging, Gradient Boosting, XGBoosting) performed better compared to the

classical single models (i.e., SVM, DT, KNN and MLP). The highest accuracy

of 89.4% is achieved by the Gradient Boosting (GradBoost) algorithm. The

accuracy of the baseline DL methods is below 77%, which indicates that simple

DL methods perform similar to the simple classical ML methods (e.g., DT and700

NB). In contrast, the accuracy of our DL method (Multi-ResNet) on the same

itest set is 89.4%, which is basically the same as the best performing classical

ML method.

33

itest Accuracy [%]

Default Tuned Std

SVM 81.1 84.1 0.8

DT 72.3 75.4 1.3

NB 76.7 76.7 0

KNN 79.3 79.3 0.2

MLP 82.0 86.7 0.4

RF 87.5 87.7 0.1

Bagging 83.4 87.1 0.4

GradBoost 88.6 89.4 0.3

AdaBoost 46.1 89.1 0.4

XGBoost 88.4 89 0.3

LabelSwitch 82.1 86.8 0.1

CNN-4 60.3 64.5 0.3

CNN-8 58.9 63.1 0.3

CNN-16 58.1 60.2 0.3

LSTM-2 60.1 62.3 0.2

CNN-4-LSTM-2 74.1 76.4 0.4

DNN-Spectrogram 80.1 81.2 0.4

Multi-ResNet-2 80.6 85.4 0.3

Multi-ResNet-4 84.8 89.2 0.2

Multi-ResNet-6 85.2 89.4 0.2

Table 7: Accuracy achieved using different classical ML models and end-to-end DL models

(including our end-to-end Multi-ResNet model) on the itest data. Standard deviation was

calculated across ten repetitions of the experiment.

34

0 10 20 30 40 50 60 70
Training epoch

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

CNN-16_TRAIN
CNN-16_VAL
CNN-8_TRAIN
CNN-8_VAL
CNN-4_TRAIN
CNN-4_VAL

CNN-LSTM_TRAIN
CNN-LSTM_VAL
LSTM_TRAIN
LSTM_VAL
Multi-ResNet-6_TRAIN
Multi-ResNet-6_VAL

Figure 11: Learning curves for the end-to-end DL models. The training accuracy (itrain data)

is presented with dashed lines and the accuracy on the ivalid data is presented with solid lines.

In Figure 11, we present the learning curves (accuracy with respect to the

number of training epoch) for the end-to-end DL models. It can be seen that705

all of the models except the LSTM achieved training accuracy close to 100%.

This indicates that the models converged with respect to the learning phase.

However, for all of the baseline models the accuracy on the ivalid data is close

to 60%, except for the CNN-LSTM, which achieved accuracy of 75%. This

indicates that simple architectures cannot achieve high accuracy. In contrast,710

our Multi-Resnet outperformed all of the baseline DL models with a margin of

at least 10 percentage points.

Finally, in Figure 12 we present learning curves for the Multi-ResNet with

a varying number of residual blocks (from one to six blocks per channel). From

the figure it can be seen that the accuracy increases as the number of residual715

blocks increases. This trend is present up to four residual block per channel.

The Multi-ResNet-4, Multi-ResNet-5 and Multi-ResNet-6 perform similarly.

35

0 10 20 30 40 50 60 70
Training epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Multi-ResNet-1_TRAIN
Multi-ResNet-1_VAL
Multi-ResNet-2_TRAIN
Multi-ResNet-2_VAL
Multi-ResNet-3_TRAIN
Multi-ResNet-3_VAL

Multi-ResNet-4_TRAIN
Multi-ResNet-4_VAL
Multi-ResNet-5_TRAIN
Multi-ResNet-5_VAL
Multi-ResNet-6_TRAIN
Multi-ResNet-6_VAL

Figure 12: Learning curves for the Multi-ResNet model with a varying number of residual

blocks (from 1 to 6). The training accuracy (itrain data) is presented with dashed lines and

the accuracy on the ivalid data is presented with solid lines.

8.4. Ensemble of models

All the resulting models from the previous experiment (Table 7) were used

as base models in an ensemble. Different meta-models were created using differ-720

ent ML algorithms and were tuned using a 2-fold randomized parameter search.

This search was again repeated 10 times using different folds. From the results

presented in Table 8, it can be seen that most meta-models (with a few excep-

tions) have similar accuracy, with the meta-model built with the XGB algorithm

having the highest accuracy – 93.4%.725

With the meta-XGB being the best meta-model, we analyzed which base

models contribute to its performance. In particular, we were interested to find

if both ML and DL models were required for the best results. To do so, we

tried using only ML models, only DL models (in this case the default and tuned

version of the Multi-ResNet), their combination, and only the best model from730

each category. The results are shown in Table 9, and show that having more than

one ML model barely improves the performance; however, by combining the

ML and DL models (which are substantially different), the accuracy increases

significantly.

36

itest Accuracy [%]

Mean Std

meta-SVM 92.6 0.7

meta-DT 88.0 0.9

meta-NB 91.0 0

meta-KNN 92.1 0.3

meta-RF 93.0 0.1

meta-Bagging 93.0 0.4

meta-GradBoost 93.3 0.3

meta-AdaBoost 93 0.2

meta-XGBoost 93.4 0.3

Table 8: Accuracy achieved using different meta-models on the itest set. Standard deviation

was calculated across the ten different data splits.

Models used itest Accuracy [%]

Mean Std

All ML 91.3 0.3

All DL 89.8 0.3

All ML + All DL 93.4 0.3

Best ML + Best DL 93.8 0.2

Table 9: Accuracy achieved using either (or both) classical ML or DL classifiers as the base

of the ensemble on the itest set. Either all models of a type were used, or only the best one.

Standard deviation was calculated across the ten different data splits.

37

0 10 20 30 40
Classification delay [min]

92

93

94

95

96

97

98

C
la

ss
if
ic

a
ti

o
n
 a

cc
u
ra

cy
 [

%
]

No HMM smoothing

HMM smoothing using only past classifications

Figure 13: Accuracy [%] for Markov smoothing applied with different delay intervals on the

itest data.

8.5. Markov smoothing735

The last step was applying the HMM smoothing. Figure 13 presents the

accuracy with Markov smoothing applied using different delay intervals. The

figure shows that even when working with no delay, using only past classifica-

tions to ”smooth” the current one, the accuracy increased from 93.1% to 95.1%.

Small delays slowly increased the accuracy up to its final value of 97.2%. By740

testing HMM smoothing with predictions made by different classifiers and en-

sembles, we noticed that the most substantial accuracy gains happen with 5-10

minute delays. Since the SHL Challenge allowed for an offline classification, we

used the longest possible delay (using all of the data) for the challenge submis-

sion, as this was expected to yield the highest accuracy.745

As an alternative to the HMM smoothing, we tested RNN, LSTM, bidi-

rectional LSTM [62] and GRU [63] neural networks to smooth the predictions.

These models used past and current predictions as the input and output the

”corrected” current prediction. Results using these models are shown in Table

10. They all improved the prediction accuracy, but not to the extent of the750

HMM model.

38

No smoothing HMM RNN LSTM Bi LSTM GRU

93.4% 95.3% 93.7% 94.2% 93.5% 94.4%

Table 10: Different methods for smoothing the data. The test setting with no delay was used

for comparison.

itest SHL Test

ML DL ML DL

WL - 5 sec, RF and frequency features for ML 77.1 78.7 85.1 78.8

WL - 60/40 sec 84.7 85.2 88.2 81.2

Using all features 82.6 / 89.8 /

Feature selection / Sensor stream selection 87.8 89.3 88.4 90.8

Using best classifier 89.4 / 90.9 /

Ensemble (Best ML + Best DL) 93.8 94.7

Using HMM smoothing 97.2 96.0

Table 11: Accuracy [%] achieved after different steps of the proposed methodology. Test

were performed on both internal and final test sets. Unless stated otherwise, each following

step uses parameters of the previous one (e.g. all steps after the feature selection step, use

the selected features). WL - window length. ”/” denotes that ML and DL use different

parameters.

8.6. Experiments on the SHL Test set

By the time of writing this paper, the SHL challenge organizers had released

the labels for the SHL Test set, thus enabling us to evaluate our methodology

on it. Table 11 shows the different steps of our methodology on both the itest755

and the SHL Test set. For the SHL Test, set we used the same parameters as for

the itest set, with no additional fitting to it. This table can serve as a summary

on how much each step improves the performance. On the itest set, every step

increased the performance as expected, with the biggest improvements being

attributed to the window size (7 percentage points), feature selection (5 per-760

centage points), ensemble (4 percentage points) and the use of HMM smoothing

(4 percentage points). In the case of the SHL Test set, the starting accuracy

was much higher (probably due to different activity distribution), and the role

39

Still Walk Run Bike Car Bus Train Subway

Still 921 7 0 3 3 11 12 5

Walk 4 718 4 2 1 0 1 1

Run 0 9 328 0 0 0 0 0

Bike 3 0 0 508 0 0 0 0

Car 3 0 1 0 1272 0 0 0

Bus 10 8 1 1 0 876 4 0

Train 30 2 0 0 7 20 514 74

Subway 1 2 0 0 0 0 0 331

Recall [%] 95.7 98.2 97.3 99.4 99.7 97.3 79.4 99.1

Precision [%] 94.8 96.3 98.2 98.8 99.1 96.6 96.8 80.5

F1 score [%] 95.2 97.2 97.8 99.1 99.4 97.0 87.3 88.9

Table 12: Confusion matrix, precision, recall and F1 score on the itest data for the model

with highest accuracy, the meta-XGB-HMM model.

of feature selection was diminished – in fact, using all the features worked best.

The sensor stream selection, ensemble and HMM smoothing provided similar765

benefits. The final results for both test sets are roughly the same.

Table 12 presents the confusion matrix and the precision, recall and F1 score

for each class, achieved by this method on the itest data. From the confusion

matrix, it can be seen that the most problematic activities are the Train and

Subway, i.e., the only two activities that have an F1 score lower than 90%. This770

is not surprising, since the Train and Subway are in fact very similar. This also

explains why most classifiers worked better on the SHL Test set than on the

itest set, as the former contained proportionally far fewer of these two activities.

An alternative display of the model’s performance using Precision-Recall curves

is presented in Figure 14. Such curves would be useful to modify the decision775

threshold if we would be particularly interested in correctly detecting a specific

activity.

40

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ec
isi

on

Still (AP = 0.97)
Walk (AP = 1.00)
Run (AP = 0.99)
Bike (AP = 1.00)
Car (AP = 1.00)

Bus (AP = 0.99)
Train (AP = 0.90)
Subway (AP = 0.94)
Average (AP = 0.98)

Figure 14: Precision-recall curve for each of the activities and their average. The AP stands

for the average precision, defined as
∑

n(Rn −Rn−1)Pn, where Rn and Pn are the recall and

precision for the n-th decision threshold.

Table 13 presents the final results on the SHL Test and compares them to

the results of other competitors. To be able to compare these results, we list

the results using F1 score, as was used in the competition. The JSI-Deep and780

JSI-Classic are our methods which were ranked in first and second places at

the SHL challenge, and have served as the basis for the development of the

method presented in this paper, the meta-XGB-HMM. The last three rows are

the third, fourth and the fifth ranked methods at the SHL challenge. From the

results, it can be seen that our methods achieved an F1 score that is at least785

3.6 percentage points higher, compared to the best performing method from

the related work[64]. The meta-XGB-HMM presented in this paper yielded

the highest F1 score of 94.9%, which is an increase of 6.1 percentage points

compared to the best performing method from the related work.

41

Name Algorithm F1 score

(Our) meta-XGB-HMM ML + DL + HMM 94.9 %

(Our) JSI-Deep [26] ML + DL + HMM 93.9 %

(Our) JSI-Classic [27] ML (XGBoost) 92.4 %

(Rel. work) Tesaguri [64] DL (spectrogram CNN) 88.8 %

(Rel. work) S304 [25] DL (feature MLP) + HMM 87.5 %

(Rel. work) Conf. Matrix [24] ML (RF) 87.5 %

Table 13: Evaluation on the SHL challenge test data. Comparison of F1 scores between our

work and the top ranked teams at the challenge.

8.7. Energy efficiency790

To explore different trade-offs between energy efficiency and the classification

error, we first calculated the Pareto front of the trade-offs that use different

sensors for classifying different activities – as described in Section 7.1. The

results are shown in Figure 15. The most interesting solutions seem to lie in the

area between one and two sensors used on average. On the same figure, three795

sample solutions are listed. Note that by not using the DL in the ensemble, the

maximum achievable accuracy is 90%.

• Solution A: Accuracy lost: 0.5%, average number of sensors used: 2.1/5

This solution uses the accelerometer regardless of the activity. It uses the

magnetometer in all vehicles and when standing still. In addition, it uses800

the barometer when walking and on the subway (perhaps to detect the

pressure change that happens when the user enters or leaves a subway

station). Somewhat peculiarly, it uses the orientation sensor when on the

bus or train – potentially to use the rotated magnetometer features that

can recognize the orientation of the magnetic field caused by the train.805

• Solution B: Accuracy lost: 2%, average number of sensors used: 1.4/5

The accelerometer is used in all cases. The magnetometer is used when

on the subway or train – the two vehicles that are hardest to distinguish

42

Figure 15: Different trade-offs between the average number of active sensors and the classifi-

cation error. Some sample solutions are marked with letters A, B and C.

from one another. All other sensors are inactive (with the exception of

the gyroscope when running).810

• Solution C: Accuracy lost: 7%, average number of sensors used: 1/5

Only the accelerometer is used in all cases.

A quick take-away from the presented solutions is that if aiming to be en-

ergy efficient, we should always use the accelerometer and potentially use the

magnetometer if we suspect the user is in a vehicle.815

In the next step we took ”Solution B” and applied the duty-cycle methodol-

ogy on it (Section 7.2). Both fixed and activity-specific duty-cycle lengths were

tried and plotted in Figure 16. Duty-cycle length 0 means that the sensors are

always active; duty cycle length 2 means that after a window of sensor readings

(1 minute in our case), the sensors turn off for the duration of two windows.820

We can see that the Pareto front is mostly linear in both cases, decreasing the

accuracy for roughly 1.6 percentage points (p.p.) for each additional increment

of the average duty-cycle length by 1. However, for the same average duty-

cycle length, the activity-specific assignment achieves roughly 1.5 p.p. higher

43

74 76 78 80 82 84 86 88
Classification accuracy [%]

0

1

2

3

4

5

6

7

8

9

A
v
e
ra

g
e
 d

u
ty

-c
y
cl

e
 l
e
n
g
th

Fixed duty-cycle size

Dynamic duty-cycle size

Figure 16: Different trade-offs between the average duty-cycle length and the classification

error on the itest data. Dynamic solutions are compared to those with a fixed duty-cycle

length.

Activity Still Walk Run Bike Car Bus Train Subway

Duty-cycle 2 1 0 1 4 3 2 3

Table 14: A sample assignment of duty-cycle lengths to each activity.

accuracy in all cases.825

In all the solutions, the same pattern appears: when in a vehicle, long duty-

cycles are used, as these activities have infrequent transitions. When in one of

the ”hub” activities – Still, Walk – a short cycle is used for the opposite reasons.

When running, a short duty-cycle is used due to this activity being short on

average. An example solution with an average duty-cycle length of 2 is shown830

in Table 14.

Taking it all together, using the ”Solution B”, the average duty-cycle length

of 2 (Table 14) and the sampling frequency of 50 Hz, we lose roughly 5% (going

from 90% to 85%) of the classification accuracy in exchange for using only 5%

of all provided data.835

44

75 80 85 90 95 100
Accuracy [%]

10 2

10 1

100

101

102

103

Ti
m

e
[m

s]

AdaRF

SVM

GradBoost
KNN

NB

DT

Bagging

XGB

MLP

All ML

All DL
Best ML+DL

Figure 17: Time for the classification of a single instance (note the logarithmic scale) for

different methods. The ”all DL”, ”all ML” and ”best ML+DL” represent the corresponding

ensembles.

As the additional post-processing step, one can use the HMM smoothing

on the predictions generated by this solution. Doing so brings the accuracy to

89.9%, roughly 7 p.p. less than the best solution (97.2%) that uses the HMM

smoothing.

Another way to minimize energy consumption would be to consider the en-840

ergy spent on classifying the instances. This energy is largely proportional to

the time spent on the task. We thus measured the time required for the clas-

sification of a single instance for different methods (the cost of the HMM is

independent of the method and not included). All the measurements were per-

formed on a desktop computer, but it is reasonable to assume that the results845

on a smartphone would be roughly proportional. The deep-learning methods

were tested of the CPU (and not the GPU) as related work showed that the

GPU does not greatly accelerate the classification time on a smartphone [65].

45

The results in Figure 17 show an exponential relationship between the clas-

sification accuracy and the required processing time. The XGBoost and Grad-850

Boost algorithms seem to present the best trade-offs between the performance

and the energy consumption, losing roughly 4 p.p. of accuracy compared to the

ensemble, which is three orders of magnitudes slower.

9. Conclusion and discussion

The SHL Dataset is a uniquely large and sensor-rich dataset collected in a855

real-life setting. It provides an open platform for creating and testing algorithms

for AR and similar tasks. By containing activities not common in AR datasets,

such as Train and Subway, it opens new challenges for the AR community. The

SHL Challenge was an effective way to jump-start the research on the dataset,

yielding the first solutions to the basic locomotion AR problem.860

This paper offers a detailed description of our method, which won the SHL

challenge by most accurately predicting the activities on an unlabelled dataset.

It can thus be considered the reference AR method for the SHL dataset, and

a good starting point for similar AR problems. The highlights of the method

are the complex pipeline that includes novel pre-processing steps (such as co-865

ordinate system rotation), the comprehensive feature set, the complex feature

selection method and the novel neural network architecture for deep learning.

We also presented how to optimize the energy consumption of our method by

adapting sensor settings to each activity. They key contribution, however, might

be the extensiveness of the performed experiments, which give insights on the870

effectiveness of different methods on the SHL dataset and in similar domains.

The following are our key experimental observations: (Pre-processing)

The ordering of the data before making the split for internal evaluation was a

key step, as otherwise the results on the itest set would be too good due to

overfitting, and would not translate to the SHL Test set. (Window size) The875

window size used for the segmentation influences both classical and DL methods

similarly, i.e., a higher accuracy is achieved with longer windows. (Sampling

46

frequency) The features extracted for the classical ML are less sensitive to

the data sampling frequency compared to the automatic features learned by the

Multi-ResNet. In both classical ML and DL cases, a frequency of at least 20 Hz880

was required for most accurate predictions, but surprisingly good results were

achieved even with much lower frequencies (e.g. 1 Hz). (Sensors) Comparing

sensors individually, the accelerometer data provided the highest accuracy for

both the classical ML and DL methods. The accelerometer and magnetometer

proved to be the best pair. However, all sensors had to be fused together to885

achieve the best results. (Feature subgroups) For the classical ML, using

features either in time or frequency domains yielded roughly the same results.

Using both feature groups improved the accuracy. The accuracy was further in-

creased by adding features from the accelerometer and magnetometer that were

rotated into the world coordinate system. (Feature selection) The feature890

selection results are in line with the per-sensor results - i.e., more features were

kept from the sensors for which the sensor-specific models achieved higher accu-

racy. The three-step feature selection method found a good feature subset that

did not overfit to the ivalid set. This increased the accuracy by roughly 5 p.p

on the itest set. Surprisingly, on the SHL Test set, using all the features worked895

better then any tested feature subset. (Classification models) As expected,

ensemble models (e.g., boosting and RF) performed better than single models

(e.g., KNN and DT). The Multi-ResNet, using an end-to-end DL architecture,

achieved an accuracy of 89.4 %, on a par with the classical ML models – the

best of which (GradBoost) also achieved an accuracy of 89.4%. Considering900

that DL has enjoyed limited success in AR so far, it may be that the research

community is still developing appropriate architectures. The majority of the

models got significantly better after the hyper-parameter tuning. (Ensembles)

Building an ensemble that combined the ML and DL models significantly im-

proved the accuracy (from 89.4% to 93.8%.). (HMM) The HMM smoothing905

also worked surprisingly well, improving the accuracy by four percentage points

(from 93.8% to 97.2%). Thus, for the type of data where the activities are

reasonably long-lasting (in the SHL challenge all activities last more than 12

47

minutes on average - Table 1), we recommend the use of this post-processing

step. (Energy efficiency) By combining three different approaches for opti-910

mizing the energy-consumption, we found a solution that reduces the amount

of data needed – and thus the expected energy to collect and process it – by 95

%, while losing only 5% of accuracy.

Regarding the limitations of the presented work, the windowing and fre-

quency experiments for the Multi-ResNet are biased towards the specific DL915

architecture. Different architectures might find other parameters more suitable.

Also, the final and best performing feature subset (”Wrapper strict”) might

be biased towards RF, since RF was used to build models for the wrapper

feature-selection method. Finally, the SHL challenge data comes from a single

smartphone, worn by the same user in his trouser pocket for a period of four920

months. Thus, the presented analysis is person dependent and the models are

person-specific.

Parts of this methodology were successfully used in the past on other datasets

(the deep learning component [66][67] and the classical machine learning com-

ponent [6][34]), which can be an indicator of the generality of the proposed925

approach. Additionally, we used very similar methodology to win the 2019 ver-

sion of the SHL competition [68] (this paper was about the competition in 2018).

However, in the future, we plan to evaluate the models on additional subjects

as the data becomes available, and on additional datasets for AR. Additionally,

the Multi-ResNet can be updated with more advanced end-to-end fusion ap-930

proaches like two-stream network fusion [69] or multimodal subspace clustering

[70].

Acknowledgment

The authors acknowledge the financial support from the Slovenian Research

Agency (Grant U2-AG-16/0672, 0287 and grant U2-RP-19/0441, 0209).935

48

References

[1] Happiness and Satisfaction with Work Commute, https://link.

springer.com/article/10.1007/s11205-012-0003-2.

[2] H. Gjoreski, M. Ciliberto, L. Wang, F. J. Ordonez Morales, S. Mekki,

S. Valentin, D. Roggen, The university of sussex-huawei locomotion and940

transportation dataset for multimodal analytics with mobile devices, IEEE

Access.

[3] S. Kozina, H. Gjoreski, M. Gams, M. Luštrek, Efficient activity recognition

and fall detection using accelerometers, in: International Competition on

Evaluating AAL Systems through Competitive Benchmarking, Springer,945

2013, pp. 13–23.

[4] D. Roggen, A. Calatroni, M. Rossi, T. Holleczek, K. Förster, G. Tröster,

P. Lukowicz, D. Bannach, G. Pirkl, A. Ferscha, et al., Collecting complex

activity datasets in highly rich networked sensor environments, in: 2010

Seventh international conference on networked sensing systems (INSS),950

IEEE, 2010, pp. 233–240.

[5] V. Janko, B. Cvetković, A. Gradǐsek, M. Luštrek, B. Štrumbelj, T. Kajtna,

e-gibalec: Mobile application to monitor and encourage physical activity in

schoolchildren, Journal of Ambient Intelligence and Smart Environments

9 (5) (2017) 595–609.955

[6] B. Cvetković, R. Szeklicki, V. Janko, P. Lutomski, M. Luštrek, Real-time

activity monitoring with a wristband and a smartphone, Information Fusion

43 (2018) 77–93.

[7] H. Guo, L. Chen, L. Peng, G. Chen, Wearable sensor based multimodal

human activity recognition exploiting the diversity of classifier ensemble, in:960

Proceedings of the 2016 ACM International Joint Conference on Pervasive

and Ubiquitous Computing, ACM, 2016, pp. 1112–1123.

49

https://link.springer.com/article/10.1007/ s11205-012-0003-2
https://link.springer.com/article/10.1007/ s11205-012-0003-2
https://link.springer.com/article/10.1007/ s11205-012-0003-2

[8] P. Zappi, T. Stiefmeier, E. Farella, D. Roggen, L. Benini, G. Troster, Activ-

ity recognition from on-body sensors by classifier fusion: sensor scalability

and robustness, in: 2007 3rd international conference on intelligent sensors,965

sensor networks and information, IEEE, 2007, pp. 281–286.

[9] H. Gjoreski, J. Bizjak, M. Gjoreski, M. Gams, Comparing deep and clas-

sical machine learning methods for human activity recognition using wrist

accelerometer, in: Proceedings of the IJCAI 2016 Workshop on Deep Learn-

ing for Artificial Intelligence, New York, NY, USA, Vol. 10, 2016.970

[10] D. Ravi, C. Wong, B. Lo, G.-Z. Yang, A deep learning approach to on-

node sensor data analytics for mobile or wearable devices, IEEE journal of

biomedical and health informatics 21 (1) (2017) 56–64.

[11] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al., Gradient-based learning

applied to document recognition, Proceedings of the IEEE 86 (11) (1998)975

2278–2324.

[12] S. Bhattacharya, N. D. Lane, Sparsification and separation of deep learning

layers for constrained resource inference on wearables, in: Proceedings of

the 14th ACM Conference on Embedded Network Sensor Systems CD-

ROM, ACM, 2016, pp. 176–189.980

[13] M. Zeng, L. T. Nguyen, B. Yu, O. J. Mengshoel, J. Zhu, P. Wu, J. Zhang,

Convolutional neural networks for human activity recognition using mobile

sensors, in: 6th International Conference on Mobile Computing, Applica-

tions and Services, IEEE, 2014, pp. 197–205.

[14] J. Yang, M. N. Nguyen, P. P. San, X. L. Li, S. Krishnaswamy, Deep con-985

volutional neural networks on multichannel time series for human activity

recognition, in: Twenty-Fourth International Joint Conference on Artificial

Intelligence, 2015.

[15] F. Ordóñez, D. Roggen, Deep convolutional and lstm recurrent neural net-

50

works for multimodal wearable activity recognition, Sensors 16 (1) (2016)990

115.

[16] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural computa-

tion 9 (8) (1997) 1735–1780.

[17] K. Krishna, D. Jain, S. V. Mehta, S. Choudhary, An lstm based system

for prediction of human activities with durations, Proceedings of the ACM995

on Interactive, Mobile, Wearable and Ubiquitous Technologies 1 (4) (2018)

147.

[18] V. S. Murahari, T. Plötz, On attention models for human activity recogni-

tion, in: Proceedings of the 2018 ACM International Symposium on Wear-

able Computers, ACM, 2018, pp. 100–103.1000

[19] B. Martin, V. Addona, J. Wolfson, G. Adomavicius, Y. Fan, Methods for

real-time prediction of the mode of travel using smartphone-based gps and

accelerometer data, Sensors 17 (9). doi:10.3390/s17092058.

[20] S.-H. Fang, H.-H. Liao, Y.-X. Fei, K.-H. Chen, J.-W. Huang, Y.-D. Lu,

Y. Tsao, Transportation modes classification using sensors on smartphones,1005

Sensors 16 (8) (2016) 1324.

[21] S. Reddy, M. Mun, J. Burke, D. Estrin, M. Hansen, M. Srivastava, Using

mobile phones to determine transportation modes, ACM Transactions on

Sensor Networks (TOSN) 6 (2) (2010) 13.

[22] S. Hemminki, P. Nurmi, S. Tarkoma, Accelerometer-based transportation1010

mode detection on smartphones, in: Proceedings of the 11th ACM Con-

ference on Embedded Networked Sensor Systems, SenSys ’13, ACM, New

York, NY, USA, 2013, pp. 13:1–13:14. doi:10.1145/2517351.2517367.

URL http://doi.acm.org/10.1145/2517351.2517367

[23] L. Wang, H. Gjoreski, K. Muraom, T. Okita, D. Roggen, Summary of the1015

sussex-huawei locomotion-transportation recognition challenge, in: Pro-

51

https://doi.org/10.3390/s17092058
http://doi.acm.org/10.1145/2517351.2517367
http://doi.acm.org/10.1145/2517351.2517367
http://doi.acm.org/10.1145/2517351.2517367
https://doi.org/10.1145/2517351.2517367
http://doi.acm.org/10.1145/2517351.2517367

ceedings of the 6th International Workshop on Human Activity Sensing

Corpus and Applications (HASCA2018), Springer, 2018, pp. 1521–1530.

[24] A. D. Antar, M. Ahmed, M. S. Ishrak, M. A. R. Ahad, A compara-

tive approach to classification of locomotion and transportation modes1020

using smartphone sensor data, in: Proceedings of the 2018 ACM Inter-

national Joint Conference and 2018 International Symposium on Perva-

sive and Ubiquitous Computing and Wearable Computers, UbiComp ’18,

ACM, New York, NY, USA, 2018, pp. 1497–1502. doi:10.1145/3267305.

3267516.1025

URL http://doi.acm.org/10.1145/3267305.3267516

[25] P. Widhalm, M. Leodolter, N. Brändle, Top in the lab, flop in the field?:

Evaluation of a sensor-based travel activity classifier with the shl dataset,

in: Proceedings of the 2018 ACM International Joint Conference and 2018

International Symposium on Pervasive and Ubiquitous Computing and1030

Wearable Computers, UbiComp ’18, ACM, New York, NY, USA, 2018,

pp. 1479–1487. doi:10.1145/3267305.3267514.

URL http://doi.acm.org/10.1145/3267305.3267514

[26] M. Gjoreski, V. Janko, N. Reščič, M. Mlakar, M. Luštrek, J. Bizjak,

G. Slapničar, M. Marinko, V. Drobnič, M. Gams, Applying multiple1035

knowledge to sussex-huawei locomotion challenge, in: Proceedings of the

2018 ACM International Joint Conference and 2018 International Sym-

posium on Pervasive and Ubiquitous Computing and Wearable Comput-

ers, UbiComp ’18, ACM, New York, NY, USA, 2018, pp. 1488–1496.

doi:10.1145/3267305.3267515.1040

URL http://doi.acm.org/10.1145/3267305.3267515

[27] V. Janko, N. Rešçiç, M. Mlakar, V. Drobnič, M. Gams, G. Slapničar,

M. Gjoreski, J. Bizjak, M. Marinko, M. Luštrek, A new frontier for activ-

ity recognition: The sussex-huawei locomotion challenge, in: Proceedings

of the 2018 ACM International Joint Conference and 2018 International1045

52

http://doi.acm.org/10.1145/3267305.3267516
http://doi.acm.org/10.1145/3267305.3267516
http://doi.acm.org/10.1145/3267305.3267516
http://doi.acm.org/10.1145/3267305.3267516
http://doi.acm.org/10.1145/3267305.3267516
https://doi.org/10.1145/3267305.3267516
https://doi.org/10.1145/3267305.3267516
https://doi.org/10.1145/3267305.3267516
http://doi.acm.org/10.1145/3267305.3267516
http://doi.acm.org/10.1145/3267305.3267514
http://doi.acm.org/10.1145/3267305.3267514
http://doi.acm.org/10.1145/3267305.3267514
https://doi.org/10.1145/3267305.3267514
http://doi.acm.org/10.1145/3267305.3267514
http://doi.acm.org/10.1145/3267305.3267515
http://doi.acm.org/10.1145/3267305.3267515
http://doi.acm.org/10.1145/3267305.3267515
https://doi.org/10.1145/3267305.3267515
http://doi.acm.org/10.1145/3267305.3267515
http://doi.acm.org/10.1145/3267305.3267518
http://doi.acm.org/10.1145/3267305.3267518
http://doi.acm.org/10.1145/3267305.3267518

Symposium on Pervasive and Ubiquitous Computing and Wearable Com-

puters, UbiComp ’18, ACM, New York, NY, USA, 2018, pp. 1511–1520.

doi:10.1145/3267305.3267518.

URL http://doi.acm.org/10.1145/3267305.3267518

[28] Sussex-Huawei Locomotion Challenge, http://www.shl-dataset.org/1050

activity-recognition-challenge.

[29] L. Wang, H. Gjoreski, M. Ciliberto, S. Mekki, S. Valentin, D. Roggen,

Benchmarking the shl recognition challenge with classical and deep-learning

pipelines, in: Proceedings of the 2018 ACM International Joint Conference

and 2018 International Symposium on Pervasive and Ubiquitous Comput-1055

ing and Wearable Computers, UbiComp ’18, ACM, New York, NY, USA,

2018, pp. 1626–1635. doi:10.1145/3267305.3267531.

URL http://doi.acm.org/10.1145/3267305.3267531

[30] J. Lee, J. Kim, Energy-efficient real-time human activity recognition

on smart mobile devices, Mobile Information Systems 2016, Article ID1060

2316757, 12 pages.

[31] B. Sefen, S. Baumbach, A. Dengel, S. Abdennadher, Human activity recog-

nition, in: Proceedings of the 8th International Conference on Agents and

Artificial Intelligence, SCITEPRESS-Science and Technology Publications,

Lda, 2016, pp. 488–493.1065

[32] J. B. Kuipers, et al., Quaternions and rotation sequences, Vol. 66, Princeton

university press Princeton, 1999.

[33] X. Su, H. Tong, P. Ji, Activity recognition with smartphone sensors, Ts-

inghua Science and Technology 19 (3) (2014) 235–249. doi:10.1109/TST.

2014.6838194.1070

[34] B. Cvetković, V. Janko, M. Luštrek, Demo abstract: Activity recognition

and human energy expenditure estimation with a smartphone, in: Pervasive

53

https://doi.org/10.1145/3267305.3267518
http://doi.acm.org/10.1145/3267305.3267518
http://www.shl-dataset.org/activity-recognition-challenge
http://www.shl-dataset.org/activity-recognition-challenge
http://www.shl-dataset.org/activity-recognition-challenge
http://doi.acm.org/10.1145/3267305.3267531
http://doi.acm.org/10.1145/3267305.3267531
http://doi.acm.org/10.1145/3267305.3267531
https://doi.org/10.1145/3267305.3267531
http://doi.acm.org/10.1145/3267305.3267531
https://doi.org/10.1109/TST.2014.6838194
https://doi.org/10.1109/TST.2014.6838194
https://doi.org/10.1109/TST.2014.6838194

Computing and Communication Workshops (PerCom Workshops), 2015

IEEE International Conference on, IEEE, 2015, pp. 193–195.

[35] tsfresh, http://tsfresh.readthedocs.io/en/latest/.1075

[36] Mutual info score, http://scikit-learn.org/stable/modules/

generated/sklearn.feature_selection.mutual_info_classif.html.

[37] Pearson correlation coefficient, https://en.wikipedia.org/wiki/

Pearson_correlation_coefficient.

[38] scikit-learn, https://scikit-learn.org/stable/.1080

[39] T. K. Ho, Random decision forests, in: Proceedings of 3rd international

conference on document analysis and recognition, Vol. 1, IEEE, 1995, pp.

278–282.

[40] J. R. Quinlan, Improved use of continuous attributes in c4. 5, Journal of

artificial intelligence research 4 (1996) 77–90.1085

[41] S. J. Russell, P. Norvig, Artificial intelligence: a modern approach,

Malaysia; Pearson Education Limited, 2016.

[42] D. W. Aha, D. Kibler, M. K. Albert, Instance-based learning algorithms,

Machine learning 6 (1) (1991) 37–66.

[43] J. Shawe-Taylor, N. Cristianini, An introduction to support vector ma-1090

chines and other kernel-based learning methods, Vol. 204, Cambridge Uni-

versity Press Cambridge, 2000.

[44] L. Breiman, Bagging predictors, Machine learning 24 (2) (1996) 123–140.

[45] F. Rosenblatt, Principles of neurodynamics. perceptrons and the theory of

brain mechanisms, Tech. rep., Cornell Aeronautical Laboratory (1961).1095

[46] G. Mart́ınez-Muñoz, A. Sánchez-Mart́ınez, D. Hernández-Lobato,

A. Suárez, Class-switching neural network ensembles, Neurocomputing

71 (13-15) (2008) 2521–2528.

54

http://tsfresh.readthedocs.io/en/latest/
http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_classif.html
http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_classif.html
http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_classif.html
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://scikit-learn.org/stable/

[47] G. Mart́ınez-Muñoz, A. Suárez, Switching class labels to generate classifi-

cation ensembles, Pattern Recognition 38 (10) (2005) 1483–1494.1100

[48] S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network train-

ing by reducing internal covariate shift, arXiv preprint arXiv:1502.03167.

[49] V. Nair, G. E. Hinton, Rectified linear units improve restricted boltzmann

machines, in: Proceedings of the 27th international conference on machine

learning (ICML-10), 2010, pp. 807–814.1105

[50] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recog-

nition, in: Proceedings of the IEEE conference on computer vision and

pattern recognition, 2016, pp. 770–778.

[51] Z. Wang, W. Yan, T. Oates, Time series classification from scratch with

deep neural networks: A strong baseline, in: 2017 International Joint Con-1110

ference on Neural Networks (IJCNN), IEEE, 2017, pp. 1578–1585.

[52] S. Hochreiter, Y. Bengio, P. Frasconi, J. Schmidhuber, et al., Gradient flow

in recurrent nets: the difficulty of learning long-term dependencies, IEEE

Press, 2001.

[53] hmmlearn, https://hmmlearn.readthedocs.io/en/latest/.1115

[54] V. Janko, M. Luštrek, Energy-efficient data collection for context recogni-

tion, in: Proceedings of the 2017 ACM International Joint Conference on

Pervasive and Ubiquitous Computing and Proceedings of the 2017 ACM

International Symposium on Wearable Computers, ACM, 2017, pp. 458–

463.1120

[55] V. Janko, M. Luštrek, Choosing duty-cycle parameters for context recog-

nition, in: 2018 14th International Conference on Intelligent Environments

(IE), IEEE, 2018, pp. 83–86.

[56] A. Carroll, G. Heiser, et al., An analysis of power consumption in a smart-

phone., in: USENIX annual technical conference, Vol. 14, Boston, MA,1125

2010, pp. 21–21.

55

https://hmmlearn.readthedocs.io/en/latest/

[57] I. Crk, F. Albinali, C. Gniady, J. Hartman, Understanding energy con-

sumption of sensor enabled applications on mobile phones, in: Engineering

in Medicine and Biology Society, 2009. EMBC 2009. Annual International

Conference of the IEEE, IEEE, 2009, pp. 6885–6888.1130

[58] N. D. Lane, S. Bhattacharya, A. Mathur, P. Georgiev, C. Forlivesi,

F. Kawsar, Squeezing deep learning into mobile and embedded devices,

IEEE Pervasive Computing 16 (3) (2017) 82–88.

[59] M. Tan, Q. V. Le, Efficientnet: Rethinking model scaling for convolutional

neural networks, arXiv preprint arXiv:1905.11946.1135

[60] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multi-

objective genetic algorithm: Nsga-ii, IEEE transactions on evolutionary

computation 6 (2) (2002) 182–197.

[61] A. Khan, N. Hammerla, S. Mellor, T. Plötz, Optimising sampling rates

for accelerometer-based human activity recognition, Pattern Recognition1140

Letters 73 (2016) 33–40.

[62] M. Schuster, K. K. Paliwal, Bidirectional recurrent neural networks, IEEE

Transactions on Signal Processing 45 (11) (1997) 2673–2681.

[63] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,

H. Schwenk, Y. Bengio, Learning phrase representations using rnn encoder-1145

decoder for statistical machine translation, arXiv preprint arXiv:1406.1078.

[64] C. Ito, X. Cao, M. Shuzo, E. Maeda, Application of cnn for human activity

recognition with fft spectrogram of acceleration and gyro sensors, in: Pro-

ceedings of the 2018 ACM International Joint Conference and 2018 Interna-

tional Symposium on Pervasive and Ubiquitous Computing and Wearable1150

Computers, UbiComp ’18, ACM, New York, NY, USA, 2018, pp. 1503–

1510. doi:10.1145/3267305.3267517.

URL http://doi.acm.org/10.1145/3267305.3267517

56

http://doi.acm.org/10.1145/3267305.3267517
http://doi.acm.org/10.1145/3267305.3267517
http://doi.acm.org/10.1145/3267305.3267517
https://doi.org/10.1145/3267305.3267517
http://doi.acm.org/10.1145/3267305.3267517

[65] S. Richoz, A. Perez-Uribe, P. Birch, D. Roggen, Benchmarking deep clas-

sifiers on mobile devices for vision-based transportation recognition, in:1155

Proceedings of the 2019 ACM International Joint Conference on Pervasive

and Ubiquitous Computing and Proceedings of the 2019 ACM International

Symposium on Wearable Computers, ACM, 2019, pp. 803–807.

[66] M. Gjoreski, S. Kalabakov, M. Luštrek, H. Gjoreski, Cross-dataset deep

transfer learning for activity recognition, in: Proceedings of the 2019 ACM1160

International Joint Conference on Pervasive and Ubiquitous Computing

and Proceedings of the 2019 ACM International Symposium on Wearable

Computers, ACM, 2019, pp. 714–718.

[67] G. Slapničar, N. Mlakar, M. Luštrek, Blood pressure estimation from pho-

toplethysmogram using a spectro-temporal deep neural network, Sensors1165

19 (15) (2019) 3420.

[68] L. Wang, H. Gjoreski, M. Ciliberto, P. Lago, K. Murao, T. Okita,

D. Roggen, Summary of the sussex-huawei locomotion-transportation

recognition challenge 2019, in: Proceedings of the 2019 ACM International

Joint Conference on Pervasive and Ubiquitous Computing and Proceedings1170

of the 2019 ACM International Symposium on Wearable Computers, ACM,

2019, pp. 849–856.

[69] C. Feichtenhofer, A. Pinz, A. Zisserman, Convolutional two-stream network

fusion for video action recognition, in: Proceedings of the IEEE conference

on computer vision and pattern recognition, 2016, pp. 1933–1941.1175

[70] M. Abavisani, V. M. Patel, Deep multimodal subspace clustering networks,

IEEE Journal of Selected Topics in Signal Processing 12 (6) (2018) 1601–

1614.

57

	Introduction
	Related work
	Classical AR methods
	Deep AR methods
	Transportation recognition methods
	SHL challenge methods

	SHL Challenge dataset
	General description
	Data ordering and data splits

	Pre-processing and feature extraction
	Data frequency and window size
	Virtual sensor streams
	Feature engineering
	Frequency-domain features
	Time-domain features

	Feature selection

	Classification models
	Classical models
	Deep learning models
	Baseline deep learning models
	Multimodal spectro-temporal ResNet

	Ensemble

	Hidden Markov Model smoothing
	Energy-efficient solutions
	Choosing sensor subset
	Duty-cycling
	Combination

	Results
	Frequency and window size
	Feature importance and selection
	Base models
	Ensemble of models
	Markov smoothing
	Experiments on the SHL Test set
	Energy efficiency

	Conclusion and discussion

